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We introduce a method for data inspection in liquid separations of peptides using

amino acid retention coefficients and their relative change across experiments. Our

method allows for the direct comparison between actual experimental conditions,

regardless of sample content and without the use of internal standards. The mod-

eling uses linear regression of peptide retention time as a function of amino acid

composition. We demonstrate the pH dependency of the model in a control exper-

iment where the pH of the mobile phase was changed in controlled way. We intro-

duce a score to identify the false discovery rate on peptide spectrum match level

that corresponds to the set of most robust models, i.e. to maximize the shared agree-

ment between experiments. We demonstrate the method utility in reversed-phase liq-

uid chromatography using 24 datasets with minimal peptide overlap. We apply our

method on datasets obtained from a public repository representing various separation

designs, including one-dimensional reversed-phase liquid chromatography followed

by tandem mass spectrometry, and two-dimensional online strong cation exchange

coupled to reversed-phase liquid chromatography followed by tandem mass spectrom-

etry, and highlight new insights. Our method provides a simple yet powerful way to

inspect data quality, in particular for multidimensional separations, improving com-

parability of data at no additional experimental cost.

K E Y W O R D S
mass spectrometry, proteomics, retention time modeling, one-dimensional separation, two-dimensional

separation

1 INTRODUCTION

In a typical MS-based proteomics analysis, analytical separa-

tions like reversed-phase chromatography are used to reduce

the complexity of the sample injected into the mass spectrom-

eter [1,2]. Reversed-phase liquid chromatography (RPLC) is

used to separate peptides based on their hydrophobicity before

ESI and injection into the mass spectrometer [1,3,4]. This pep-

tide separation accomplishes several tasks simultaneously, but

most significantly it reduces the complexity of the mixture

presented to the mass spectrometer at any given time. This

Article Related Abbreviations: ACN, acetonitrile; FDR, false discovery rate; PSM, peptide spectrum match; RPLC, reversed-phase liquid chromatography;

RT, retention time; SCX, strong cation exchange
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makes it easier for the mass spectrometer to detect, select, and

fragment more peptides for either identification and/or quan-

tification depending on the experiment.

The time a peptide is introduced to the mass spec-

trometer contains information about the peptides. How-

ever retention time of peptides in such experiments is still

underused. Using retention time (RT) modeling, different

candidates to the identity of an unknown peptide can be dis-

criminated based on their arrival times at the mass spectrom-

eter. Although less discriminating than high-quality MS/MS,

the information is already available, without additional
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standards, analyses or hardware, and, unlike tandem mass

spectra, is practically of uniform quality for all peptides [5]. In

addition to using RT in peptide identification, it is also used in

combination with synthetic peptide standards (of known chro-

matographic behavior) to control the quality of the separation

or enhancing and mapping predicted retention time to differ-

ent LC conditions, which is proven very helpful in targeted

proteomics approaches [6–9].

We here introduce a novel method for using RT to obtain

information about the conditions and quality of the experi-

ment and peptide separation. We show how the simple lin-

ear regression modeling [10–14] can be used to visualize the

relationship between mobile phase hydrophobicity and amino

acid composition of peptides in an easily interpreted man-

ner. We consider the amino acid coefficients obtained from

modeling of RT and compare these coefficients between runs.

Within a fixed experimental setting, these coefficients are sta-

ble and summarize the effect the incorporation of an amino

acid in a peptide regarding that peptide RT, independent of

the sample used. Unintended modifications, like a sudden or

uncontrolled change of the mobile phase pH, will result in an

immediate change in the coefficient values and their orders. To

demonstrate our method, we generated and used two RPLC–

MS/MS datasets. We also show the utility of our method with

datasets obtained from PRIDE (a public repository for pro-

teomics experimental data) [15].

2 MATERIALS AND METHODS

To test our method we used datasets from two experiments,

as well as several available from PRIDE with no previously

known issues of data quality.

For our experiments we used whole-cell protein extract

from Escherichia coli. In the first RPLC–MS/MS dataset we

varied the mobile phase pH. In the second experiment we used

SDS-PAGE to fraction the proteome and analyzed each frac-

tion with RPLC–MS/MS following in-gel protein digestion.

In an attempt to challenge our method we used datasets

acquired with 1D RPLC–MS/MS and online 2D strong cation

exchange (SCX) coupled to RPLC–MS/MS obtained from

PRIDE. In the following sections we describe the sample

preparation and acquisition, the used data processing pipeline

for the identification, RT modeling, determining the amino

acid coefficients and their ranks.

2.1 SDS-PAGE followed by RPLC–MS/MS
experiments
2.1.1 Preparation of the E. coli samples
E. coli cells were grown on LB medium (Life TechnologyTM)

washed with 1 × 0.3 M Sucrose, Hepes pH 7.0 and cen-

trifuged into a pellet. Protein extraction was performed using

50 μl of 1% SDS (containing protease inhibitor and 1 μL

benzonase of 25 U/μL), placed at 4◦C for 30 min. Afterwards

the samples were centrifuged at 16 000 × g at 4◦C for 15 min

and subsequently the supernatant was taken. The protein con-

centration was measured by a bicinchoninic acid protein assay

kit (Thermo Fischer Scientific).

In the subsequent steps, the SDS used to lyse the cells was

diluted in the SDS-PAGE running buffer (with 0.1% SDS) and

removed during the washing of the (combined) gel slices as

described in [16,17]. The peptides were further cleaned up on

a trap column, where the wash was directed to waste, so very

SDS or buffer from the cell lysis should reach the analytical

column in this setup.

2.1.2 In-solution digestion
Fifty microgram of the protein was used for a standardized

tryptic digestion without pre-fractionation. The proteins were

first reduced using 2 μL 60 mM dithiothreitol for 40 min

at 60◦C and alkylated by 4 μL 100 mM iodoacetamide for

1 h in the dark at room temperature. Afterwards proteins were

digested overnight at 37◦C using trypsin (sequencing grade,

Promega, Madison, WI, USA). The digestion was quenched

by addition of 2 μl 10% TFA.

2.1.3 In-gel digestion
Forty five microgram of the protein was loaded on a 1 mm

thick 10-well 4–12% NuPAGE® Bis-Tris gel (Invitrogen,

Carlsbad, CA). Proteins were separated in the gel for 1 h at

180 V. The gel was stained in NuPAGE® Colloidal Blue

(Invitrogen) overnight at room temperature and de-stained

with milli-Q water until the background was transparent. The

gel lanes were cut into 48 identical slices using a custom-made

OneTouch Mount and Lane Picker (The Gel Company, San

Francisco, CA). Each slice was placed in a well in a 96-well

polypropylene PCR plate (Greiner Bio-One, Frickenhausen

Germany). In-gel digestion and peptide extraction were per-

formed as described previously [16,17] but using acetic acid

with a factor 10 higher concentration than TFA. Consecutive

sample wells were combined to obtain 24 samples.

2.1.4 LC
RPLC was performed using a splitless NanoLC–Ultra 2D

plus system (Eksigent, Dublin, CA), controlled by HyStar 3.4.

Four different mobile phase pH buffers were used. For all

acquisitions the same 45 min linear gradient was used with

increasing the organic solution in the mobile phase from 4 to

35%. At pH 3 the buffering solution was generated with the

aqueous solvent being 0.05% formic acid and the organic sol-

vent being 95% acetonitrile (ACN) and 0.05% formic acid. At

pH 5.0, the aqueous solvent was a 10 mM ammonium acetate

buffer and the organic solvent 75% ACN and 40 mM ammo-

nium acetate buffer, and ammonia was used to adjust the pH to

5.0. For the pH 8.5 experiment, the a mobile phase used was of

10 mM ammonium acetate buffer as aqueous solvent and 75%
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ACN with 40 mM ammonium acetate buffer as the organic

solvent and the pH was adjusted with ammonia to reach a

value of 8.5. For the pH 10 experiment, the aqueous solvent of

10 mM ammonium bicarbonate and the organic solvent con-

sisted of 40 mM ammonium bicarbonate in 75% ACN, and

the pH was adjusted with ammonia to 10.0.

For each analysis, 10 μL of sample was loaded and desalted

on a C18 PepMap 300 μm, 5 mm i.d., 300 Å precolumn

(Thermo Scientific) and separated by RPLC using a 150 mm

0.3 mm i.d. ChromXP C18CL, 120 Å column. A volume of

5 μL of ultra-pure water was added to each sample fraction.

2.1.5 MS
MS was performed on an amaZon speed high-capacity 3D ion

trap (Bruker Daltonics, Bremen, Germany), with CID as the

fragmentation method, and precursor ion selection window of

5 m/z units. After each MS scan, up to ten abundant multi-

ply charged species in the m/z 300–1300 range were automat-

ically selected for MS/MS (ignoring singly charged species).

After an ion is selected twice consecutively, it was excluded

for 1 min. The MS was controlled by amaZon ion trap by trap-

Control 7.0 (Bruker).

2.2 1D RPLC–MS/MS and 2D strong cation
exchange–RPLC–MS/MS datasets
The dataset was obtained from PRIDE (accession number

PXD000705). In their work [15], Marino et al. acquired data

from HEK293 cells digest on 1D RPLC–MS/MS as well

as online 2D SCX coupled to RPLC–MS/MS. The detailed

method and data acquisition parameters are in the original

paper, and we briefly mention here few aspects about Marino

et al. experiments and why they were considered to evaluate

our method.

In their work Marino et al. built on the original work

of Washburn et al. on online coupling of SDX to RPLC–

MS/MS (MudPIT) [18]. The main objective was assessing

the total analysis time, proteome coverage, and sample usage

in two competing workflow; an online 2D SCX-RP-UHPLC–

MS/MS versus a 1D long gradient RP-UHPLC–MS/MS anal-

ysis. Importantly, the two workflows used the same setup

without any changes except bypassing the SCX column when

measuring in the 1D long gradient RP-UHPLC–MS/MS

setup. For both experiments, the authors used an Orbitrap

Q-Exactive mass spectrometer (Thermo Scientific) recording

data-dependent acquisitions with a top 10 method (top 10

most abundant precursors were chosen for MS/MS in every

MS scan). In the 1D experiments Marino et al. acquired mul-

tiple datasets of the same HEK293 sample using increasing

gradients of 45, 60, 90, 180, 240, 360, 480, and 600 min

(including the washing steps, column equilibration, and load-

ing, which were reported to sum up to 20–25 min). In the

2D experiments, they compared a short and a long second

dimension gradient of 37 and 157 min, respectively, both fol-

lowing six salt plugs containing ammonium acetate at con-

centrations of 5, 10, 20, 50, 100, and 500 mM (with 5% ACN

and 0.1% FA).

The main reason to use Marino et al. dataset to evaluate

our method is to exploit the various aspect of what our RT

modeling is designed for, namely compare multiple experi-

ments ran on the same system under different conditions. Hav-

ing 1D with various gradients is interesting to test how RT

coefficient ranks behave. The 2D experiments contain differ-

ent set of peptides, similar to our SDS-PAGE followed by

LC–MS/MS approach, but in an online setup. Additionally,

the authors reported variable peptide and protein coverage in

the various experiments which is an interesting aspect to chal-

lenge RT modeling methods.

2.3 Mass spectra data analysis preparation
The raw data were converted to mzXML [19] using com-

passXport 3.0 (Bruker) in the case of the E. coli datasets and

ProteoWizard [20] in case of the HEK293 datasets obtained

from PRIDE. All datasets were searched with X! Tandem [21,

22] as delivered in Trans-Proteomic Pipeline [21] with the

k-score plugin (2013.06.15.1 – LabKey, Insilicos, ISB). X!

Tandem output with peptide identifications and scores were

then converted to pepXML [21], and processed using Pep-

tideProphet to obtain the probability of each peptide-spectral

match [23]. In the case of E. coli dataset, the X! Tandem

search was performed against the UniProtKB E. coli ref-

erence set (2010-01-21) allowing a precursor monoisotopic

mass error tolerance of 0.5–2.5 Da and fragment monoiso-

topic mass error of 0.4 Da. For the HEK293 datasets the

search was performed against UniProtKB human reference

database (2017-03-29) allowing a precursor monoisotopic

mass error tolerance of 50 ppm and fragment monoisotopic

mass error of 0.05 Da. Cysteine carbamidomethylation was

fixed and methionine oxidation was set as a variable modifi-

cation. The peptide spectrum match probability assigned by

PeptideProphet by mixture modeling and the error rate, esti-

mated at each probability threshold, were used in further anal-

ysis to filter the peptide spectrum matchs (PSMs) at specific

false discovery rate (FDR).

2.4 Linear regression modeling coefficients
Peptide retention modeling is performed using a linear regres-

sion model of the amino acid composition of the PSMs pass-

ing a given FDR threshold. The modeling coefficients are

determined by solving the linear regression

𝑡j = 𝑎0j +
i = 20∑
i = 1

𝑛ij 𝑎ij (1)
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by minimizing the square error cost function

𝐶𝑜𝑠𝑡 (𝒂) =
j=all peptides∑

j=1

||||||𝑡j −
(
𝑎0j +

𝑖=20∑
𝑖=1

𝑛ij 𝑎ij

)||||||
2

(2)

to find the optimal coefficients

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝐶𝑜𝑠𝑡 (𝒂)) (3)

where tj is the RT of the peptide j, ni is the number of AAi
occurrences in the peptide sequence, ai is the coefficient of

AAi, and a0 is the offset (a in bold font refers to the coefficient

matrix) [10]. The training of the linear model is done using

PSMs with unmodified peptides only [11]. As methionine

may oxidize during the measurement [24–26], we excluded

all methionine-containing peptides in the analyses. Extending

the model to include peptide with modified amino acids and

terminal modifications is possible by adding additional terms

in the equations for each modifications. This possibility will

be discussed in Section 3.6.

In this work, we care mainly about obtaining and visualiz-

ing the coefficients ai, and not the RTs. Whenever comparing

multiple experiments, we consider the retention coefficient

rank, which is the position of the amino acid RT coefficient

in the sorted list of all other coefficients. For visualizing the

amino acid coefficients, we use the Lesk color scheme [27] to

represent the basic physicochemical properties of each amino

acid (polar, small nonpolar, hydrophobic, acidic, basic).

2.5 Comparing models from a set of
experiments
To compare models obtained from multiple experiments and

provide a measure of robustness, we define the single amino

acid RT coefficient rank change as

𝑆i, Δrank =
j=L−1,k=L∑
j=1,k=2

|||𝑅𝑎𝑛𝑘 (𝐴𝐴i,j
)
−𝑅𝑎𝑛𝑘

(
𝐴𝐴i,k

)||| (4)

where Rank (AAi,j) is the rank of the amino acid AAi in exper-

iment j, and L is the total number of experiments. 𝑆𝑖, Δ𝑟𝑎𝑛𝑘 is

the sum of all changes in the rank of amino acid i between

each two experiments. We also define the sum of all amino

acid delta rank scores as

𝑆Δrank =
i=20∑
i=1

𝑆i,Δrank (5)

This is a dimensionless value and reflects the overall

changes in the ranks of all amino acids between experiments,

i.e. the more one (or more) amino acid changes its rank, the

higher delta rank score is. 𝑆𝑖, Δ𝑟𝑎𝑛𝑘 for a set of L experiments

is estimated at a specific FDR value at the PSM level (for

the model training set of peptide). To compare multiple delta

rank scores obtained at various FDR values, scaling can be

performed.

3 RESULTS AND DISCUSSION

3.1 Using a simple regression model for
retention time modeling
The simple linear regression model of RT allows associating

each amino acid with a single value. In this work the objective

is not to predict the retention time of peptides, but to reveal

hidden properties of the data deriving from the liquid separa-

tion. For this, a simple approach is critical, as it allows com-

prehendible visualization and is robust for small and large sets

of training peptides. For example, the average number of pep-

tides used in the modeling with FDR 1% at the PSM level was

425 for RPLC–MS/MS in our short ion trap datasets. In the

Marino et al. 1D data, the average was 12 000 peptides (vary-

ing from 3000 to 23 000 with the increasing gradient time),

and for the six experiments of 2D the average number of pep-

tides with FDR 1% was 6100 for the short gradients of 37 min

and 8800 for the long gradient of 157 min.

For the actual purpose of predicting RTs, models using arti-

ficial neural networks [28–30] or including more variables

than the amino acid composition of peptides [31–33] have

been discussed. The choice of the simple model in our method

is entirely on purpose, as assigning a single coefficient to each

amino acid allows ranking the amino acid contributions in the

model and in turn a direct and visual comparison between the

models of multiple datasets. In other words, while artificial

neural networks are possibly better in predicting RT (given

sufficiently large training dataset), prediction is not the goal

here. Furthermore, it is not very meaningful to compare the

thousands of coefficients (or connectivities) of two or more

artificial neural networks. This is also true for regression mod-

els where additional peptide properties are considered (like

pI and helicity). To that end, using a simple linear regression

model allows deterministic assignment of values to variables,

which in our approach are the amino acids themselves.

3.2 Amino acid regression coefficients
In addition to comparing predicted and actual RTs

(Figure 1A), we can plot the RT regression coefficients

using an amino acid color scheme, such as the one defined

by Lesk (Figure 1B). The colored circles show the average

effect of each amino acid residue to the retention time of

any peptide containing it. At pH 3.0, the basic residues

(blue) contribute negatively to the RT, making any peptide

containing them elute earlier, while the acidic (red) residues

do not significantly contribute to the RT and the hydrophobic

(green) amino acids contribute positively to RT, making any
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F I G U R E 1 Retention time coefficients using a linear model on a

peptide training set of an RPLC–MS/MS experiment at pH 3 and 1%

FDR at the PSM level. Panel A shows the correlation between the

predicted and measured retention time. Panel B shows the conversion

between values and ranks of the amino acid retention coefficients. The

amino acids are colored according to Lesk. The cysteines were

carbamidomethylated, making these residues more hydrophilic. Proline

constrains the conformation of the peptide and has an atypical influence

on retention time. The offset typically takes on a positive value

capturing the void time

peptide containing them to elute later. This is expected as

the basic residues are protonated and charged, and therefore

hydrophilic, at low pH. Proline has an atypical influence on

RT compared to the other hydrophobic residues, likely due to

conformational effects on the peptide.

When comparing multiple experiments, the actual values of

the amino acid coefficients are of minor importance and need

F I G U R E 2 Retention time coefficient ranks as function of pH

showing the changes in average hydrophobicity of the three basic (Arg,

Lys, His) and two acidic (Asp, Glu) residues. These residues serve as

intrinsic pH indicators in any RPLC separation of peptides

to be transformed to allow the comparison. Here we intro-

duced the coefficient ranks as in Figure 2 that shows the RT

coefficient ranks of the amino acid residues with increasing

mobile phase pH. The influence of pH on the amino acid RT

coefficients can be immediately derived from the plot, with

the acidic and basic residues exhibiting the largest change in
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F I G U R E 3 Retention time coefficient ranks across multiple experiments for which a model was produced at a training set FDR of 1.6%. At a

1.6% FDR we observed a local minimum (Figure 4), which is the FDR we used to select the peptide training list for all 24 runs that most produce the

most robust model or minimizes the differences in retention time coefficient ranks across experiments

RT coefficient rank with changing pH of the mobile phase.

This is because as the pH increases, the basic residues change

from positive to neutral, and therefore become hydrophobic,

and the acidic residues change from neutral to negative, and

therefore become hydrophilic. The plot also shows that the

basic and acidic residues have similar hydrophobicity around

pH 5.

These effects of the individual amino acid residues are the

average effects from measurement and identification of many

peptides in a bottom-up proteomics experiment. Cysteine is

categorized as hydrophobic by Lesk, but here we are mea-

suring carbamidomethyl cysteine, not natural cysteine. The

RT coefficients of the hydrophobic, polar and small nonpo-

lar amino acids are barely influenced by the pH.

3.3 Rank change and false discovery rate
value optimization
To demonstrate the applicability of the method and show its

independence of the dataset used in the training, we used two

sets of 24 in-gel digested SDS-PAGE fractions. Analogous to

Figure 2 from the first experiment, Figure 3 shows the amino

acid coefficient ranks after peptide identification and FDR fil-

tering from the second experiment. It is clear that even a small

error in mobile phase preparation, for example being off by

one pH unit, should be picked up by a quick inspection of the

amino acid residue coefficients.

The delta rank score, or the sum of all distances between

any two models (coefficients) in a set of models, has a mini-

mum at the FDR value that produces best training set. The best

training set implies the least discrepancies between the iden-

tifications used from the different experiments, which also

means high agreement between experiments on the amino

acid coefficient ranks. The experiments are performed on

F I G U R E 4 Model robustness measured by the sum of amino

acid delta rank scores at different FDR with a local minimum is

observed at 1.6% FDR

pre-fractionated sample, i.e. while the proteins and peptide

training sets differ between the fractions, they contain the sim-

ilar information on the underlying mechanism of the liquid

separation.

Figure 4 illustrates that datasets with too few peptides

that in training a model. Increasing the FDR threshold will

increase the number of peptides, but including too many false

identifications in the training set will produce less robust mod-

els. For the RPLC data, the optimum FDR was 1.6% as shown

in Figure 4. This FDR was used to filter the peptides to train

each of the models shown in Figure 3.
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F I G U R E 5 Retention time coefficient ranks across the 1D RPLC–MS/MS and 2D online SCX-RPLC–MS/MS experiments (data from Marino

et al. [15]). The 1D RPLC–MS/MS were performed with triplicates and increasing retention time. The 2D online SCX-RPLC–MS/MS runs were for

six ammonium acetate plugs ranging from 5 to 500 mM and using one short and one long gradients of 37 and 157 min respectively. All peptides used

in the training sets for the retention time models were selected with 1% FDR threshold at the peptide spectrum match level

3.4 Ranks reveal pH inconsistencies in 2D
experiments
Using our method we produced 33 models for RT in the

PRIDE dataset (Figure 5). These consist of 21 models for the

1D datasets, and 12 for the 2D datasets. The 21 models derived

from the 1D datasets are very similar except for the offset mov-

ing to lower ranks in longer gradients. This behavior of the

offset rank is expected as the void time is shorter relative to

the longer gradients. The consistency between the 21 models

of the 1D acquisitions is in agreement with the expectations

that changing the gradient, and in turn the peptide RTs, should

generate reproducible amino acid retention coefficient ranks

and allow comparison between experiments. However, two of

the models for 2D datasets are noticeably different (2D short

20 mM and 2D long 10 mM). Both of these anomalies are sim-

ilar to the high pH (8.5–10) in Figure 2, suggesting there was

a change in buffering and the actual pH during the separation

in these two chromatographic separation. This was not noticed

or mentioned by the authors of the original paper, suggesting

the utility of the method presented here for simple QC of chro-

matographic separations in proteomics experiments. Under

such conditions, a priori predicted RTs would not be accurate.

For the original study these RT shifts were probably inconse-

quential as the goal was to compare the numbers of peptide

and protein identifications between two methods. When look-

ing into the data, the GRAVY scores of the peptides identified

at 1% FDR (those used to build the models) were very dif-

ferent in the two acquisitions (2D short 20 mM and 2D long

10 mM) relative to all other acquisitions. The peptides in the

2D short gradient dataset with 20 mM salt plug were on aver-

age more hydrophobic than those in the other short runs, while

those from the 2D long gradient with 10 mM salt plug were

more hydrophilic than the other long runs. Interestingly, the

cumulative distribution functions of GRAVY score of all 2D

datasets (short and long) are almost encapsulated completely

within the ones from the short run with 20 mM salt plug to the

higher hydrophobicity side, and the long 10 mM to the lower

side (Supporting Information Figure S1).

3.5 Training set size
To investigate the conversion and stability of the model in

regard to the size of the training set, we trained consecutive

models with increasing number of peptides in the training set.

We used the in-solution digestion E. coli dataset (used for Fig-

ure 1) at 1% FDR and with each new model we added ten

random peptides. Supporting Information Figure S2 shows

that the model starts to converge when using around 100 pep-

tides, with some discrepancies in the ranks of the acidic amino

acids, although at that small training set the basic amino

acid retention coefficients already found their places. Having

around 200 peptides in the training set the basic and acidic

amino acids retention coefficient ranks already take their final

rank positions, and the rest of the amino acids retention coef-

ficient ranks converge when using around 400 peptides. It has

been shown previously that the simple linear regression model

for RT modeling needs around 50 occurrences of each amino

acid in the training set for conversion [34].

3.6 Considering modified amino acids and
terminal modifications
In addition to amino acid retention coefficients, considering

RT coefficients for post transnationally modified amino acids

and peptide terminal modifications is also possible. While
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F I G U R E 6 The effect of including post-translationally modified peptides in the retention time model. The 1D RPLC–MS/MS dataset form

Marino et al. with the long gradient of 480 min was used to build two models, one without (panels A and B) and one with modified peptides (panels

C and D). The numbers above the symbols indicate the number of unique peptides in the training set which included the (modified) amino acid. The

numbers below the symbols denote the mass of the modified residue or terminal adduct

this improves the model slightly, it requires that the training

set includes enough peptide entries with the modifications. In

Figure 6 we used the 1D RPLC–MS/MS dataset form Marino

et al. with the long 480 min gradient to build two models, one

considers the peptides with no modification shown in panels A

and B, and the second considers peptides with as well as with-

out modifications in panels C and D. From the values of the

correlation coefficients we can imply that the model with more

retention coefficient entries, i.e. including the modifications,

is slightly better. Comparisons and plots like in Figures 3 and 5

can be extended to consider peptides with modifications, how-

ever when comparing models from multiple experiments, it is

necessary to have enough representative peptides in the train-

ing set for the modified amino acids (as well as the unmodi-

fied ones). This is probably the case with technical replicates

and comparable measurements, but not necessary the case for

experiments with variable gradients.

4 CONCLUDING REMARKS

We have demonstrated the use of a simple and robust model

of peptide behavior in RPLC separations for easy data quality

inspection and detection of reproducibility issues across many

datasets. Our method also uses a data-derived FDR value

that maximizes the agreements of acquired data, increasing

robustness. We demonstrated the utility of the method by

applying it on datasets from five different experiments, includ-

ing modifying mobile phase pH, and comparing RPLC–

MS/MS with 2D SCX-RPLC–MS/MS. The method is not lim-

ited to RPLC and we were able to apply its data obtained

using CE in place of RPLC (data not presented in this

work). The visualization captured the effect of changing pH

by revealing changes in the ranks of the amino acid coef-

ficients. RPLC–MS/MS analysis of 24 in-gel digested SDS-

PAGE fractions have demonstrated how our modeling allows

to derive an optimal FDR threshold that maximize the agree-

ment between multiple experiments on the same system. We

believe this approach has the potential to be a method for

data/experiment-derived FDR threshold for accepting spec-

trum peptide matches by maximizing the agreement between

experiments measured on the same system. We note that the

FDR threshold obtained in our approach, i.e. 1.6% is close to

the 1% value commonly accepted in the proteomics commu-

nity, suggesting that using higher values would introduce dis-

crepancies in identified sets of peptides. We were also able to
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show changes in pH in online 2D SCX-RPLC–MS/MS exper-

iments obtained from PRIDE when comparing the models of

the SCX fractions between each other and with those of 1D

RPLC–MS/MS on the same system. In contrast to extended

modeling methods like support victor machines or artificial

neural networks, using a simple modeling approach produces

comprehendible amino acid retention coefficients and facili-

tates for visualization that allows direct comparison between

experiments. Importantly, our method does not require any

additional modification of the experimental setup or addi-

tion of RT standards. It is simply making use of already

available information for additional QC, which can also be

applied retrospectively. An implementation of the described

method in R statistical language is available online under

https://cpm.lumc.nl/yassene/rt_modeling/.
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