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Abstract: Biofilms represent a common and increasingly challenging problem in healthcare practices
worldwide, producing persistent and difficult to manage infections. Researchers have started devel-
oping antibiotic-free treatment alternatives in order to decrease the risk of resistant microbial strain
selection and for the efficient management of antibiotic tolerant biofilm infections. The present study
reports the fabrication and characterization of magnetite-based nanostructured coatings for pro-
ducing biofilm-resistant surfaces. Specifically, magnetite nanoparticles (Fe3O4) were functionalized
with chitosan (CS) and were blended with lysozyme (LyZ) and were deposited using the matrix-
assisted pulsed laser evaporation (MAPLE) technique. A variety of characterization techniques were
employed to investigate the physicochemical properties of both nanoparticles and nanocoatings.
The biological characterization of the coatings assessed through cell viability and antimicrobial tests
showed biocompatibility on osteoblasts as well as antiadhesive and antibiofilm activity against both
Gram-negative and Gram-positive bacterial strains and no cytotoxic effect against human-cultured
diploid cells.

Keywords: laser processing; lysozyme; magnetite-based coatings; nanostructured bioactive coatings;
antimicrobial properties; antibiofilm activity

1. Introduction

As revealed by the National Institutes of Health (NIH), 65% of all microbial infec-
tions and 80% of all chronic infections are associated with biofilm formation [1]. Thus,
biofilms retain a relevant impact on public health, increasing hospital costs and resulting in
significant morbidity and mortality [2–4].

Specifically, biofilms represent multicellular, surface-associated communities of mi-
croorganisms that self-produce extracellular polymeric substances (EPS) that mainly consist
of polysaccharides, extracellular DNA, and proteins [3,5,6]. The polymeric matrix offers
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protection and enhanced survival abilities, shielding them from the host’s immune system,
hindering the diffusion of antimicrobial agents to the biofilm, and leading to poor treatment
outcomes [7–9]. Moreover, biofilm-protected bacteria can be released, which is conducive
to the appearance of new infection sites [7].

The burden of biofilm development must be especially considered for indwelling
and implanted medical devices, including catheters, mechanical heart valves, pacemakers,
stents, prosthetic joints and implants, voice prosthesis, and internal and external fixation
devices [1–3,8,10]. The conventional approach for treating device-associated infections
consists of the prophylactic administration of systemic antibiotics and debridement [10,11].
However, bacterial cells in biofilms can exhibit a 1000-fold or greater increase in antibi-
otic resistance compared to planktonic cells, thus limiting the efficiency of classic ther-
apies [3,5,12]. Moreover, the inappropriate prescription and inadequate administration
of antimicrobial therapeutics may lead to side effects, organ toxicity, and ever-increasing
antibiotic resistance [10,13–15].

Because biofilm-related infections are very difficult to eradicate, the recent research
focus was shifted towards preventing biofilm formation [16,17]. In particular, modification
of the surface nanotopography of biomedical devices represents a promising strategy
against microbial adhesion [18]. By incorporating antimicrobial nanocompounds within
or on the surface of materials or by coating the implants with a bioactive nanostructured
film, the surface can be optimized towards impeding microbial adhesion or destroying
pathogens after their attachment [7,11,14,19,20]. Nanomaterials are currently being investi-
gated for numerous biomedical applications, including diagnosis and therapy [21,22], and
are considered to be a versatile and innovative strategy for the management of infectious
diseases [23].

The high potential in many applications of iron oxide nanoparticles is the result of the
combination of their magnetic properties with biocompatibility, reactive surface, stability,
and so on. Based on their unique properties, iron oxide nanoparticles have attracted
considerable interest in the last decade [24–26]. Among them, Fe3O4 is one of the most
popular types of currently researched nanomaterials, especially due to its special magnetic
properties, availability, versatility, eco-friendliness, and low cost. Moreover, their small
size, excellent biocompatibility, biodegradability, non-toxicity to humans, and possibility
for functionalization these bioactive magnetic make these nanostructures recommended for
the development of unconventional antimicrobials [27–31]. Nevertheless, the properties of
Fe3O4 nanoparticles depend on their preparation method, and many synthesis techniques
have been employed to obtain optimal characteristics for different end purposes. Methods,
such as co-precipitation, thermal decomposition, sol-gel, microemulsion, hydrothermal,
sonochemical, electrochemical, and biological synthesis have been shown to successfully
produce Fe3O4 nanostructures [24,28,32–34]. One of the simplest and most widely used
chemical methods for obtaining nanosized Fe3O4 is co-precipitation [35–37], particularly
due to its simplicity, high yields, and potential for reduced time-consuming, making it
easily scalable in industrial applications [37]. Moreover, particle properties can be tuned by
carefully adjusting the ratio of iron salts and the pH of the reaction medium [23,38,39].

Nonetheless, Fe3O4 nanoparticles are not stable in air, having a tendency to oxidize
to maghemite, and can easily agglomerate after production. To avoid these drawbacks,
Fe3O4 nanoparticles for biomedical purposes are usually protected by shells of different
biocompatible materials, such as natural polysaccharides, inert synthetic materials, and
organic acids with different structures [27,28,40]. From the plethora of materials that
can be used to modify the surface of Fe3O4 nanoparticles, chitosan is one of the most
attractive options.

Chitosan is a partially deacetylated linear polysaccharide of chitin [41]. Its natural
origin and convenient biochemical properties (e.g., good tolerability, non-toxicity, good
biocompatibility, proper biodegradation rate, antioxidant activity, antimicrobial activity)
make this cationic polymer recommended for various biomedical applications [24,42–52].
Lysozyme is an important antibacterial component, catalytically hydrolyzing β (1→4)
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glycosidic linkages at the C4 atom within the N-acetyl-D-glucosamine units present in chi-
tosan. This catalytic hydrolysis justifies the antibacterial nature of lysozyme, as it selectively
degrades the cell walls of microorganisms without destroying other tissues [53,54]. More
recently, several studies have investigated the effects of chitosan–lysozyme conjugates on
bacterial strains [55,56].

In this context, we report the fabrication of novel biocompatible coatings with in-
hibitory activity against microbial biofilm formation based on Fe3O4 nanoparticles function-
alized with chitosan and lysozyme by MAPLE (matrix-assisted pulsed laser evaporation)
technique. We have selected this laser processing method because of its versatility, ability
to obtain thin and uniform bioactive coatings, and the fact that it allows the deposition of
virtually any type of chemical target while maintaining the properties of all the involved
bioactives during processing [11,14]. The obtained nanocomposites were investigated
from the compositional, morphological, and biological points of view by employing X-ray
diffraction (XRD), thermogravimetric analysis with differential scanning calorimetry (TGA-
DSC), scanning electron microscopy (SEM), transmission electron microscopy with selected
area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FT-IR),
infrared microscopy (IRM), cell viability, and antimicrobial tests. Results have shown that
the obtained thin nanostructured coatings could be considered for the future development
of antibiofilm surfaces, showing great potential in prosthetics and regenerative medicine.

2. Results and Discussions
2.1. Physicochemical Investigation of Fe3O4@CS Nanoparticles

The XRD pattern of the Fe3O4@CS nanoparticles is presented in Figure 1. The strong
diffraction peaks appearing at 2θ diffraction angles of 30.0◦, 35.4◦, 44.0◦, 53.4◦, 56.9◦, and
63.5◦ correspond to the diffraction planes (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0),
respectively, which is characteristic for crystalline magnetite with a spinel cubic structure.
The strongest peak in the diffractogram is identified for a 2θ angle of 30◦. All of the peaks
are in agreement with the standard spectrum of Fe3O4 (DB card No. 9006242).
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The TEM investigation gathered relevant information on the distribution and compo-
sition of the crystalline phase in the samples of the Fe3O4@CS particles (Figure 2). From the
micrographs recorded at 20 nm and 10 nm, the homogeneous distribution of the magnetite
nanoparticles embedded in the chitosan matrix can be observed. Furthermore, TEM images
confirm that the dimension of the particles is at the nanoscale, showing their organization
in areas where the particles are dispersed.

The SAED pattern of the concentric diffraction rings formed at 220, 311, 400, 422, 511,
and 440 are in excellent agreement with the results of the XRD analysis, thus confirming
the crystalline nature of the prepared magnetite (Figure 2d).
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The FT-IR analysis highlighted the integrity of the main functional groups of the
prepared Fe3O4@CS nanocomposite (Figure 3). The absorption band recorded at 541 cm−1

corresponds to the Fe–O stretching vibrations from the structure of the magnetite; the
absorption bands between 1088 and 3368 cm−1 are generated by the functional bonds
from the structure of the chitosan, namely C-O (1088 cm−1), C=O (1637 cm−1), and C-H
(2857 cm−1 and 2931 cm−1). The absorption band that is characteristic to the hydroxyl and
amino groups is observed at 3368 cm−1.

A thermal analysis was realized on pristine and Fe3O4@CS (Figure 4). From Figure 4b,
it can be seen that in the interval of RT-150 ◦C, the Fe3O4@CS sample loses 1.89% of its
initial mass. The process is accompanied by an endothermic effect on the DSC curve,
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with the minimum at 89.6 ◦C. This mass loss can be assigned to the elimination of water
molecules from the chitosan matrix and the surface of the nanoparticles. In the 150–450 ◦C
interval, the sample loses 2.01% of its mass, which is probably due to the elimination of
the –OH moieties from the nanoparticle surface but is also probably due to the oxidative
degradation of the organic parts [57]. The weak exothermic effect from 223.8 ◦C can be
assigned to the oxidation of Fe2+ to Fe3+ (transformation of magnetite to maghemite).
The exothermic effect from 335.7 ◦C can be attributed to the oxidation of the chitosan [58].
After 450 ◦C, the sample loses 0.14% of its initial mass. The intense exothermic effect from
561.6 ◦C is due to the phase transformation of maghemite to hematite [14,59]. This thermal
behavior pattern is similar to the one of the bare Fe3O4 particles (Figure 4a).
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2.2. Physicochemical Investigation of the Coatings

The thin coatings were characterized using IRM analysis. In this respect, IR maps were
recorded for the Fe3O4@CS drop-cast (Figure 5a), and coatings were obtained at the 300,
400, and 500 mJ/cm2 laser fluences (Figure 5b–d) to allow a comparative analysis of the
chemical distribution. The absorbance intensities of the IR spectra maps are proportional
to color changes starting with blue (the lowest intensity) and gradually increasing through
green, yellow, to finally red (the highest intensity). Thus, by comparing the IRM, it can be
observed that the lowest functional group degradation was recorded at the 400 mJ/cm2

laser fluence. At this fluence, the color distribution is better than that of the other two laser
fluences, showing that the thin coatings were deposited in the most homogeneous and
uniform layer.
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Complementary information was provided by analyzing the IR spectra of the Fe3O4@CS
(data not shown) and the Fe3O4@CS/LyZ drop-cast and coatings obtained at 300, 400, and
500 mJ/cm2. The Fe3O4@CS and Fe3O4@CS/LyZ coatings recorded the lowest degree
of functional group degradation at 400 mJ/cm2 laser fluence (Figure 7). For the other
two laser fluences at which the magnetite-based layers were deposited, modifications in
the intensities of the absorption bands can be observed. The decreases in the absorbance
maxima, compared to drop-cast spectra, can be attributed to an insufficient transfer of the
composite materials. In contrast, the loss and position shifting of some infrared maxima
indicates that the laser beam damaged the chemical structure of the transferred material.
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Analyzing the integrity of IR spectra for each sample deposited at different laser
fluences and the corresponding drop-cast coating, we selected the 400 mJ/cm2 laser fluence
value as the best compromise between the deposition rate and the stoichiometric transfer
to deposit the composite coatings for biological assays.

The thin coatings deposited at the 400 mJ/cm2 laser fluence were analyzed by SEM
(Figure 8). It can be seen that the thin coatings contain higher numbers of aggregates on
the top of their surfaces, with diameters between 20 and 50 nm. The surface is completely
covered. Several artificial cracks were induced before SEM analysis in order to highlight
this. Cross-section analysis highlights a thickness of 100–120 nm.
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2.3. Biological Evaluation of the Coatings
2.3.1. Cell Viability

For the biological characterization of the obtained coatings, the percentage of metabol-
ically active cells was evaluated through an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny-
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ltetrazolium bromide) assay on murine osteoblasts (Figure 9). It can be noted that neither
Fe3O4@CS nor Fe3O4@CS/LyZ showed cellular toxicity, as their cell viability percentages
were ~95% and ~98% of the uncoated control, respectively. The Griess test performed
to measure the nitric oxide (NO) level also led to favorable results. As it can be seen in
Figure 10, the amount of NO released into the culture media was around ~107% of control
for both types of coatings.
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The cell viability was also confirmed by optical microscopy images (Figure 10), as the
number of healthy cells in the presence of the coatings was comparable to the number of
cells grown on the control sample.

2.3.2. Antimicrobial Tests

Staphylococcus aureus (Gram-positive bacteria model) and Pseudomonas aeruginosa
(Gram-negative bacteria model) bacteria represent two of the most infectious threats in
the hospital environment because of their wide distribution, opportunistic behavior, and
increasing antibiotic resistance. In this respect, the in vitro evaluation of bacterial biofilm
anti-adherent properties of the prepared nanostructured coatings was assessed against
both of these pathogens.

Figure 11 shows the antibiofilm results obtained for S. aureus at 24 and 48 h of incu-
bation in the presence of the bioactive coatings. For this Gram-positive microorganism, a
high CFU (colony forming units)/mL value was registered for the control sample (mag-
nitude order of 1.0 × 109 at 24 h and 1.0 × 1011 at 48 h). Compared to these values, the
Fe3O4@CS and Fe3O4@CS/LyZ coatings showed much lower CFU/mL values (105–107),
suggesting a low ability to develop biofilms on the analyzed coatings. The biofilm inhi-
bition ranged from 1.5 up to 4 logs, depending on the analyzed sample. Specifically, the
chitosan-modified magnetite obtained values to the order 1.0 × 107 and 1.0 × 108 CFU/mL
after 24 and 48 h, respectively. For the Fe3O4@CS/LyZ sample, there were recorded values
to the order of 1.0 × 105 at 24 h and 1.0 × 106 at 48 h, which are much better than both the
control Fe3O4@CS samples. These results demonstrate the anti-adherent and antibiofilm
character of both of the tested magnetite-based nanocomposites. However, the highest
biofilm inhibition potential was observed for CS/LyZ containing the magnetite NP sample,
suggesting a synergic antibacterial effect of Cs and LyZ (Figure 11).
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the bioactive nanomodified coatings.

In the case of P. aeruginosa strains (Figure 12), the control CFU/mL values are to
the order of 1.0 × 1011 for both incubation periods. Compared to the control samples,
the CFU/mL values for the chitosan-modified magnetite nanocomposite are significantly
lower (2–4 logs), reaching values to the order of 1.0 × 109 both at 24 and 48 h intervals.
A considerable enhancement in the inhibitory character can be noted for the lysozyme-
containing coating, sowing CFU/mL values of the 1.0 × 107 order of magnitude after 24 h
of incubation. However, at 48 h, the difference between Fe3O4@CS and Fe3O4@CS/LyZ
slightly diminishes.

The obtained antimicrobial results suggest that the obtained coatings show biofilm
inhibition potential for at least two days, which is very important for subsequent potential
biomedical applications, such as medical implants and bioactive dressings.
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3. Materials and Methods
3.1. Materials

The chemical substances required to synthesize the nanostructured materials, i.e.,
ferrous sulfate (FeSO4), ferric chloride (FeCl3), chitosan, lysozyme, acetic acid, ammonium
hydroxide (NH4OH), dimethyl sulfoxide (DMSO), were purchased from Sigma Aldrich
(Merck Group, Darmstadt, Germany). All chemicals were used without any further purifi-
cation, and all solutions were prepared using ultrapure water (MiliQ®, Merck Millipore,
Burlington, MA, USA).

3.2. Methods
3.2.1. Synthesis of Fe3O4@CS

The Fe3O4 nanoparticles functionalized with CS were synthesized by the co-precipitation
method, which involved the prior preparation of two solutions. The first solution contained
the Fe precursors and was prepared by adding 1.6 g of FeSO4 and 1 g of FeCl3 into 300 mL
of demineralized water. To this mixture, 100 mL of CS 1% was added. The second solution
contained 9 mL of NH4OH and 300 mL of deionized water mixed under magnetic stirring.
The precursor solution was added dropwise to the alkaline solution under continuous
stirring. After decanting, the aqueous solution containing the reaction by-products was
removed, and the powder was washed three times with deionized water. The final product
was left to dry at room temperature.

3.2.2. MAPLE Target Preparation and Deposition of Composite Coatings

DMSO solutions of 1.5% Fe3O4@CS and Fe3O4@CS blended with LyZ (2:1 wt%)
(Fe3O4@CS/LyZ) were prepared. All MAPLE targets were obtained by freezing the so-
lutions poured into a pre-cooled holder at 173 K and were subsequently immersed in
liquid nitrogen for 30 min. The substrates were successively cleaned into an ultrasonic
bath with acetone, ethanol, and deionized water, and they were then plasma-cleaned
into an oxygen atmosphere for 15 min with a plasma system (Diener electronic, GmbH).
For comparison data, a control set of coatings was prepared by drop-cast on (1 0 0) silicon.
MAPLE depositions were performed using a KrF* (λ = 248 nm and τFWHM = 25 ns) laser
source COMPexPro 205 model (Lambda Physics-Coherent) operating at the repetition rate
of 15 Hz. The laser fluence was set in the 300–500 mJ/cm2 range. All coatings were grown
at a 4 cm target-substrate separation distance by applying (42,000–110,000) subsequent
laser pulses. Thin coatings were deposited onto both sides of the polished (1 0 0) silicon
and glass substrates for IRM, SEM, and biological assays. After physico-chemical analysis
we selected the 400 mJ/cm2 fluence of the laser to be utilized in all of the subsequent
biological tests.
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3.2.3. Physicochemical Characterization
XRD

The crystallinity of the obtained nanopowder was investigated by XRD using a Shi-
madzu XRD 6000 diffractometer. The XRD analysis was accomplished at room temperature
at the Bragg diffraction angle range between 10 and 80◦ using CuK α radiation with
λ = 1.056 Å (15 mA and 30 kV).

SEM

To investigate the morphology and dimensions of the nanostructured thin layers, the
samples were sectioned using a diamond disc placed on a support and were introduced
into an FEI (Hillsboro, OR, USA) electron microscope. The obtained images were recorded
using secondary electron beams at an energy of 30 keV.

TEM

For TEM investigations, a small quantity of the sample powder was dispersed in
pure ethanol and was subjected to an ultrasonic treatment for 15 min. The sample was
placed on a carbon-copper grid and was left to dry at room temperature. The record
the TEM micrographs, a TecnaiTM G2 F30 S-TWIN high-resolution transmission electron
microscope from FEI Company (Hillsboro, OR, USA) was used in the transmission mode at
a 300 kV voltage with point and line resolutions of 2 Å and 1 Å, respectively. The apparatus’
selected area electron diffraction (SAED) accessory allowed the acquisition of additional
crystallographic data.

FT-IR

To investigate the integrity of functional groups characteristic to synthesized parti-
cles, a reduced quantity of particle suspension was analyzed using a Nicolet 6700 FT-IR
spectrometer from Thermo Fischer Scientific. The measurements were performed at room
temperature, with 32 scans being collected at the 4000 and 1000 cm−1 range with a 4 cm−1

resolution. Recording the as-acquired information was possible by connecting the appara-
tus to a unity of data processing using Omnic Picta 8.2 software (Thermo Fischer Scientific).
Thus, the collected spectra were overlapped, and the absorbance maps were created based
on the second derivative of the spectral data.

TGA-DSC

The thermal analysis TGA-DSC for the precursors was performed with a Netzsch STA
449C Jupiter apparatus. The samples were placed in an open crucible made of alumina and
were heated at 10 K·min−1 from room temperature up to 900 ◦C under the flow of 50 mL
min−1 dried air. An empty alumina crucible was used as a reference.

3.2.4. Biological Characterization
Cell Viability

To determine the cell viability of the nanocomposite films, an MTT viability assay
was conducted on mouse osteoblasts MC3T3-E1 grown for 24 h in Minimum Essential
Medium containing 10% fetal bovine serum. The investigated thin films deposited on Si
substrates were previously UV sterilized by exposure for 20 min on each side). Cells were
seeded on top of uncoated and coated substrates at a cellular density of 4 × 104 cells/cm2.
After removing the culture medium, the cells were washed with phosphate-buffered saline
(PBS). The MTT solution was added, and the cells were further incubated at 37 ◦C for two
hours in the dark. The MTT solution was removed and replaced with an equal volume
of isopropanol to solubilize the formazan crystals thorough pipetting. The spectropho-
tometric absorbance measurements were performed at a 595 nm wavelength with the
aid of a GENios TECAN microplate reader (TECAN, Männedorf, Switzerland). The cell
morphology was visualized using an Olympus IX71 microscope (Olympus, Tokyo, Japan).
Uncoated substrates were considered the control for the biological tests.
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The amount of NO in the collected culture medium after the osteoblasts had been
incubated with the test samples for 24 h was measured with Griess reagent (a stoichiometric
solution of 0.1% naphthylethylenediamine dihydrochloride and 1% sulphanilamide in
5% H3PO4). Increased NO levels were significant for cytotoxic effects related to inflamma-
tion and apoptosis processes. The absorbance of the mix formed from culture supernatants
and Griess reagent was measured at 550 nm using the GENios TECAN reader, and the NO
concentration was calculated from the standard NaNO2 curve.

Antimicrobial Effect

To test the effect of the prepared surfaces on biofilm formation, the obtained materials
were cut into 1 cm × 1 cm samples and were sterilized by UV exposure for 20 min on each
side. Each sterile fragment was individually placed in wells of a 6-well plate. An amount of
2 mL of nutritive broth were added to each well followed by 50 µL of bacterial suspensions
of 0.5 McFarland standard densities (1.5 × 108 CFU (colony forming units)/mL). The as-
prepared 6-well plates were incubated at 37 ◦C for 24 h. After incubation, the samples
were washed with PBS, and the culture medium was changed to ensure microbial biofilm
development. The plates were further incubated for 24 h; afterward, the specimen on
which biofilm was formed was washed with PBS and was placed in an Eppendorf tube
containing 1 mL PBS. The tube was vigorously vortexed for 30 s to detach the biofilm cells.
The obtained cell suspension was serially diluted, and different dilutions were seeded
on nutritive agar in triplicate to perform viable counts and to quantify the number of
colony-forming units (CFU/mL).

Biological test results were analyzed using Student’s t-test on Excel (Microsoft Office
2018). Statistically significant data were considered as having a p-value of less than 0.05.

4. Conclusions

This study presented the successful preparation of a nanomaterial based on chitosan
and lysozyme functionalized magnetite, which is intended for future study and application
in the biomedical domain. The initial nanopowders were deposited as thin coatings
using the MAPLE technique and were further investigated from physicochemical and
biological points of view. The developed nanostructured coating proved to have good
biocompatibility and biofilm inhibitory activity against relevant opportunistic bacteria
known for their biofilm infections. It was concluded that Fe3O4@CS and Fe3O4@CS/LyZ
prepared coatings have a strong antimicrobial effect while maintaining high cell viability.
The higher antibiofilm effect of the Fe3O4@CS/LyZ coating could be explained by the
synergic effects of CS and LyZ, which are both known antimicrobial agents. These results
are promising for the use of the prepared materials as bioactive nanostructured coatings for
medical implants, which can aid in the prevention and treatment of persistent infections
caused by microbial biofilms.
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