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Although glycogen synthase kinase-3 beta (GSK-3β) was originally named for its ability to phosphorylate glycogen synthase and
regulate glucose metabolism, this multifunctional kinase is presently known to be a key regulator of a wide range of cellular
functions. GSK-3β is involved in modulating a variety of functions including cell signaling, growth metabolism, and various
transcription factors that determine the survival or death of the organism. Secondary to the role of GSK-3β in various diseases
including Alzheimer’s disease, inflammation, diabetes, and cancer, small molecule inhibitors of GSK-3β are gaining significant
attention. This paper is primarily focused on addressing the bifunctional or conflicting roles of GSK-3β in both the promotion of
cell survival and of apoptosis. GSK-3β has emerged as an important molecular target for drug development.

1. Introduction

Glycogen synthase kinase-3 is a ubiquitously expressed
protein kinase that exists in two isoforms, α and β. Originally
identified based on its role in glycogen biosynthesis based on
its inactivating phosphorylation of glycogen synthase, it has
since been found to regulate a myriad of functions through
Wnt and other signaling pathways [1]. The two isoforms
are strongly conserved within their kinase domain but differ
greatly at the C-terminus, while the α isoform additionally
contains a glycine-rich N-terminus extension [2]. Our paper
will focus on the β isoform due to its more established
role in cell survival and viability. Glycogen synthase kinase-
3 beta (GSK-3β) is involved in the regulation of a wide
range of cellular functions including differentiation, growth,
proliferation motility, cell cycle progression, embryonic
development, apoptosis, and insulin response [1–8]. It has
emerged as an important regulator of neuronal, endothelial,
hepatocyte, fibroblast, and astrocyte cell death in response to
various stimuli [6, 7, 9].

GSK-3β is comprised of 12 exons in humans and 11
exons in mice with the ATG start codon located within

exon 1 and the TAG stop codon found in the terminal
exon. The gene product is a 46 kDa protein consisting of
433 amino acids in the human and 420 amino acids in the
mouse. Figure 1 shows the overall structure of GSK-3β. It
is similar to other Ser/Thr kinases [10, 11]. The N-terminal
domain is comprised of the first 135 residues and forms a
7-strand β-barrel motif. A small linker region connects the
N-terminal domain to the central α-helical domain formed
by residues 139 through 342. The ATP-binding site lies
at the interface of the N-terminal and α-helical domains.
Residues 343 through 433 form the C-terminal domain,
which is outside of the classical Ser/Thr kinase core fold.
These residues form a helix/loop domain that interacts with
the core α-helical domain. The N-terminal amino acids 78
through 92 are necessary for association with p53 (Figure 1).
The activity of GSK-3β can be reduced by phosphorylation at
Ser-9. Several kinases are able to mediate this modification,
including p70S6 kinase, p90RSK, PKC, and Akt [12, 13]. In
opposition to the inhibitory phosphorylation of GSK-3β at
Ser-9, phosphorylation of GSK-3β at Tyr-216 by ZAK1 or
Fyn increases its enzyme activity [14] (Figure 2).
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Figure 1: Glycogen synthase kinase-3β (GSK-3β) structure. GSK-
3β is a 433 residue protein consisting of 3 distinct structural
domains. The N-terminal domain (yellow) consists of the first
134 residues and forms a 7-strand β-barrel. A short linker from
the N-terminal domain, residues 135–151 connect the N-terminal
domain to the α-helical domain (magenta). The α-helical domain
is composed of residues 152–342. Sandwiched between the N-
terminal and α-helical domain is the ATP-binding site. The C-
terminal domain consists of residues 343–433 (blue). A strand
diagram of GSK-3β. Phosphorylation of Ser-9 inactivates the
enzyme, while phosphorylation of Tyr-216 activates. The p53
association region and basic domain region are both located in
the N-terminal domain. Image was made using PyMol Molecular
Graphics Software version 1.3 with the PDB structure 1UV5.

Dysregulation of GSK-3β expression leads to many
pathological conditions, including diabetes (or insulin resis-
tance), neuronal dysfunction, Alzheimer’s disease [15–18],
schizophrenia [19], Dopamine-associated behaviors [20],
bipolar disorders [21], Parkinson’s disease [22], and cancer.
Of special interest is the involvement of GSK-3β in cancer
with data supporting a role as a tumor suppressor and tumor
promoter, a discrepancy that at least in part depends on
both cell type and signaling environment. For example, GSK-
3β has been shown to inhibit androgen receptor-stimulated
cell growth in prostate cancer, thus acting as a tumor
suppressor [23]. In contrast, GSK-3β is highly expressed in
colorectal cancer [24, 25] and has been shown to participate
in nuclear factor-κB (NF-κB) mediated cell survival in
pancreatic cancer [26], thus behaving as a tumor promoter.
Moreover, the kinase has dual functions in the regulation of
cell survival, where it can either activate or inhibit apoptosis
[3, 27], further complicating its involvement in cancer. This
paper will focus on how GSK-3β can both activate as well as
protect from apoptosis with a focus on oncology.

Regulation of β-catenin levels is a critical step in Wnt
signaling. β-Catenin is phosphorylated by GSK-3β and then
degraded through the ubiquitin-proteasome system [28–
30]. Inhibition of GSK-3β activity leads to stabilization and
accumulation of β-catenin in the cytosol, which is shuttled
into the nucleus and regulates gene expression (Figure 2).
GSK-3β is also involved in cell cycle regulation through the

phosphorylation of cyclin D1, which results in the rapid
proteolytic turnover of cyclin D1 protein [1, 31] (Figure 2).
Direct overexpression of wild-type GSK-3β is known to
induce apoptosis in various cell types in culture, and specific
inhibitors of GSK-3β are able to stop this apoptotic signaling
[6, 7, 9, 32]. The detailed molecular mechanism of GSK-
3β’s proapoptotic effect is as yet unknown, but it involves
regulation of metabolic and signaling proteins, transcription
factors, and gene expression [4, 33].

GSK-3β is required for proper development [4] and
is ubiquitously expressed in the animal kingdom. GSK-3β
protein was originally isolated from skeletal muscle, but
though widely expressed, the protein is most abundant in
brain tissue, especially neurons. The high level of expression
in brain tissue is likely due to its vital role in neuronal
signaling. In neuronal cells, GSK-3β is required for dendrite
extension and synapse formation in newborns.

2. Regulation of Apoptosis by GSK-3β

GSK-3β has been shown to induce apoptosis in a wide
variety of conditions including DNA damage [34], hypoxia
[35], endoplasmic reticulum stress [36], and Huntington’s
disease-associated polyglutamine toxicity [37]. In cell culture
studies, apoptosis was either attenuated or fully abrogated
by inhibiting GSK-3β in primary neurons [38], HT-22 cells
[39], PC12 cells [40], and human SH-SY5Y neuroblastoma
cells [36, 41].

GSK-3β promotes apoptosis by inhibiting prosurvival
transcription factors, such as CREB and heat shock factor-1
[42], and facilitating proapoptotic transcription factors such
as p53 [34]. A list of some alternative conditions where GSK-
3β facilitates apoptosis is given in Table 1. A large number
of proteins have been shown to interact with the tumor
suppressor transcription factor p53 to regulate its actions
[43, 44], which has been implicated in the proapoptotic
actions of GSK-3β in several studies. Following DNA dam-
age, the normally short-lived p53 protein is stabilized and
modified by a complex array of posttranslational modifi-
cations, such as phosphorylation, acetylation, methylation,
ubiquitination, sumoylation, glycosylation, and neddylation.
One of these regulatory proteins is GSK-3β, which forms a
complex with nuclear p53 to promote p53-induced apoptosis
[34, 45, 46]. GSK-3β binds directly to p53, and the C-
terminal region of p53 is necessary for this interaction [45].
GSK-3β was shown to directly phosphorylate p53 at Ser-
33 [47] and to mediate p53 phosphorylation at Ser-315
and Ser-376 [48, 49]. GSK-3β also promotes p53-mediated
transcription of specific genes and regulates the intracellular
localization of p53 [45, 46, 49]. In addition to GSK-3β
regulating p53, GSK-3β is also regulated by p53. The activity
of GSK-3β is increased by a phosphorylation-independent
mechanism of direct binding of p53 to GSK-3β [34]. Nuclear
localization of GSK-3β may also be regulated by binding of
activated p53 [50].

In addition to direct interaction, GSK-3β can regulate
p53 levels through the phosphorylation of the p53-specific
E3 ubiquitin ligase MDM2 [69]. Regulation of p53 by MDM2
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Table 1: Conditions where GSK-3β facilitates apoptosis.

System or stimulus Mechanism

C(2) Ceramide-associated damage
Inhibits the phosphorylation of AKT and ERK pathways and through the dephosphorylation of
GSK-3β [51]. GSK-3β inhibitors have been shown to inhibit apoptosis through inhibiting
dephosphorylation of AKT and GSK-3β [52].

LPS-mediated endotoxic shock
While specific apoptotic studies have not been performed, LPS has been shown to stabilize
apoptotic signal-regulating kinase-1 (ASK-1), a serine-threonine kinase associated with
stress-induced apoptosis [53].

Immune system Regulates in apoptosis of activated T-Cells [54].

HIV-mediated neuronal damage Inhibits NF-κB [55–57].

Neurodegenerative
disease-related toxicity and
oxidative stress

Neuronal or oligodendrocyte injury or toxicity (including prion peptide) is associated with
increased activity of GSK-3β[51, 58–64].

Negative regulators of GSK-3β are associated with increased survival factors [51, 58–64] and
neuroprotection [9, 38].

ER stress
ER stress can lead to dephosphorylation of pGSK-3β(S9), leading to stress-induced apoptosis
through activated caspase-3 [12–14, 26, 28].

Hypoxia/ischemia Activates mitochondrial death pathway [35, 65–68].
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Figure 2: Regulation of GSK-3β. GSK-3β is a multifunctional kinase that has a role in various signaling pathways that regulate cell fate.
ZAK1 or Fyn can phosphorylate Tyr-216 which increases the GSK-3β activity. GSK-3β can phosphorylate downstream targets like β-catenin
and degrade it through the ubiquitin-proteasome system. Akt and PKC on the other hand can attenuate GSK-3β enzymatic activity by
phosphorylating Ser-9. Inhibition of GSK-3β activity therefore leads to stabilization and accumulation of β-catenin in the cytosol, which
is shuttled into the nucleus where it functions to regulate gene expression. GSK-3β is also involved in cell cycle regulation through the
phosphorylation of cyclin D1, which results in the rapid proteolytic turnover of cyclin D1 protein.

is multifaceted. In the classical model, N-terminal phospho-
rylation of p53 at Ser-15 (mouse Ser-18) and Ser-20 (mouse
Ser-23) inhibits the interaction with MDM2 and thereby
prevents MDM2-mediated ubiquitination and the resulting
proteasomal degradation of p53 [44] (Figure 3). Stabilized
p53 then enters a complex regulatory network to induce

DNA binding and transcriptional activation of p53 target
genes, in part through the recruitment of coactivators and
corepressors. This determines the specific cellular response,
which can include survival, growth arrest, DNA repair, or
apoptosis [44]. Inhibition of GSK-3β in hippocampal neu-
rons protected it from radiation-induced apoptosis [9, 70].
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Figure 3: GSK-3β’s role in apoptosis signaling. The above
schematic shows the role of activated GSK-3β and its role in
regulating apoptosis. Active GSK-3β inhibits MDM2 regulation of
p53, leading to DNA repair and growth arrest, and in some cases the
activation of the caspase cascade through Bax to promote apoptosis.
Active GSK-3β also positively regulates NFκB by activating IKK,
IκB, and p65, leading to the inhibition of TNF-mediated apoptosis.
These actions inhibit the initiation of apoptosis through the TNF
signaling cascade.

Similar protection from GSK-3β inhibition has been seen
in primary neurons [38]. The mechanism of protection
from radiation-induced apoptosis in these cells involves
subcellular localization and interaction of GSK-3β, p53,
and MDM2. GSK-3β inhibition blocks radiation-induced
accumulation of p53 by upregulating levels of MDM2
that subsequently result in decreased radiation-dependent
apoptosis [71]. In addition to abrogation of radiation-
induced p53 phosphorylation, accumulation, and nuclear
translocation, GSK-3β inhibition results in the accumulation
of MDM2 and sequestration of GSK-3β, p53, and MDM2 in
the cytoplasm where p53 cannot act on its target genes [71].
The role of attenuated p53 function in the prosurvival effects
of the GSK-3β inhibitors, has also been previously described
[34, 46, 70, 72, 73].

In regulation of the apoptotic response, mammalian cells
employ multiple prosurvival proteins from the Bcl-2 family
(Bcl-2, Bcl-XL, Bcl-w, Mcl1, and A1) that antagonize the
proapoptotic function of Bax and Bak [34, 74]. Bax and Bak
localize to the mitochondrial outer membrane and trigger
death signals leading to cytochrome c release to the cytosol
[74, 75]. Apoptosis requires a group of effector caspases
to dismantle the cells. Cytochrome c activates caspase-9,
which subsequently activates caspase-3 [76]. The activation
of caspase-3 is an essential step leading to cleavage of the
DNA repair enzyme, poly (ADP-ribose) polymerase (PARP),
resulting in genomic DNA fragmentation. Bax protein levels
and cleavage (activation) of caspase-3 were increased due
to radiation and were abrogated by GSK-3β inhibitors [77]
(Figure 3). GSK-3β was also found to be associated with

mitochondrial apoptotic signaling. Inhibition of GSK-3β
prevented mitochondrial release of cytochrome c, which is
known to activate caspase-3 and initiate apoptosis [34].
Phosphatidylinositol 3-kinase (PI3-kinase) and its down-
stream effector, the protein-serine/threonine kinase Akt, a
negative regulator of GSK-3β, play an important role in
preventing apoptosis by blocking activation of the caspase
cascade [78].

3. Survival-Promoting Effects of GSK-3β

GSK-3β is involved in multiple signaling pathways and has
many phosphorylation targets. It should therefore not be
surprising that GSK-3β has both pro- and antiapoptotic
roles. The overall effect of GSK-3β on cell survival varies
depending on cell type, transformation status, and the
specific signaling pathway being activated. For example,
despite evidence for a substantial proapoptotic role of GSK-
3β, it is the inhibition of GSK-3β that promotes apoptosis
and decreases viability in neuroblastoma cells [79]. Several
examples of pro-survival roles of GSK-3β not mentioned
here are summarized in Table 2 [80–84].

Additionally, while GSK-3β has been typically identified
as an activator of p53-mediated apoptosis [34], conflicting
reports suggest an inhibitory effect of GSK-3β signaling on
p53 activation. Inhibition of GSK-3β blocks activation of
MDM2 by reducing Ser-254 phosphorylation. This prevents
p53 degradation and promotes apoptosis despite the induc-
tion of p53 ubiquitination. Similarly, ionizing radiation was
found to induce an inactivating phosphorylation at Ser-9 of
GSK-3β, corresponding to hypophosphorylation of MDM2
and accumulation of p53 [69]. In contrast to its proapoptotic
effects, this data suggests that GSK-3β inhibits apoptosis
under basal conditions through MDM2-dependent degra-
dation of p53. Overexpression of β-catenin, a downstream
signaling factor negatively regulated by GSK-3β, was found
to increase basal p53 levels by blocking both MDM2-
dependent and independent degradation in neuroblastoma
cells [85], providing additional supporting evidence for an
inhibitory effect of GSK-3β on p53-mediated apoptosis.
Interestingly, a negative feedback loop exists between β-
catenin and p53; while β-catenin upregulates p53 levels, the
activation of p53 results in degradation of β-catenin through
GSK-3β [86]. While the majority of publications suggest a
proapoptotic role for GSK-3β in p53 signaling, it is clear
that more comprehensive studies are needed in order to fully
understand the p53-GSK-3β relationship.

GSK-3β is specifically required for hepatocyte survival in
normal embryos, and GSK-3β knockout mice are embry-
onically lethal between E13.15–14.5. Hepatocyte apoptosis
in GSK-3β knockout mice and mouse embryonic fibrob-
lasts results only after exposure to tumor necrosis factor
(TNF), while inhibition of GSK-3β in wild-type cells with
lithium increases TNF sensitivity. GSK-3β loss in these cells
has a detrimental effect on the action of NF-κB, which
protects against TNF-induced apoptosis [88]. Other studies
have shown that GSK-3β directly promotes NF-κB stability
and activation through both the degradation of p105 and
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Table 2: Other pro survival roles of GSK-3β.

System Mechanism

ER stress Reduces expression of the proapoptotic transcription factor CHOP/GADD153 [87].

Glioblastoma differentiation Promotes self-renewal through interaction with Bmi1 [81].

Death receptor complex Inhibits apoptotic signaling and caspase activation [83].

Chemotherapy Targeted by death-inducing drugs suggesting an inhibitory role [84].

Oncogenic activation Inhibits apoptotic activation by c-myc [82].

Glucose metabolism Prevents apoptosis through mitochondrial stabilization [82].

activation of the p65 subunit, suggesting a likely mech-
anism for lithium-induced TNF hypersensitivity [89, 90]
(Figure 3). The role of GSK-3β on NF-κB activation may also
be mediated indirectly through inhibition of β-catenin, as
cancer cells with high β-catenin levels are especially sensitive
to TNF-induced death [91].

Despite the abundance of evidence implicating GSK-
3β in protection from TNF-mediated apoptosis, a few
conflicting reports further complicate our understanding
of the pathway. A more recent study claims that GSK-3
inhibition does indeed reduce NF-κB activity but does not
result in TNF-mediated apoptosis, potentially due to the
activation of pro-survival genes through Wnt signaling [92].
Similarly, TNF sensitization by lithium in multiple sarcoma
cell lines was found to be independent of both GSK-3β
and NF-κB [93] while GSK-3β inhibition in prostate cancer
and HEK cells actually increased NF-κB activity despite
promoting TNF-induced apoptosis [94].

The specifics of apoptosis regulation by GSK-3β remain
both ambiguous and complex, requiring further research in
order to determine the mechanisms of action responsible for
differential control of cell survival. In addition to variations
in cell signaling and proliferation status, the effect of
GSK-3β on apoptosis may depend on cellular localization.
Only cytosolic GSK-3β was found to inhibit TNF-mediated
apoptosis [80] while apoptosis enhances nuclear localization
[95], suggesting a potential localization-based mechanism
for differential apoptotic regulation. Insufficient data is
available to explain the contradictory effects proposed for
GSK-3β on p53-mediated apoptosis, and a more detailed
study is required in order to determine the reasons for these
observed differences, but differential localization of p53,
MDM2, and GSK-3β may help define the regulatory role of
GSK-3β in various systems.

4. Positive Regulators of GSK-3β

Several molecules are known to potentiate the downstream
effects of GSK-3β (Table 3). Positive regulators of GSK-3β
are often utilized for enhancing the proapoptotic effects
of GSK-3β in the context of chemotherapy for cancer
treatment (reviewed in [96]). These regulators typically
operate through an indirect mechanism, actually serving as
inhibitors for upstream negative regulators. For example,
GSK-3β activity is increased upon inhibition of PI3-Kinase
with wortmannin or LY294002 [97–99]. Many GSK-3β reg-
ulators act to inhibit Akt by blocking its activation or kinase

activity. The kinase inhibitor staurosporine and the COX-2
inhibitor Celecoxib block the activating phosphorylation of
Akt by PDK [100–104]. Additionally, curcumin dephospho-
rylates Akt to prevent its downstream inactivation of GSK-3β
[102], as does the histone deacetylase inhibitor Trichostatin
A, in a PP1-dependent manner [105]. Akt/protein kinase B
signaling inhibitor-2 (API-2) appears to suppress both Akt
activation and kinase activity independent of any upstream
inhibitor effects [106].

Alternative GSK-3β regulators have less defined and
more indirect mechanisms. The mTOR inhibitor rapamycin
has been shown to activate GSK-3β with some studies
suggesting a potential influence of the mTOR pathway on
GSK-3β regulation through phosphorylation by s6 kinase
[107, 108]. Other molecules target the ability of GSK-3β
to degrade cyclin D1. Vitamin A derived retinoids and
multiple differentiation-inducing factors (DIFs) enhance
GSK-3β activation and kinase activity [109–112] as a means
for cyclin D inhibition to promote cell cycle arrest and
differentiation.

5. Inhibitors of GSK-3β

While a potential therapeutic role of GSK-3β inhibitors has
been suggested for some time, they have gained significant
interest as a clinical tool over the past decade. GSK-3β
inhibitors are currently being utilized for the treatment of
various diseases including Alzheimer’s disease [113, 114] and
other neurodegenerative diseases [18], diabetes, inflamma-
tory disorders [115], radiation damage, and cancer [116].
Various pharmaceutical companies have these inhibitors in
clinical trials [116]. A classical example of a nonspecific
GSK-3β inhibitor is lithium [21], which has been shown
to inhibit GSK-3β with an IC50 of approximately 2 mM in
an uncompetitive manner with respect to peptide substrate.
Lithium was found to inhibit GSK-3β in a competitive
manner by binding directly to magnesium-binding sites of
the enzyme [117], thus providing evidence for a molecular
mechanism for enzyme inactivation by lithium ions. Four
distinct regions of GSK-3β have been targeted for inhibi-
tion: the Mg2+ ATP-binding active site, a separate Mg2+-
binding site, the substrate-binding groove, and the scaffold-
binding region [33, 118]. Several inhibitors compete with
Mg2+ and/or ATP to occupy its binding site. However, the
specificity of these inhibitors towards GSK-3β relative to
other kinases varies significantly (Table 4). Structural studies
have further elucidated molecular mechanisms for substrate
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Table 3: List of known positive regulators of GSK-3β.

Activator
Activation
potency

Mode of activation Notes

Celecoxib IC50 = 3.5 μM Inhibits PDK phosphorylation of Akt COX-2 inhibitor [100].

Staurosporine IC50 = 0.22 μM Inhibits PDK phosphorylation of Akt
General kinase inhibitor (including PKA/PKC)
[101, 103, 104].

Trichostatin A Unknown Induces Akt dephosphorylation HDAC inhibitor acts through PP1 [105].

Curcumin Unknown Akt dephosphorylation Direct target not known [102].

Akt/protein kinase B
signaling inhibitor-2 (API-2)

Unknown
Suppresses Akt kinase activity and
activation

Does not affect upstream Akt activators [106].

Wortmannin IC50 = 5 nM Inhibits PI3-Kinase Indirect effect on GSK-3β [97, 98].

LY294002 IC50 = 1.4 μM Inhibits PI3-Kinase Likely affects ATP binding to kinase [98, 99].

Rapamycin Unknown Potentially inhibits S6K1
mTOR pathway can also inhibit GSK3
[107, 108].

Differentiation-inducing
factors (DIFs)

Unknown
Enhances GSK-3β kinase activity and
promotes nuclear localization

Reduces inhibitory phosphorylation and
enhances activating phosphorylation
[111, 112].

Retinoids Unknown
Reduces inhibitory phosphorylation of
GSK-3β

Promotes GSK-3β-dependent cyclin D1
degradation [80, 109].

Table 4: Selected list of known GSK-3β inhibitors.

Inhibitor Inhibition potency Mode of inhibition Notes

Beryllium IC50 = 6 mM Mg competitor Also inhibits cdc2
Lithium Ki =2 mM Mg competitor

Anilino maleimides (SB216763, SB415286) Ki = 10–30 nM ATP competitor Does not inhibit a range of other kinases

Arylpyrazolopyridazines
(e.g., 6-aryl pyrazole [3,4-b] pyridine 4)

IC50 = 0.8–150 nM ATP competitor Also inhibits CDK2

Bisindole maleimides (e.g., Ro 31-8220, GF 109203x) IC50 = 5–170 nM ATP competitor Also inhibits PKC

Indirubins (6-bromoindirubin-3′-oxime, aka BIO) IC50 = 5–50 nM ATP competitor Also inhibits CDKs

Paullones (alsterpaullone) IC50 = 4–80 nM ATP competitor Also inhibits CDKs

Pseudosubstrate peptide Ki = 0.7 mM Substrate competitor Specific

selection and GSK3-β inhibition [119–125]. Beryllium was
shown to compete with both ATP and Mg2+, while lithium
competed only with Mg2+ [126].

The small molecule inhibitors of GSK-3 SB-216763 and
SB-415286 are structurally distinct maleimides that inhibit
GSK-3α/β in vitro, with Kis of 9 nM and 31 nM, respectively,
in an ATP competitive manner [127]. Hymenialdisine [128]
and paullones [129] also inhibit GSK-3β in an ATP com-
petitive manner. Indirubins inhibit GSK-3β in an ATP com-
petitive manner with a IC50 of 50–100 nM [130–132]. Small
molecule inhibitors like TZDZ8 that are thiadiazolidinones
inhibit GSK-3β with a IC50 of 2 μM in a noncompetitive
manner [133, 134]. The other type of GSK-3β inhibitors
is represented by cell-permeable, phosphorylated substrate-
competitive peptides which interact with the phospho-
recognition motif comprising R96, R180, and K205 to
prevent substrate access to the active site. There are also
GSK-3β-inhibiting peptides that contain GSK-3β interacting
domains, block the interaction between Axin and GSK-3,
and prevent β-catenin phosphorylation [135]. In the recent
decade small molecule inhibitors of GSK-3β are emerging as
a promising drug for treatments against neurodegenerative
diseases, radiation damage, Alzheimer’s disease, diabetes,
and cancer [116].

6. Exploiting the GSK-3β Conundrum

GSK-3β signaling is a complex process influenced not
only by cellular type and transformation status, but by
environmental and cellular conditions. Survival signals have
been mainly determined by studies involving GSK-3β inhi-
bition, through gene silencing or pharmacologic inhibition.
The resulting inhibition of apoptosis is complex, and requires
further elucidation. However several studies suggest that the
effects may at least in part be mediated by the effect of GSK-
3β on NF-κB levels. In addition, it is clear that subcellular
localization is important, as only cytosolic GSK-3β seems to
be able to mediate the survival signals.

Notably, the role in promotion of apoptosis by GSK-
3β has been more clearly delineated. It performs this task
by both facilitating proapoptotic signals while inhibiting
anti-apoptotic molecules. This signal interplay occurs mostly
at the level of the mitochondria, and combined with
the association with primarily nuclear GSK-3β, suggests a
downstream role of GSK-3β in modulation.

So how do we exploit these paradoxical roles of GSK-
3β? In healthy cells, the shift to pro-survival modes is
important for cell survival under conditions of cellular
stress. In these cases, the upstream signals seem to override
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the mitochondrial-based apoptotic machinery to allow the
cells to escape potentially lethal damage. There have been
attempts to exploit these pro-survival roles in neurode-
generative diseases, which are typified by high apoptosis
rates. Reduction of disease-associated apoptosis by GSK-3β
modulating agents can restore balance to off-kilter apoptotic
machinery, resulting in decreased cellular turnover and the
resultant protection of the at-risk neuronal population. In
addition to diabetes, and neurodegenerative disorders, we
believe that GSK-3β inhibition may play a promising role in
patients receiving irradiation.

While radiation dose-escalation has been important
for the treatment of multiple cranial tumors (e.g., brain
metastases, primary gliomas) and benign disorders (e.g.,
vestibular schwannoma, meningioma), the treatment is
limited by the effects of irradiation on healthy surrounding
neurons. It has been demonstrated that GSK-3β inhibition
can protect hippocampal neurons (in primary culture and
murine pups) from irradiation-induced damage [9, 70].
Thotala et al. demonstrated improved survival of intestinal
crypt cells and increased latency to murine GI-related death
from irradiation [77]. This report suggested that GSK-
3β inhibitors could reduce deleterious consequences of
intestinal irradiation and possibly improve patient quality of
life measures. It would be worthwhile to explore their utility
in syngenic murine models of neural cancer, murine tumor
xenografts, as well as human clinical trials of patients in
the setting of re-irradiation (e.g., recurrent glioma). Reports
of radiation protection have also been demonstrated with
small molecular inhibitors of GSK-3β in the gastrointestinal
system.

In cancer, however, the apoptotic machinery is often
defective allowing cells to undergo unregulated proliferation.
In this case, negative regulation of GSK-3β can serve to tip
the balance in favor of apoptosis. Dickey et al. demonstrated
the ability of GSK-3β inhibition to effectively enhance cell
death of neuroblastoma cells in vitro and in a murine
xenograft model [79]. Similar findings have been demon-
strated in glioma [81, 82]. The interplay between GSK-3β
regulation and other cell death stimuli is being carefully
studied across a wide variety of cancer types, and there is
promising data suggesting a strong role for this form of ther-
apy in the near future. The bifunctional role of GSK-3β as a
facilitator of apoptosis and a mediator of pro-survival signals
has important implications in both the generation of novel
therapies and the understanding of complex disease states.

The use of both positive and negative regulators of GSK-
3β offers exciting treatment possibilities for a multitude of
diseases. The complexity of the GSK-3β network requires
careful examination, however, when considering modulating
its function in a clinical setting. More studies are required
to clearly understand the effects of regulating GSK-3β
on the multiple signaling pathways involved in growth,
development, and metabolism. The effect of GSK-3β on cell
survival and apoptosis appears to be context dependent,
and the required mode of action will likely depend on the
specific pathway, cell type, and disease being targeted. While
the vast network of GSK-3β offers a treatment option for
multiple diseases, it also requires careful consideration of all

the factors involved in order to prepare against potential side
effects.
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