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Background: Bladder cancer (BLCA) is one of the most common urinary malignancies
with poor prognosis. There is an unmet need to develop novel robust tools to predict
prognosis and treatment efficacy for BLCA.

Methods: The hypoxia-related genes were collected from the Molecular Signatures
Database. The TCGA-BLCA cohort was downloaded from the Cancer Genome Atlas
and then was randomly divided into training and internal validation sets. Two external
validation cohorts were gathered from Gene Expression Omnibus. Also, another
independent validation cohort (Xiangya cohort) was collected from our hospital. The
Cox regression model with the LASSO algorithm was applied to develop the hypoxia risk
score. Then, we correlated the hypoxia risk score with the clinical outcomes, the tumor
microenvironment (TME) immune characteristics, and the efficacy prediction for several
treatments, which included cancer immunotherapy, chemotherapy, radiotherapy, and
targeted therapies.

Results: Hypoxia risk score was an independent prognostic factor. A high-risk score
indicated an inflamed TME based on the evidence that hypoxia risk score positively
correlated with the activities of several cancer immunity cycles and the infiltration levels of
many tumor-infiltrating immune cells, such as CD8 + T cells, Dendritic cells, and NK cells.
Consistently, the hypoxia risk score was positively related to the expression of several
immune checkpoints, such as PD-L1, PD-1, CTLA-4, and LAG-3, as well as the T cell
inflamed score. Furthermore, the hypoxia risk score positively correlated with the
enrichment scores of most immunotherapy-positive gene signatures. Therefore,
patients with higher risk score may be more sensitive to cancer immunotherapy.
Meanwhile, the hypoxia risk score was positively related to the sensitivities of several
chemotherapeutic drugs, including Cisplatin, Docetaxel, Paclitaxel, Bleomycin,
Camptothecin, and Vinblastine. Similarly, the enrichment scores for radiotherapy-
predicted pathways and EGFR ligands were higher in the high-risk score group.
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Conversely, the enrichment scores of several immunosuppressive oncogenic pathways
were significantly higher in the low-risk score group, such as the WNT-B-catenin network,
PPARG network, and FGFR3 network.

Conclusions: We developed and validated a new hypoxia risk score, which could predict
the clinical outcomes and the TME immune characteristics of BLCA. In general, the
hypoxia risk score may aid in the precision medicine for BLCA.

Keywords: bladder cancer, tumor microenvironment, hypoxia, immunotherapy, chemotherapy, risk score

INTRODUCTION

Bladder cancer (BLCA) is one of the most common urinary
malignancies (1). The prognosis of non-muscle invasive BLCA is
good, but once the muscle-invasive stage or locally metastatic
progression is reached, the prognosis is deemed to be poor (2).
There are various treatment options such as neoadjuvant or
adjuvant chemotherapy, immunotherapy, and several targeted
therapies (2). Nonetheless, the overall response rate of these
treatments was low, which was caused by many primary or
secondary resistance mechanisms, such as hypoxia (3). In
addition, BLCA was a heterogeneous disease, which impedes
the achievement of precision medicine (4). Therefore, it is
challenging to develop novel robust tools to predict prognosis
and treatment efficacy.

Hypoxia is a hallmark of the tumor microenvironment (TME)
and plays critical roles in cancer initiation, progression, and
treatment resistance in various cancers, including BLCA
(3, 5-7). With the popularization of transcriptome sequencing
technology, many hypoxia-related risk signatures have been
developed in multiple tumors to predict prognosis and
treatment efficacy (8-11). As for BLCA, Yang et al. developed
and validated a hypoxia gene signature that could predict survival
and identify those patients likely to benefit from the addition of
carbogen and nicotinamide to radiotherapy (12). Nowadays,
immune checkpoint blockade (ICB), such as anti-PD-L1/PD-1
therapy, has revolutionized the treatments for advanced cancers.
More and more clinical trials highlighted the roles of ICB in first-
line or second-line treatments for advanced BLCA (13-15). The
ICB response rate is closely related to the status of the tumor
immune microenvironment (16, 17). However, there is no
research to systematically correlate hypoxia-related signature
with the tumor immune microenvironment in BLCA.

In this study, we integrated multiple independent BLCA data
sets to develop a new hypoxia risk score and correlate it with the
clinical outcomes, the TME characteristics, and the treatment
efficacy prediction.

MATERIALS AND METHODS

Data Retrieval and Preprocessing

External Public Cohorts

We downloaded the mRNA expression matrix (FPKM) of 414
BLCA tumor samples and 19 normal tissues from the Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). Then,
the FPKM value was converted into TPM value. Two external
validation GSE cohorts with detailed survival data were gathered
from Gene Expression Omnibus (GEO), namely GSE32894 and
GSE13507. GSE32894 (platform: GPL6947) included 224 BLCA
samples and GSE13507 (platform: GPL6102) included 165 BLCA
samples. 200 hypoxia-related genes were collected from the
Molecular Signatures Database (MSigDB) (http://www.gsea-
msigdb.org/gsea/msigdb/cards/ HALLMARK_HYPOXIA .html).

Xiangya Cohort
As reported in our previous study, 57 BLCA samples were
sequenced on a BGISEQ-500 platform (BGI-Shenzhen, China)
(13). Among these patients, 56 patients were successfully
followed up.

The detailed information of these cohorts was provided in
Supplementary Table 1.

Identification of Differentially Expressed
Hypoxia Genes (Hypoxia DEGs) and
Functional Analysis

We used the empirical Bayesian approach of the limma R
package to identify hypoxia DEGs between bladder cancer
samples and normal samples. The criteria used to determine
hypoxia DEGs were set with the |log(fold change)|>1 and the
adjusted P-value < 0.05 (18). Then, we performed Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses based on those hypoxia DEGs by using the
ClusterProfiler R package (19). In addition, we explored the
protein—protein interaction (PPI) network of those hypoxia
DEGs by using the String database and Cytoscape software.

Development and Validation of the
Hypoxia Risk Score

First, we performed univariate Cox analysis to screen the
prognostic hypoxia DEGs in the TCGA cohort. Then, the
TCGA-BLCA cohort was randomly divided into training and
validation sets with a ratio of 4:1. In the TCGA-BLCA training
set, the least absolute shrinkage and selector operation (LASSO)
algorithm was further applied to identify the optimal candidate
hypoxia DEGs with the best discriminative capability. Finally,
the hypoxia risk score was developed based on those optimal
candidate hypoxia DEGs, weighted using the LASSO coefficient
as follows:
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Risk score = X i x RNAi, where fi is the coefficient of the i — th .

Patients were classified into high and low hypoxia risk score
groups based on the median of the risk score. The Kaplan-Meier
method was applied to plot the survival curves. The log-rank test
was used to statistically compare the groups in order to estimate
the prognostic significance of the hypoxia risk score. The
statistical performance for predicting survival of the hypoxia
risk score was calculated using the tROC R package. We further
validated the role of the hypoxia risk score algorithm in the
TCGA validation set, GSE32894, GSE13507, and Xiangya cohort.
We then correlated the hypoxia risk score with the tumor grade
and stage. The remarkable thing was that there were only 19
patients who were diagnosed with a high grade in the TCGA-
BLCA cohort. Therefore, the uni- and multivariate Cox analyses
were performed to identify independent prognostic factors based
on age, gender, tumor stage, and hypoxia risk score. Meanwhile,
we developed a systematic nomogram based on these important
clinicopathological characters and the hypoxia risk score. The
statistical performance of the nomogram was validated by using
clinical decision curves.

Depicting the Hallmarks of Molecular
Subtypes and TME of BLCA

As reported in our previous study, seven independent molecular
subtype systems were analyzed, such as the UNC, TCGA, and
Consensus systems (13). Twelve molecular subtype-specific
signatures were collected and correlated with the hypoxia risk
score. Several immunological characteristics of TME and the
corresponding algorithms were also described in our previous
study (13). To briefly summarize, we calculated the activities of
the cancer immunity cycles, such as cancer antigen release and
presentation, immune cell trafficking, and killing of cancer cells.
Then we estimated the infiltration levels of several tumor-
infiltrating immune cells (TIICs) by using six independent
algorithms, such as Cibersort-ABS, TIMER, and TIP.

Gene Set Variation Analysis (GSVA) and
Efficacy Prediction of Several Treatments
GSVA is a non-parametric and unsupervised method that is
commonly used to estimate the difference in the activity of
pathways or biological processes in the samples of an
expression dataset (20). To investigate the difference in 50
hallmark pathways between hypoxia risk score groups, we
performed GSVA enrichment analysis using the “GSVA” R
packages. The corresponding pathways were collected from the
MSigDB (21). We predicted the chemotherapeutic response of
individuals by using the pRRophetic package based on the data
from Genomics of Drug Sensitivity in Cancer (GDSC) (https://
www.cancerrxgene.org/) (22). We calculated the IC50 value of
six common chemotherapeutic drugs, including Cisplatin,
Docetaxel, Paclitaxel, Bleomycin, Camptothecin, and
Vinblastine. In addition, we collected several potential
predictors for the efficacy of ICB, such as 20 inhibitory
immune checkpoints, the pan-cancer T cell inflamed score
(TIS), and 19 gene signatures positively correlated with the
clinical response of immunotherapy in BLCA (13). Finally,

several signatures related to the clinical response of
radiotherapy and targeted therapies were also collected. The
ssGSEA algorithm was applied to calculate the enrichment
scores of these signatures.

Statistical Analysis

We analyzed the correlations between variables using Pearson or
Spearman coefficients. We compared the difference in
continuous variables between binary groups using a t-test or
Mann-Whitney U test. The empirical Bayesian approach of the
limma R package was used to identify hypoxia DEGs. The
LASSO algorithm was applied to identify the optimal hypoxia
DEGs candidates with the best discriminative capability. The
Kaplan-Meier method was applied to plot the survival curves,
while the log-rank test was applied to calculate statistical
significance. The receiver-operating characteristic (ROC)
curves were plotted to calculate the accuracy of the hypoxia
risk score in predicting the survival and molecular subtypes.
Statistical tests were two-sided, and the level of significance was
set at P < 0.05. All statistical data analyses were implemented
using R software.

RESULTS

Functional Analysis of Hypoxia DEGs

A total of 94 hypoxia DEGs were screened between BLCA and
normal tissues. Among them, 55 hypoxia genes were highly
expressed in BLCA, while 39 hypoxia genes were down-
expressed (Supplementary Table 2 and Supplementary
Figures 1A, B). Supplementary Figure 1A showed the top 20
hypoxia DEGs. Results of GO analysis indicated that these
hypoxia DEGs were enriched in several pathways, including
monosaccharide metabolic process, lysosomal lumen,
monosaccharide binding, and carbohydrate kinase activity
(Supplementary Figure 1C). Results of KEGG analysis showed
that these hypoxia DEGs were enriched in Glycolysis/
Gluconeogenesis, Starch and sucrose metabolism, and the
Pentose phosphate pathway (Supplementary Figure 1D).
Notably, the most common enrichment pathways were glucose
metabolism-related pathways. Supplementary Figure 1E
showed the PPI network of these hypoxia DEGs, which
suggested that these hypoxia DEGs were closely correlated with
each other.

Development and Internal Validation

of a Hypoxia Risk Score in the
TCGA-BLCA Cohort

First, we performed univariate Cox regression analysis based on
these hypoxia DEGs in the TCGA-BLCA cohort. Next, we
screened 25 prognostic hypoxia genes, including HDLBP,
SLC2A3, SRPX, GALKI1, HEXA, PAM, ANKZF1, CASP6,
ANXA2, AKAP12, VEGFA, XPNPEP1, DCN, BGN, KDELR3,
SDC4, TPI1, TGFB3, STC1, WISP2, CCNG2, GAPDH, SLC2A1,
HS3ST1, and VHL. Then, we further identified 16 optimal
candidates with minimal lambda (0.0214) to generate the
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hypoxia risk score by using the LASSO algorithm in the TCGA
training cohort (Figures 1A, B). The coefficients of these 16
genes were shown in Supplementary Table 3. In the TCGA
training cohort, patients were classified into low and high risk
score groups. Notably, Patients in the high risk score group had
poorer overall survival (OS) when compared with patients in the
low risk score group (Figure 1C). The accuracy of the hypoxia
risk score in predicting 1-, 3-, and 5-year OS were 0.73, 0.68, and
0.70, respectively (Figure 1D). More importantly, we successfully
validated the role of the hypoxia risk score in predicting OS in
the TCGA validation cohort (Figures 1E, F). In addition, we
performed subgroup analyses based on stage, grade, gender, and
age. As expected, the high-risk score group predicted a worse

prognosis in almost all subgroups (Supplementary Figure 2).
However, the hypoxia risk score was not a significant prognosis
predictor in the low-grade subgroup; this might be due to the
small sample size.

Associations Between the Hypoxia Risk
Score and Clinicopathological Characters
In line with the prognostic value of the hypoxia risk score, the
risk score was significantly higher in patients with higher grade
and stage (Figures 1G, H). We further validated these results in
three external cohorts (Supplementary Figure 3). Then, we
performed univariate Cox analysis and revealed that the stage
and hypoxia risk score were significant prognostic factors
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(Figure 2A). Further multivariate Cox analysis reconfirmed that
the hypoxia risk score was an independent prognostic factor
(Figure 2B). These results highlighted that the hypoxia risk score
may be a promising predictive marker for the prognosis of BLCA
patients. In order to promote the clinical application of the
hypoxia risk score, we developed a comprehensive nomogram by

integrating the hypoxia risk score and several critical
clinicopathological characters, such as age and the tumor stage
(Figure 2C). Although the tumor stage was not an independent
prognostic factor in multivariate Cox analysis, its clinical value
for patients with BLCA was significant. Therefore, we included
the stage in the final nomogram. The predictive accuracy of the
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nomogram for 1-, 3-, and 5-year OS were 0.76, 0.73, and 0.75,
respectively (Figure 2D). As shown in the calibration curves
(Figure 2E), the nomogram-predicted OS was highly consistent
with the actual OS, highlighting the clinical significance of this
integrated nomogram.

External Validation of the Hypoxia Risk
Score and the Nomogram

We further explored the predictive value of the hypoxia risk
score for prognosis in the GSE32894, GSE13507, and Xiangya
cohorts. As expected, in the GSE32894 cohort, patients in the
high-risk score group had poorer OS when compared with
patients in the low-risk score group (Figure 3A). The
predictive accuracy for 1-, 3-, and 5-year OS were 0.81, 0.75,
and 0.78, respectively (Figure 3B). Similarly, in GSE13507, a
higher risk score predicted a poorer OS (Figure 3C). The
predictive accuracy for 1-, 3-, and 5-year OS were 0.67, 0.69,
and 0.61, respectively (Figure 3D). In the Xiangya cohort, a
higher risk score also predicted a poorer OS (Figure 3E). The
predictive accuracy for 1-, 2-, and 3-year OS were 0.69, 0.61, and
0.75, respectively (Figure 3F). Despite the risk score being a
prognostic factor in univariate analysis, it was not an
independent prognosis predictor in multivariate analysis
(Supplementary Figure 4). The small sample size and the
different patient compositions may cause this phenomenon in
these external cohorts. We further explored the role of the
nomogram in these external cohorts. As shown in
Supplementary Figures 5A, C, E, the nomogram predicted the
OS with high accuracy (all AUCs were more than 0.8) in three
external cohorts, especially in the Xiangya cohort where the
predictive accuracy for 3-year OS reached 0.97 (Supplementary
Figure 5 E). Meanwhile, the calibration curves indicated that the
nomogram-predicted OS was highly consistent with the actual
OS (Supplementary Figures 5B, D, F).

Hypoxia Risk Score Correlated

With Immune Characters of TME and
Predicted the Clinical Response of ICB

The state of the tumor immune microenvironment determines
the fate of cancer cells and the efficacy of immunotherapy. We
first analyzed the correlations between the risk score and the
activities of cancer immunity cycles. Obviously, the activities of
several anti-cancer immune responses, such as the release of
cancer cell antigens, T cell recruiting, CD8 T cell recruiting, Th1l
cell recruiting, NK cell recruiting, and killing of cancer cells, were
significantly higher in the high-risk score group (Figure 4A). As
a result, the infiltration levels of the corresponding TIICs, such as
CD8 T cells, NK cells, Thl cells, and Dendritic cells, were
positively related to the hypoxia risk score (Figure 4B). Based
on these data, we proposed that a high-risk score may indicate an
inflamed phenotype that may be more sensitive to ICB.
Therefore, we subsequently correlated the risk score with
several predictors of ICB efficacy. The risk score was positively
related to the TIS (Figure 4C). Meanwhile, the risk score was also
positively related to the expression of many immune checkpoints
(such as CD274, CTLA4, and PDCD1) and the enrichment

scores of immunotherapy response-related gene signatures
(Figures 4D, E). Furthermore, we performed subgroup
analyses to validate the robustness of the hypoxia risk score in
predicting the TME immune characters. As shown in
Supplementary Figures 6-11, all the results suggested that the
hypoxia risk score may be a potential predictor of ICB efficacy
in BLCA.

Hypoxia Risk Score Stratified the
Molecular Subtypes and Aided in

Precision Medicine

Differences in the enrichment scores of 50 hallmark signaling
pathways suggested significantly distinct biological functions
between the hypoxia risk score groups (Figure 5A). Myc
targets signaling and DNA repair signaling were the top
enriched signatures in the low-risk score group. In contrast,
Hedgehog signaling, KRAS signaling, and hypoxia signaling were
the top enriched signatures in the high-risk score group. These
results indicated that the hypoxia genes may influence the
progression of BLCA by regulating these hallmark pathways.
Figure 5B displayed the correlations between the hypoxia risk
score and seven classical molecular subtype classifications.
Notably, the high-risk score group indicated the basal subtype,
which was characterized by basal differentiation, EMT
differentiation, myofibroblasts, immune differentiation, and
interferon response. In contrast, the low-risk score group
suggested the luminal subtype, which was characterized by
luminal differentiation and the Ta pathway. In general, the
hypoxia risk score could predict, with high accuracy, the
molecular subtypes (Figure 5C).

Next, we explored the role of the hypoxia risk score in
predicting the therapeutic response for several treatment
options. Patients in the high-risk score group showed that they
might be more sensitive to chemotherapeutic drugs, including
Cisplatin, Docetaxel, Paclitaxel, Bleomycin, Camptothecin, and
Vinblastine (Figures 5D, E). In addition, the enrichment scores
of several immunosuppressive oncogenic pathways were
significantly higher in the low-risk score group, such as the
WNT-B-catenin network, PPARG network, and FGFR3
network. As a result, blocking these oncogenic pathways may
benefit patients in the low-risk score group (Figure 5F).
Conversely, the enrichment scores of radiotherapy and EGFR-
targeted therapy signatures were significantly higher in the high-
risk score group. Therefore, patients in the high-risk score group
may be more sensitive to radiotherapy and EGFR-targeted
therapy (Figure 5F).

Validating the Roles of the Hypoxia Risk
Score in the Xiangya Cohort, GSE13507,
and GSE32894

In our cohort (Xiangya cohort), we further validated the role of
the hypoxia risk score in predicting the immune phenotypes,
molecular subtypes, and therapeutic opportunities. The hypoxia
risk score was positively related to the enrichment scores of anti-
cancer immunity cycles (Figure 6A). Consistently, the hypoxia
risk score was positively related to the infiltration levels of several
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FIGURE 3 | External validation of the hypoxia risk score. (A, B) Validation of the hypoxia risk score in GSE32894. (C, D) Validation of the hypoxia risk score in
GSE13507. (E, F) Validation of the hypoxia risk score in Xiangya cohort.

(Figures 6B-D). Therefore, the high-risk score group also
indicated an inflamed phenotype in the Xiangya cohort.
Furthermore, the hypoxia risk score could accurately stratify
the molecular subtypes and corresponding subtypes specific
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signatures in the Xiangya cohort (Figure 6F). The AUC ranged
from 0.86 to 0.93 in seven independent systems (Figure 6G). As
expected, the hypoxia risk score could predict the clinical
response of radiotherapy and several targeted therapies

(Figure 6H). Patients in the high-risk score group may be
more sensitive to radiotherapy and EGFR targeted therapy.
However, targeted therapies, such as blocking the FGFR3
network and blocking the WNT-B-catenin network, may be

Frontiers in Immunology | www.frontiersin.org

August 2021 | Volume 12 | Article 725223


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Liu et al.

Hypoxia Risk Score in BLCA

Alcoholism
A Relations B gaﬁe excision repair
el
I i ; C uklne cytokine receptor interaction
1.Positive Relation BNA replication " )
. . . Fanconi anemia pathw: earson’s r
2.Negative Relation Homologous rengmblngzon P 025
MicroRNAs in cancer — e
repair = 0.50
Step1 Release of cancer cell antigens Nucleotide excision repair 075
tep2 Cancer antigen presentation Oocyte meiosis b
Step3 Priming_and activation 53 signaling pathw: = 1.00
Step 45(‘:9 441-! c‘ﬁ:'rf:&ﬁ:{}:‘gg | grogeslerone mediated oocyte maturation
Stepd CD8 T cell recruiting | Erﬁﬁﬁdsﬁrg?netabollsm
tep4 Th1 cell recruiting RNA degradation
Step4 Dendritic cell recruiting S "ceosgo me
St Sje,ﬂ‘ ThZE cel rec"'"'""g u 1 S?stemlc lupus erythematosus
& lacrophage recruiting
g tepd Moﬁcc‘%e re:rulllng ‘{J ?{:"Nal carcinogenesis
Stegd Neutrophil recruiting I -signature P Value pearson's r
K cell recruiing | | |l APM signal m <0.001 m10
Step4 Eosinophil recruiting [ Riskscore g .
Stepd Basophil recruiting ™ <0.01
Step4 Th%cell‘recrull(mg I - <0.05 05
tey cell recruiting N "
ss'lep:iTThZ oeH reacrm:mél T [l = Not Applicable 0.0
e| cell recruiting
?4 SC recrumng [HEEN = ns 05
Stepb Infiltration of immune cells into tumors
Step6 Recognition of cancer cells by T cells W
Step7 Killing of cancer cells
Riskscore
NS
D
7 Null NS NS NS NS 0.49
Mo: 0.49
6 M1:0.53 | M0: 0.43
NS Null | M1:0.41 0.46
M2:0.38 | M1:0.48
M2:0.53
wn 5 . -
= Activated DC: Activated DC: 0.55
cD274 i i \ i
TR s 4 Myeloid | | | NS . 7 Myeloid D(?. 0.36 | Myeloid
DC: 0.49 Resting DC: Plasmacytoid DC: | DC: 0.53
LAG3 |68 1 |cTLAe - -
CTLA4 668 077 1 | ppepi 3 N 0.
PDCD1|6® 67 083 1 | HAavCR2 Null 037 [ NS Null Null Null
HAVCR2 073 667 077071 1 | pyr 2 .
PVR @@ @1 @ @ @ 1 | cpgo'S 20 25 30 3540
CD80 0.5 086 651 087 081 @8 | 1 | cpas  ISKSCOr® G Molecular subtype
CD86 6.7 687 6.7 067 09 ¢+ 084 1  ADORA2A <
ADORAZA| @@ (8 B> 05 @5 @ @ @ 1 | cD200 -
CD200-mos a@s o9 o7 a@+ a@s om7 oo @82 1 BTLA
BTLA | @0 062 076 0.76 06 o 01 0189 062 @5 1  CD200R1 -2 g — o
CD200R1ag> (% aiz @@z B2 o7 a@s @5 087 @@ @ 1 cpo7e ; Fe
CD276 | @@z @ @z @0 @ 055 @5 @ o 003 083 004 1 CEACAM1 > ©
CEACAM1 -0:01-913084 0103 -@15-@12-m04-@3-002-@3 0 -®09-®14 1 |DOA "5 o 7| J'
IDO1 |8 @ 082|057 @ @ @ @ 00003 @ 093 @ B9 1 KIR3DLI S
KIR3DL1 | 0m4 a6/ a2 ¢80 B -@03093 @2 02c 0w7 (2 @ 082-@4082 1 | | AR1 o ¥ —— UNC: 0.9
LAIRT 8| @8 082|068 052 oo 082 079 085 @7 086 @ @o-w0o®s @ 1 || GALS3 2 ° —— TCGA: 0.87
LGALS3 -m07-@11-®06001 067 -@ 1809 001 80902 002 -B0I0@9 001-W08042(003 1 TIGIT = = MDA: 0.86
TIGIT |8 | 672 0.94 0.62 075 @1 075 071 68> ams| 070 @@ (2| 0o G5 a@5 08 ows 1 | N1 g - — Lund: 0.89
VTCN1 0ms-m04088 02 -0:02086 043 05 094 -®08 0.01-@ 5 ¢20| (@ aRs -@2-w09aR7 @3] 1 Riskscore CIT: 0.93 X
Riskscore |8 g @@ @ |48 4B 08+ 087 @@ @1 0 00| 127 @095 095 @ 00| @207 1 o | — g:;li?n o2
(=)
[ T | T T T |
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
F H
Riskscore Riskscore  Baylor_subtype I S Diclscore 15
[N UNC_subtype Low ¥ Basal
(NI T 1 | Bay|°r subtype High Differentiated FGFR3-coexpressed_genes 1
BTN TCGA_subtype
MDA _subtype o Pe mSh e WNT-R-catenin_network 05
Il Lund_subtype Luminal Luminal
CIT_subtype Luminal_infiltrated 0
Consensus_subtype Luminal_papillary PPARG_network -05
Luminal_differentiation Neuronal i
Urothelial_differentiation MDA_subtype IDH1 -1
Ta_pathway ’I’:r:f':al 15
Basal_differentiation p53 like VEGFA i
Smooth_muscle Lund_subtype
Myofibroblasts UroA_Prog KDMéB Riskscore
EMT_differentiation ~ J§-05 e LRisk
Immune_differentiation UroE - - EGFR _ligands HRisk
Interferon_response GU Inf
Mitochondria Ba S‘L'"f Hypoxia Therapeutlc target
Keratinization Mes m Immune_Tnhibited_oncogenic_pathways
- W sc_NE_like Cell_cycl EGFR_network
Neuronal_differentiation CIT_sublype © cyce Radiotherapy_predicted_pathways
Stromal_differentiation MC1 DNA_replication
Neuroendocrine_differentiation Hwmc2
FIGURE 6 | Roles of hypoxia risk score in the Xiangya cohort. (A) Correlations between hypoxia risk score and the activities of the cancer immunity cycles.
(B) Correlations between hypoxia risk score and the enrichment scores of immunotherapy-predicted pathways. (C) Correlations between hypoxia risk score and
immune checkpoints. (D) Correlations between hypoxia ris score and the T cell inflamed score (TIS). (E) Correlations between hypoxia risk score and the infiltration
levels of five tumor infiltrating immune cells (CD8+ T cells, NK cells, macrophages, Th1 cells, and dendritic cells). (F) The associations between the hypoxia risk score
groups and the molecular subtypes in seven different algorithms. (G) The predictive accuracy of hypoxia risk score for molecular subtypes in seven different
algorithms. (H) Correlations between hypoxia risk score and the enrichment scores of several therapeutic signatures such as targeted therapies and radiotherapy.

Frontiers in Immunology | www.frontiersin.org

August 2021 | Volume 12 | Article 725223


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Liu et al.

Hypoxia Risk Score in BLCA

more suitable for patients in the low-risk score group. All the
above results were successfully validated in GSE13507 and
GSE32894 (Supplementary Figures 12 and 13).

DISCUSSION

Many hypoxia risk scores have been developed to predict the
cancer prognosis and TME characters (8-11). But there is no
research to systematically correlate the hypoxia-related signature
with the TME characters in BLCA. Here, we developed and
validated a novel hypoxia risk score by integrating multiple
independent BLCA data sets and the Xiangya cohort. The
hypoxia risk score could predict the clinical outcomes,
molecular subtypes, and TME characteristics. In addition, the
hypoxia risk score may predict the efficacy of the ICB,
chemotherapy, radiotherapy, and targeted therapies in BLCA.

Hypoxia is a common feature in TME of various cancers (3, 5,
23). Tumor cells undergo metabolic reprogramming, especially
glucose metabolism, to adapt to the hypoxic TME (24-26).
Consistently, we found that the hypoxia DEGs were
significantly enriched in glucose metabolism-related pathways
(Supplementary Figures 1C, D). The hypoxia risk score could
reflect the actual hypoxia states in TME from several aspects.
First, the hypoxia risk score could predict the prognosis and
clinical characters of BLCA. A higher risk score indicated poorer
OS, advanced tumor grade and stage. Second, we analyzed the
differences in the enrichment scores of 50 hallmark pathways
between the hypoxia risk score groups. As expected, hypoxia,
angiogenesis, and glycolysis pathways were significantly enriched
in the high-risk score group. In addition, other cancer-associated
pathways, such as the P53 pathway, NOTCH signaling, DNA
repair signaling, and KARS signaling, were also enriched in the
high-risk score group. Chemotherapy was the most important
treatment for advanced BLCA (2). It is necessary to develop
accurate predictors of chemotherapy sensitivity to pinpoint the
best candidates to receive chemotherapy. Here, we found that the
sensitivities of the six most commonly used chemotherapeutic
drugs in BLCA were significantly higher in the high-risk score
group; this suggested that patients with high-risk score may
benefit more from chemotherapy.

Yang et al. developed a 24-gene hypoxia signature in BLCA
(12). They found that patients with high-risk score had a worse
prognosis. Meanwhile, they demonstrated that the hypoxia risk
score aided in selecting patients likely to benefit from the
addition of carbogen and nicotinamide to radiotherapy.
Consistently, we found that patients in the high-risk score
group had a poorer prognosis. In addition, patients in the
high-risk score group may be more sensitive to radiotherapy.
Nonetheless, there are several different focuses between our
study and Yang’s research. First, the selected hypoxia gene set
was different between the two studies. Yang et al. derived their
hypoxia signature based on 611 hypoxia-regulated genes from
previously published literature (27). In our study, we developed
our hypoxia risk score based on the hallmark hypoxia signature
which included 200 genes that are up-regulated in response to

low oxygen levels (hypoxia). Compared to other published
hypoxia gene sets, the hallmark hypoxia signature reduced
redundancy and produced a more robust enrichment analysis
result (21). Second, Yang et al. calculated the hypoxia risk score
by directly using the median expression of genes associated with
poor prognosis. In our study, we generated the hypoxia risk score
by integrating the differential expression analysis, Cox analysis,
and LASSO algorithm. Third, Yang et al. did not analyze the
association between the hypoxia risk score and TME characters,
especially the immune characters. In our study, we
comprehensively correlate the hypoxia risk score with several
TME immune features, such as the TIICs, immune checkpoints,
and TIS.

Hypoxia plays a critical role in regulating the tumor immune
microenvironment via various mechanisms. Hypoxia upregulates
the expression of several inhibitory immune molecules to shape
an immunosuppressive TME. For instance, via HIF-1, hypoxia
directly upregulates the expression of PD-LI in various tumor
cells by directly binding the HRE in the promoter of the PD-L1
gene (28). Hypoxia also promotes the immunosuppressive
function of MDSC by upregulating the VISTA expression (29),
induces tumor cell escape from phagocytosis by upregulating the
CD47 (30), and stimulates the expression of the Non-Classical
MHC class I (HLA-G) to inhibit the function of several immune
cells, including B cells, T cells, natural killer cells, and dendritic
cells (31, 32). Under a hypoxic TME, cancer cells continue ATP
production by switching to glycolysis, which leads to the
accumulation of immunosuppressive lactic acid and adenosine
(33). Low pH condition, caused by the accumulation of excessive
lactic acid, inhibits the secretion of IL-2, tumor necrosis factors,
and IFN-y from T lymphocytes (34, 35). So, CD8+ T cells’
cytotoxic activity was also markedly inhibited under such a low
pH condition (36). The adenosine accumulated in the TME
negatively regulates the activation of the anti-tumor T cell
response (37-39). In addition, many other mechanisms have
also been explored. Hypoxia activates autophagy to degrade the
proapoptotic protein GZMB, thus inhibiting NK-mediated killing
of cancer cells (40). Hypoxia upregulates the infiltration levels of
Treg cells by increasing the expression of the FOXP3
transcription factor, TGF-P3, and CCL28, which may inhibit the
anti-cancer immune responses (41, 42). Overall, these data
prompt us to explore the role of the hypoxia risk score in
predicting the immune characters in TME.

In this study, the hypoxia risk score was positively correlated
with the TIS, the enrichment scores of anti-cancer immunity
cycles (such as T cell recruiting and release of cancer cell
antigen), and TIICs (such as CD8 T cells and NK cells), which
suggested that there was a higher pre-existing anti-cancer
immunity in the TME of patients in the high-risk score group
(43). However, this pre-existing anti-cancer immunity may be in
a restrained state. That was because the hypoxia risk score was
also positively correlated with M2 macrophages (Figure 4B),
which was recognized as a cancer-promoting immune cell to
inhibit the anti-cancer immunity, and its infiltration was
positively regulated by hypoxia (44, 45). As we all know,
immune checkpoints inhibit the anti-cancer immunity in TME
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(46). Consistently, in this study, the hypoxia risk score was
indeed positively correlated with the expression of many
immune checkpoints, such as PD-L1, PD-1, and CTLA-4.
Therefore, for patients in the high-risk score group, although
the pre-existing anti-cancer immunity in TME was higher, it was
suppressed by the higher infiltration level of M2 macrophages
and the higher expression of immune checkpoints. So, patients in
the high-risk score group may benefit more from treatments that
can reactivate the suppressed anti-cancer immunity in TME,
such as ICB (13). However, for patients in the low-risk score
group, the TIS and the expression of immune checkpoints were
significantly lower, which indicated lower anti-cancer immunity
and fewer immunotherapy targets in TME. Therefore, patients in
the low-risk score group may not be suitable for ICB.

There were a few limitations to this study. First, this study was
performed by using bioinformatic analyses. Though we validated
the results in our own cohort and several public cohorts, we did
not explore the relevant mechanisms of hypoxia in vivo or
in vitro. Second, the clinical value of our hypoxia risk score
needs further validation in prospective clinical trials. Third, we
did not determine the optimal cut-off value of the hypoxia risk
score. Alternatively, the median of the hypoxia risk score was
defined as the cut-off value in all the validation cohorts.

In conclusion, we developed and validated a novel hypoxia
risk score, which could predict the clinical outcomes and the TME
characteristics of BLCA. The hypoxia risk score may aid in the
development of precision medicine in BLCA. For patients in the
high-risk score group, they may benefit from immunotherapy,
chemotherapy, radiotherapy, and EGFR targeted therapy. In
contrast, patients in the low-risk score group may benefit from
several targeted therapies, such as blocking the WNT-B-catenin
network, PPARG network, and FGFR3 network.
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Supplementary Figure 1 | Identification of differentially expressed hypoxia genes
and functional analysis. (A) The top 20 differentially expressed hypoxia genes
between BLCA and normal tissues. (B) The volcano plot of the differentially
expressed hypoxia genes. (C, D) Go and KEGG analysis of the differentially
expressed hypoxia genes. (E) The PPI network of the differentially expressed
hypoxia genes.

Supplementary Figure 2 | Subgroup survival analyses based on grade, stage,
gender, and age in TCGA-BLCA cohort. (A, B) The K-M curves and ROC curves of
hypoxia risk score in the high grade and low grade subgroups. (C, D) The K-M
curves and ROC curves of hypoxia risk score in the high stage and low stage
subgroups. (E, F) The K-M curves and ROC curves of hypoxia risk score in the
female and male subgroups. (G, H) The K-M curves and ROC curves of hypoxia risk
score in the younger and older subgroups.

Supplementary Figure 3 | The associations between the hypoxia risk score and
clinicopathological characters in three external cohorts. (A=C) Associations
between the hypoxia risk score and tumor grade, stage, and recurrence in
GSE13507. (D) Association between the hypoxia risk score and tumor grade in
GSE32894. (E, F) Associations between the hypoxia risk score and tumor grade
and stage in Xiangya cohort.

Supplementary Figure 4 | The multivariate Cox analysis in three external
cohorts. (A) The results of multivariate Cox analysis in GSE13507; (B) The results of
multivariate Cox analysis in GSE32894; (C) The results of multivariate Cox analysis
in Xiangya cohort.

Supplementary Figure 5 | The ROC cureves and calibration curves of the
nomogram in three external cohorts. (A) The ROC curves and calibration curves of
the nomogram in GSE13507; (B) The ROC curves and calibration curves of the
nomogram in GSE32894; (C) The ROC curves and calibration curves of the
nomogram in Xiangya cohort.

Supplementary Figure 6 | Hypoxiarisk score correlated with immune characters of
TME and predicted the clinical response of ICB in the high stage subgroup in TCGA-
BLCA. (A) Differences in activities of the cancer immunity cycles between high- and low-
risk score groups. (B) The correlations between the hypoxia risk score and several
immune cells. (C) The correlations between the hypoxia risk score and T cell inflamed
score (TIS). (D) The correlations between hypoxia risk score and the enrichment scores
of immunotherapy-predicted pathways. (E) The correlations between hypoxia risk
score and immune checkpoints.

Supplementary Figure 7 | Hypoxia risk score correlated with immune characters
of TME and predicted the clinical response of ICB in the low stage subgroup in
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TCGA-BLCA. (A) Differences in activities of the cancer immunity cycles between
high- and low-risk score groups. (B) The correlations between the hypoxia risk
score and several immune cells. (C) The correlations between the hypoxia risk score
and T cellinflamed score (TIS). (D) The correlations between hypoxia risk score and
the enrichment scores of immunotherapy-predicted pathways. (E) The correlations
between hypoxia risk score and immune checkpoints.

Supplementary Figure 8 | Hypoxia risk score correlated with immune characters
of TME and predicted the clinical response of ICB in the female subgroup in TCGA-
BLCA. (A) Differences in activities of the cancer immunity cycles between high- and
low-risk score groups. (B) The correlations between the hypoxia risk score and
several immune cells. (C) The correlations between the hypoxia risk score and T cell
inflamed score (TIS). (D) The correlations between hypoxia risk score and the
enrichment scores of immunotherapy-predicted pathways. (E) The correlations
between hypoxia risk score and immune checkpoints.

Supplementary Figure 9 | Hypoxia risk score correlated with immune characters
of TME and predicted the clinical response of ICB in the male subgroup in TCGA-
BLCA. (A) Differences in activities of the cancer immunity cycles between high- and
low-risk score groups. (B) The correlations between the hypoxia risk score and
several immune cells. (C) The correlations between the hypoxia risk score and T cell
inflamed score (TIS). (D) The correlations between hypoxia risk score and the
enrichment scores of immunotherapy-predicted pathways. (E) The correlations
between hypoxia risk score and immune checkpoints.

Supplementary Figure 10 | Hypoxia risk score correlated with immune
characters of TME and predicted the clinical response of ICB in the older subgroup
in TCGA-BLCA. (A) Differences in activities of the cancer immunity cycles between
high- and low-risk score groups. (B) The correlations between the hypoxia risk
score and several immune cells. (C) The correlations between the hypoxia risk score
and T cellinflamed score (TIS). (D) The correlations between hypoxia risk score and
the enrichment scores of immunotherapy-predicted pathways. (E) The correlations
between hypoxia risk score and immune checkpoints.
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