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Abstract

Sediment and soil contamination with toxic heavy metals, including cadmium (Cd2+) and

lead (Pb2+), represents a major long-term remediation challenge. Resuspension of contami-

nated sediments into the water column, or the uptake of toxic metals from top soil, can lead

to exposure of aquatic or terrestrial organisms, followed by bioconcentration, bioaccumula-

tion and biomagnification, which may pose a threat to public health. We have developed a

novel nanoscale engineered material, namely ligand-coated dense nanoparticles (Ligand

DNPs), which contain a dense WO3 nanoparticle core and a shell functionalized with a

metal-binding organic ligand (EDTA), to effectively sequester heavy metal ions deeper into

the soil and sediments. We demonstrate that one application of Ligand DNPs can remove

from 60% to almost 80% of the Cd and Pb in two different soil matrices, driving these metal

ions deeper into the sediment or soil column via gravity, and making them less bioavailable.

Ligand DNPs can provide a relatively fast, convenient, and efficient in-situ approach for the

remediation of sediments and soils contaminated with heavy metals.

Introduction

Heavy metal contamination, such as cadmium (Cd) and lead (Pb), in various environmental

media (e.g. soil, sediments, water) poses a severe threat to ecological and human health as long

as they are bioavailable [1,2]. Although there are natural sources of these elements, anthropo-

genic releases from activities such as metal mining and smelting [3–5], coal combustion [6],

trace levels in fertilizers [7,8] and even some wastewater sludge and biosolids [9], can increase

concentrations to high levels in soils and sediment beds of lakes and rivers. These toxic ele-

ments can be bioavailable to terrestrial and aquatic organisms [10,11], including crop plants

(e.g. rice, wheat) [12,13], and could be further bioaccumulated via the food chain causing dam-

age to humans. Since these metals cannot be degraded, current remediation approaches

include excavation or capping, with a very high cost and damage to ecosystems. In many cases,

these options are not economically feasible, when the contamination is very wide-spread as is

the case of many contaminated farmlands and river beds.
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Compared to ex-situ remediation technologies, in-situ decontamination does not require

excavation and transport of contaminated sediment and soil to off-site treatment or disposal

facilities, thus it is generally a more practical and economical approach [14]. Conventional in-
situ soil remediation technologies used for industrial sites contaminated with heavy metals

include soil washing/flushing [15,16], chemical immobilization [17,18], electro kinetic extrac-

tion [19,20], and phytoremediation [21]. While these technologies may be appropriate for

small scale (<1 ha) remediation, they quickly become cost-prohibitive at larger scales. The

cost of phytoremediation does not increase much with scale, but the accumulation of metals in

the plants presents ecological risks and an eventual disposal cost. Capping sediments essen-

tially destroys habitat [22,23], and the capping may be removed during a large storm event, re-

exposing the contaminated media. Thus, there is an urgent need to find better methods to

sequester heavy metals to reduce human and ecological risk and ensure better food security.

Chelating agents, for instance, ethylenediaminetetraacetic acid (EDTA), are widely used as

extractive agents for heavy metals decontamination [24,25]. Due to its strong metal chelating

ability and low cost, EDTA has been used as a metal extraction agent in soil washing [26,27].

However, soil washing can result in unintended mobilization of metals and other pollutants

that can be more easily transported by groundwater, and EDTA itself can pose issues as sec-

ondary pollution [28]. Thus, a suitable supporting material for EDTA and other chelating

agents would minimize the potential unintended environmental implications.

Previously we developed super-paramagnetic EDTA-functionalized nanoparticle adsor-

bents for water treatment, which were shown to remove a wide range of metal ions with high

sorption capacity [29–31]. To date, most nanoscale adsorbents have been applied to the decon-

tamination of aquatic systems [32,33], while very few studies have investigated sediment and

soil remediation [34,35]. We have also demonstrated that nanoparticles can readily transport

vertically into deeper soil, driven by gravity [36,37]. Thus, we set out to develop a new type of

high density nanoscale adsorbent, which can remove heavy metal ions during its downward

transport, significantly reducing their bioavailability.

For this study, we selected tungsten oxide (WO3) nanoparticles (NPs) as the dense core,

which is a relatively low-cost material with high density and low ecotoxicity, to develop the

dense nanocomposites that can transport vertically through the porous medium. We first

report on the synthesis of EDTA-based Ligand DNPs. We then demonstrate the sorption

capacity of Ligand DNPs for Cd2+ and Pb2+. Next, we evaluate the removal efficiency of Ligand

DNPs for Cd2+ and Pb2+ in two different natural porous matrices. Finally, we report on the in-
situ remediation performance of Ligand DNPs for Cd2+ and Pb2+ during gravity-driven verti-

cal transport in these media. The results demonstrate that Ligand DNPs can be applied for

effective in-situ metal decontamination from soils and sediments.

Materials and methods

Chemicals

Tungsten oxide (WO3, orthorhombic crystal) nanoparticles (spherical, 23–65 nm in diameter,

and 99.95% purity) were purchased from US Research Nanomaterials (USA). Pyridine and tol-

uene were purchased from Alfa Aesar (USA). (3-aminopropyl)triethoxysilane (APTES, 99%)

was purchased from Sigma-Aldrich (USA). Cadmium chloride anhydrous, lead chloride, eth-

ylenediaminetetraacetic acid (EDTA), and tris (hydroxymethyl)aminomethane were pur-

chased from Fisher Scientific (USA). Diethyl ether and sodium dihydrogen phosphate were

purchased from Acros Organics (Geel, Belgium). Standard Suwannee River natural organic

matter (NOM) was obtained from the International Humic Substances Society (IHSS, USA).

A NOM stock solution (100 mg/L) was prepared by mixing a known amount of NOM with DI
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water for 24 h. The pH of the stock solutions was adjusted to 8 with 0.1 M and 0.01 M NaOH

and HCl. All chemicals were used as received, without further purification. All solutions were

prepared with deionized water (18 MΩ-cm) from a Barnstead NANOpure Diamond water

purification system (USA).

Synthesis of Ligand DNPs

Similar to our previous synthesis strategies [29,31], the core-shell Ligand DNPs were prepared

in two steps. The WO3 nanoparticles were coated with APTES to form a silane polymer layer

via hydrolysis reaction [38]. Then, the surface was modified with EDTA by forming the amide

bonds between the EDTA’s carboxylic acid groups and APTES coating’s amino groups [39].

WO3 nanoparticles (1.0 g) were dispersed into 40 mL toluene in a flask. After mixing well,

0.4 mL APTES was added to attach an amino group to the WO3 particles. Then the flask was

connected to a reflux system (WU-28615-06, Cole-Parmer, USA), which was then rotated at

30 rpm (revolutions/minute) in a water bath at 90˚C, and refluxed for 2 h. After the solution

cooled to room temperature (22˚C), 2 mM EDTA and 60 mL pyridine were added. The mix-

ture was again rotated at 30 rpm in a water bath at 90˚C in the reflux system for 2 h. After the

solution cooled down to room temperature, 100 mL sodium bicarbonate (0.5 M/L) was added

to adjust pH to 8.0. Deionized (DI) water was used to rinse the particles twice and then

decanted. The same rinsing procedure was performed twice with ethanol and then diethyl

ether. The particles were dried at room temperature for 24 h, and stored in a capped bottle

prior to use.

Characterization of Ligand DNPs

Transmission electron microscopy (TEM) images were obtained using a JEOL 1230 Transmis-

sion Electron Microscope operated at 80 kV. Scanning electron microscopy (SEM) studies

were performed on a FEI XL40 Sirion FEG Digital Scanning Microscope. The surface area and

pore volume of Ligand DNPs were determined using a Micromeritics 3Flex Porosimeter. The

functional groups of the Ligand DNPs were detected using a Fourier transform infrared

(FTIR) spectrometer on a Nicolet iS 10 FT-IR Spectrometer.

Soil collection and contaminated soil preparation

Two representative soils were used in this study, as examples of the application of Ligand

DNPs to treat contaminated porous media. A grassland soil was collected from a flat, well-

drained grassy area at the Sedgwick Reserve in Santa Ynez, CA (N 34˚ 40’ 33.9”, W 120˚ 02’

07.6”), and farmland soil was collected from a fallow field at an organic farm in Carpinteria,

CA (N 34˚ 23’ 34.5”, W 119˚ 28’ 46.9”). The permit for collecting soil samples was authorized

by Brenda Juarez. Soil properties can be found in the Supporting Information (SI), in S1

Table in S1 File. Soils were air dried, sieved through a 2 mm mesh, and stored at 4˚C until use.

The physicochemical properties of the sieved soil samples, including pH, texture, saturation

percent, soluble salts, cation exchange capacity (CEC), conductivity, organic content, bulk

density, and exchangeable NH4, NO3, K, and PO4, were characterized in our previous study,

and available in the SI, shown as S1 Table in S1 File. Total W, Cd, and Pb concentrations of

each soil were measured by digesting ~0.3 g soil samples in 10 mL 1:3 HNO3: HCl at 200˚C for

1.5 h in a microwave digestion system (Multiwave Eco, Anton Paar), followed by analysis via

inductively coupled plasma mass spectroscopy (ICP-MS, 7900 Agilent Technology, Santa

Clara, CA).

In order to simulate Cd or Pb contamination, 20 g of each type of soil were placed in 50 mL

conical test tubes, mixed with 40 mL of 10 mg/L Cd2+ or Pb2+ solution on an end-over-end
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shaker (Dayton-6Z412A Parallel Shaft roller mixer, USA) with a speed of 70 rpm at room tem-

perature for 7 days to ensure sufficient equilibration time. Then, the tubes were centrifuged at

10,000 rpm for 20 min to separate soil and the residual Cd2+ or Pb2+ solution, and the superna-

tant was collected for residual Cd2+ or Pb2+ concentration determination by ICP-MS. Soil sat-

urated with Cd2+ or Pb2+ was preserved at 4˚C for the sorption studies. Air dried soil saturated

with Cd2+ or Pb2+ was digested with 1:3 HNO3:HCl at 200˚C for 1.5 h in a microwave diges-

tion system, then analyzed via ICP-MS to determine the total Cd or Pb content.

Batch sorption of Cd2+ and Pb2+

For batch sorption experiments, 20.0 mg of Ligand DNPs were first dispersed in 5 mL DI

water, then mixed with 10 g of Cd2+ or Pb2+ contaminated soil (of each type), in 50 mL conical

tubes at pH = 7. Then, these tubes were mixed on the end-over-end system with a speed of 70

rpm at room temperature for 7 days, to ensure sufficient equilibration time.

Adsorption kinetics studies were carried out at the previously stated conditions but for a set

amount of time, varying from 6-h, to 12-h, 24-h, 2-day, 3-day, and 7-day. The dosage of Ligand

DNPs ranged from 3, to 5, 10, 15 and 20 mg to study the adsorption isotherms at pH 7. To evalu-

ate the potential effect of NOM on the remediation performance of Ligand DNPs, the adsorption

isotherms were conducted by first dispersing 3, 5, 10, 15 or 20 mg of Ligand DNPs in 5 mL NOM

solution (20 mg/L), then mixing with 10 g of each type of contaminated saturated soil for 7 days.

After mixing the Ligand DNPs with contaminated saturated soil for the specified time, the

supernatant and soil were separated by centrifugation. Due to the high density, the immobi-

lized heavy metals adsorbed by Ligand DNPs would be spun down. The treated soil was col-

lected from the top layer to avoid the possible heavy metal binding Ligand DNPs, and then

dried in an oven at 60˚C for 72 h, then digested for total Cd or Pb content analysis via

ICP-MS. All experiments were conducted at ambient temperature (22–25˚C).

Gravity-driven transport through contaminated saturated soils

To investigate the decontamination capability of Ligand DNPs during gravity-driven transport

through soil saturated with Cd2+ or Pb2+, first the contaminated soil was packed into 15 mL

conical tubes (17 × 120 mm). An opening with a diameter of 2 cm was made at the bottom of

the tubes as the outlet of the system. Suspensions of 20, 40, 60, 80 and 100 mg of Ligand DNPs

were dispersed in 5 mL DI water, respectively, and then evenly applied onto the top of each

conical tube. After applying the Ligand DNP suspension and allowing the suspension to drip

out, the soil columns were placed in horizontal position and air dried overnight then oven-

dried at 60˚C for 72 h. The dried soil was carefully removed from the conical tube in 3 cm seg-

ments, labeled top, middle, and bottom section. Sub-samples (*0.3 g) were weighed, then

digested for Cd or Pb content analysis.

Results and discussion

Characteristics of Ligand DNPs

Ligand DNPs exhibited a porous surface morphology in the SEM micrograph (Fig 1A and 1B),

and the BET surface area was reported as 21.36 m2/g with a pore volume of 0.365 cm3/g. The

surface modification effectively enhanced the surface area of Ligand DNPs, as the pristine

WO3 nanoparticles had a surface area of 7.61 m2/g; this is beneficial for sorption capacity. The

core-shell structure can be seen in the TEM images (Fig 1C and 1D), with ~20 nm thick shell

layer, as shown in Fig 1D. The primary particle size was around 40–100 nm, but agglomerates

or particle clusters were also formed with a size from ~1 to 10 μm. The EDTA was confined on
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the Ligand DNPs via covalent amide bond between the carboxylic groups of EDTA and amino

groups from APTES coating [29]. The FTIR spectra of Ligand DNPs (S1 Fig in S1 File) indi-

cated that Ligand DNPs presented peaks for C = O, N-H, C-N and C-NH2, which were attrib-

uted by the APTES coating layer functionalized by EDTA. Determined by the thermal gravity

analysis, the mass percentage of EDTA coated onto the Ligand DNPs was around 9.3%. The

stability of Ligand DNPs was evaluated in the soil-water system over a 7-day period. Compared

to pristine WO3 nanoparticles, with the APTES coating, a very limited amount of dissolved W

ions (<100 ppb) were released.

The surface charge of Ligand DNPs was determined as negative (-25 to -45 mV) in the pH

range of 5 to 8, which helps to prevent aggregation between Ligand DNPs and typically nega-

tively charged soil/sediment particles, and promotes gravity-driven transport of Ligand DNPs

through the soil system, as the repulsive forces keep the Ligand DNPs in the central stream-

lines [40–48]. The density of Ligand DNPs was measured as 7.06 g/cm3, which is much higher

than the soil particle density (0.981~1.101 g/cm3), as shown in S1 Table in S1 File. The higher

density provides a larger gravitational driving force for Ligand DNPs to penetrate into the soil

and travel further.

Batch isothermal sorption of Cd and Pb

The Ligand DNPs were mixed with the two Cd or Pb contaminated soils at pH 7 for 7 days to

evaluate their isothermal sorption performance. As shown in Fig 2, the removal efficiency

Fig 1. (A) SEM micrographs of Ligand DNPs at 10,000×, scale bar = 2 μm and (B) at 25,000×, scale bar = 1 μm; (C)

TEM micrographs of Ligand DNPs with scale bar = 100 nm and (D) scale bar = 20 nm.

https://doi.org/10.1371/journal.pone.0239137.g001
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gradually increased as the dosage of Ligand DNPs increased, since this increases the number

of active sites. The Ligand DNPs exhibited higher Cd or Pb removal efficiency when applied to

farmland soil compared to grassland soil (Fig 2). As shown in S1 Table in S1 File, grassland

and farmland soil exhibited significantly different physicochemical characteristics, particularly

the organic and ionic concentrations. The CEC (S1 Table in S1 File) of grassland soil (25.8

meq/100g) is considerably higher than the CEC of farmland soil (8.7 meq/100g), which results

in higher retention of cations, including Cd2+ and Pb2+, leading to much lower desorption

from the contaminated soil to the soil-water interface. In addition, as shown in S1 Table in S1

File, the electrical conductivity was 142.1 μm/cm for farmland soil and 18.9 μm/cm for grass-

land soil, indicating a higher concentration of ions (including metal cations) in the leachate of

farmland soil compared to grassland soil. Thus, there can be a higher soil-water interface con-

centration of Cd2+ or Pb2+ in farmland soil compared to grassland soil, which increases the

accessibility and interaction between the active sites of Ligand DNPs and Cd2+ or Pb2+. In

both Cd2+ and Pb2+ contaminated soil remediation scenarios, Ligand DNPs achieved higher

removal efficiencies on contaminated farmland soil than grassland soil (Fig 2).

Ligand DNPs exhibited higher removal efficiencies of Pb2+ from both farmland and grass-

land soils compared to Cd2+, which agrees with the sequence of their EDTA complex forma-

tion constants (log K, 25˚C): 18.04 for Pb2+ and 16.46 for Cd2+ [49]. It suggests that the

complexation between Pb2+ or Cd2+ and the EDTA-functionalized surface is the dominant

removal mechanism [31].

Kinetics of Cd and Pb removal by Ligand DNPs

The time-dependent removal of Pb2+ or Cd2+ by Ligand DNPs in contaminated soil was evalu-

ated in batch studies, as shown in Fig 3. Ligand DNPs showed quick removal of Pb2+ in con-

taminated farmland soils, with over 75% of maximum removal efficiency achieved in the first

6 hours, and a minor increase from 1 to 7 days, when Pb2+ in contaminated grassland soils

were treated with Ligand DNPs (Fig 3A). Thus, the sorption equilibrium of bioavailable Pb2+

with Ligand DNPs can be rapidly reached within 1–2 days, with mixing, in both farmland and

Fig 2. Removal efficiency of Cd2+ or Pb2+ by Ligand DNPs at different sorbent concentrations (mg sorbent/g soil), in a 7-day batch study at pH 7, from two

soil types contaminated with (A) Pb2+or (B) Cd2+.

https://doi.org/10.1371/journal.pone.0239137.g002
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grassland soils. Similar removal performance was observed when applying Ligand DNPs for

Cd2+ soil remediation, as over 70% of the maximum removal efficiency could be achieved

in the first 6 hours for both soils (Fig 3B). However, it took up to 3 days of mixing to achieve

Cd2+ sorption equilibrium (Fig 3B), suggesting Ligand DNPs exhibit a faster removal rate for

Pb2+ than Cd2+, which is due to the stronger binding constant with EDTA [31].

Effect of NOM on removal efficiency of Cd and Pb

NOM concentration in the soil typically ranges from 0.5% to 5% [50]. In the current study, the

original grassland soil had a higher organic content (3.11 ± 0.07%) than the farmland soil

(1.44 ± 0.04%), showing a relatively wide range of organic content. In addition, soluble NOM

can interfere with, or compete for, metal cation sorption. In order to evaluate the effect of solu-

ble NOM on the removal of Pb2+ or Cd2+ using Ligand DNPs, an extra 1% NOM was spiked

into the Pb2+ or Cd2+ contaminated soils. Even in the presence of extra soluble NOM, the

removal of Pb2+ (Fig 4A) using Ligand DNPs did not exhibit significant differences compared

to the original soil conditions (Fig 2), while the removal of Cd2+ (Fig 4B) actually increased in

the presence of NOM, since a significant amount of polar groups (e.g. carboxylic groups) on

NOM [51] can also complex Cd2+ [52].

Removal of Cd and Pb during gravity-driven vertical transport

With a density of 7.06 g/cm3, the Ligand DNPs can transport vertically relatively rapidly

through the soil, driven by gravity. During their vertical transport, Ligand DNPs can effectively

remove Cd2+ or Pb2+ (Fig 5). In both farmland and grassland soil, the Ligand DNPs could gen-

erally pass through the entire depth of the soil column (~ 9 cm) over a 7-day remediation

period, with similar removal efficiencies achieved across the vertical layers. Similar to the

results of the batch studies, the removal efficiency was better for farmland soil compared to

grassland soil, likely due to their differences in cation exchange efficiencies, and removal of

Pb2+ by Ligand DNPs was slightly higher than Cd2+ removal. In addition, while to top and

middle layers exhibited similar removal efficiencies, the removal was highest in the bottom

Fig 3. Time-dependent removal of (A) Pb2+ and (B) Cd2+ by Ligand DNPs at pH 7 and 2 mg sorbent/g soil.

https://doi.org/10.1371/journal.pone.0239137.g003
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layer, where the Ligand DNPs are likely to reside slightly longer, before exiting through the

small aperture in the conical tube.

Discussion

We have demonstrated that Ligand DNPs can readily adsorb heavy metal ions such as Cd2+

and Pb2+ from contaminated soils. The technology should also be applicable to contaminated

sediments in river beds and lakes. Further work would need to be done to demonstrate their

applicability to estuaries and coastal areas, where the high ionic strength of those aqueous sys-

tems may result in too much attachment of the Ligand DNPs to immobile sediment particles.

Further studies are also needed to determine the effect of high Ca2+ or Mg2+ in the porous

medium, but our previous work with Mag-Ligands indicated that this is likely not a concern,

given the much higher affinity of EDTA for Cd2+ and Pb2+ [29]. Ligand DNPs may also hetero-

aggregate with small (< 1 μm) clay particles, which may still be mobile, resulting in some hori-

zontal as well as some vertical transport; this requires further study.

Porous media properties, in particular the CEC, were shown to influence the ability of the

Ligand DNPs to remove the heavy metal ions. However, even Cd2+ and Pb2+ sorbed onto a soil

with a higher CEC were removed by more than 60% in a single treatment, which may be suffi-

cient in many cases to significantly reduce the bioavailability of these metal ions. The presence

of organic matter, both that naturally present in the soils and introduced as a more soluble

NOM, had only a minor effect on metal ion removal. It is possible that the soluble NOM is also

adsorbed onto the Ligand DNPs and thus metal ions sorbed onto NOM are also transported

downward; future work could evaluate such interactions between NOM and the Ligand DNPs.

At this stage, the technology is at an early proof-of-concept stage. While one approach

would be to attempt to recover the ligand-coated nanoparticles, it is very challenging to do so

in a real soil or sediment situation. Thus, we developed this technology to drive these non-

degradable contaminants out of a bioavailable zone. This approach could also be used with

low levels of persistent organic pollutants, such as PCBs and chlorinated pesticides, which may

be near or above a toxicity threshold. The technology is not likely to be cost-competitive for

heavily contaminated sites, or it may require many applications of Ligand DNPs to achieve

Fig 4. Removal efficiencies of (A) Pb2+ and (B) Cd2+ by Ligand DNPs at pH 7 in the presence of additional (1%) soluble NOM.

https://doi.org/10.1371/journal.pone.0239137.g004
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remediation goals. Further work is needed to determine the range of applicability as well as to

be tested in more complicated soil system under realistic conditions (e.g., with microbes and

plants present).

By using a relatively low-cost material (WO3) which itself poses low human and ecological

risks, we sought to minimize economic and environmental implications. However, ecotoxico-

logical testing will be needed to establish the dosing of Ligand DNPs that can be safely applied

to a contaminated farm or a river bed. Field studies will be needed to determine the feasibility

of this approach for this vexing problem.

Conclusions

Ligand DNPs, with a dense WO3 core and an EDTA functionalized porous structured shell

layer, were successfully synthesized and evaluated with regards to their removal performance

Fig 5. Removal efficiencies using Ligand DNPs for (A) Pb2+ contaminated farmland soil; (B) Pb2+ contaminated grassland soil; (C) Cd2+ contaminated

farmland soil; (B) Cd2+ contaminated grassland soil. The data was collected across different vertical soil layers.

https://doi.org/10.1371/journal.pone.0239137.g005
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of Cd2+ and Pb2+ from contaminated soil. The results support our hypothesis that the com-

plexation between metal ions (Cd2+ or Pb2+) and EDTA was the dominant remediation mech-

anism, with high removal efficiency (>60 to 80%) for soil decontamination, even with a single

application at a dose of 10 mg adsorbent/g soil. Additional doses may result in remediation

down to desired clean-up goals. The dense core enables the Ligand DNPs to transport verti-

cally solely by gravity, at a rate that allows adsorption of the heavy metal ions from the porous

matrix. Since most of the removal occurs within a few hours of application, the Ligand DNPs

are capable of adsorbing the most bioavailable metal ions. Thus, Ligand DNPs are likely to pro-

vide a fast, convenient, relatively low-cost and efficient removal approach for sediments and

soil contaminated with heavy metals.
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