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Abstract: Literature suggests that anxiety affects gait and balance among young adults. However,
previous studies using machine learning (ML) have only used gait to identify individuals who report
feeling anxious. Therefore, the purpose of this study was to identify individuals who report feeling
anxious at that time using a combination of gait and quiet balance ML. Using a cross-sectional design,
participants (n = 88) completed the Profile of Mood Survey-Short Form (POMS-SF) to measure current
feelings of anxiety and were then asked to complete a modified Clinical Test for Sensory Interaction
in Balance (mCTSIB) and a two-minute walk around a 6 m track while wearing nine APDM mobility
sensors. Results from our study finds that Random Forest classifiers had the highest median accuracy
rate (75%) and the five top features for identifying anxious individuals were all gait parameters
(turn angles, variance in neck, lumbar rotation, lumbar movement in the sagittal plane, and arm
movement). Post-hoc analyses suggest that individuals who reported feeling anxious also walked
using gait patterns most similar to older individuals who are fearful of falling. Additionally, we find
that individuals who are anxious also had less postural stability when they had visual input; however,
these individuals had less movement during postural sway when visual input was removed.

Keywords: anxiety; gait; mCTSIB; balance; sensors; APDM monitors; machine learning

1. Introduction

Mental health is a global problem, and the prevalence of anxiety ranged anywhere
from 2.4% to 29.8% globally in 2013 [1]. However, since the start of the global pandemic,
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these numbers have increased by approximately 25.6% [2]. While we are unaware of the
global toll of the pandemic on feelings of anxiety in otherwise healthy individuals, a recent
study by Twenge and Joiner (2020) reported that US adults are more than three times as
likely to report being anxious in 2020 than they were in 2019 [3]. In 2010, anxiety was the
sixth leading cause of disability globally, with annual costs of anxiety-related disability
ranging from $42 billion to $53 billion [4]. While anxiety disorders have a significant societal
burden, individuals without a diagnosis of anxiety disorder may also report an increase in
feelings of anxiety as a normal response to worry from a perceived stressful event [5].

Feelings of anxiety are usually self-reported, which can be influenced by an individ-
ual’s culture [1] and gender [6] differences. While there are significant advantages to using
self-reported measures for anxiety, such as their high correlation with complementary ob-
jective measures, there is a risk of social and cognitive biases [7]. These biases are especially
more pronounced in studies assessing mental health because of the stigma surrounding the
issue. For example, Bird and Reiker [6] report that women are more comfortable expressing
emotions than men, which may partially explain the high prevalence of anxiety in women
compared to men [8]. Additionally, a systematic review and meta-regression by Baxter and
colleagues [1] suggest that there are cultural differences in self-reported feelings of anxiety.
Taken together, these findings suggest that researchers explore objective direct and indirect
measures, such as biomarkers and walking gait or balance, which may be impacted by
feelings of anxiety.

While significant evidence has identified objective biomarkers associated with anx-
iety [9], these biomarkers are individualized, which makes identifying individuals who
report anxiety through biomarkers challenging, as reported by the null findings of Boeke
and colleagues [10]. However, utilizing a person’s gait is one area where researchers have
successfully identified feelings of anxiety through objective measures. For example, Zhao
and colleagues reported a 74% accuracy rate in identifying feelings of anxiety using a
walking gait [11], while Miao and colleagues [12] reported a 78.4% accuracy rate in identi-
fying individuals who reported feeling anxious. These findings are promising because they
suggest that gait may be a valid objective indirect measure to identify feelings of anxiety.

Zhao and colleagues [11] used the X-Box Kinect to capture gait data; however, they did
not report gait features that were most important to identifying individuals who reported
feelings of anxiety. Conversely, Miao and colleagues [12] utilized a digital camera and
reported capturing features such as nose and ear movement, data that are not typically
reported in the gait literature. Miao and colleagues’ [12] significant findings included
associations between anxiety and joint movements of the elbow, knee, hip, and wrist,
information that is also not usually reported in gait literature. The authors deliberately
chose to not calculate the gait measures most commonly reported in the literature, such
as stride length, walking speed, or arm swing, because they felt that time-domain data
were better for predicting anxiety than traditional biomechanical variables [12]. These
findings provide limited interpretability for researchers seeking to replicate these findings
using traditionally measured gait characteristics. Additionally, although X-Box Kinect data
are highly reliable, it produces a copious amount of data, which makes analyses more
cumbersome, and may be impractical in many situations. Conversely, Inertial Movement
Unit (IMU) sensors, such as the ones used in this study (APDM, Portland, OR, USA), may
offer less data-intensive ways of capturing kinematic gait data. Therefore, this study aims
to use the most commonly reported kinematic gait variables captured by IMU sensors to
predict feelings of anxiety.

Although Zhao and colleagues [11] and Miao and colleagues [12] did not report the
gait variables most commonly reported in the literature, other studies [13–18] suggest that
there is a strong association between commonly measured gait characteristics and anxiety.
For example, Feldman and colleagues [13] identified slower walking gait speed, shorter
step length, and fewer steps per minute among adults who reported anxiety compared
to those who did not. However, Feldman and colleagues [13] compared individuals who
reported a diagnosis of generalized anxiety disorder compared to those who did not. These
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findings [13] have limited applicability to healthy individuals who may report feeling
anxious without a diagnosis of generalized anxiety disorder.

Conversely, multiple studies that examined anxiety at the moment have reported
changes in both gait and balance measures among healthy young and older adults [14–19].
This body of literature has reported a decrease in gait velocity with increased fear of
falling [14,16,17] and differences in gait strategies when young and older adults are asked
to walk under threatening or anxiety-inducing conditions [16,19]. Additionally, researchers
also report that feelings of anxiety at the moment also significantly impair balance perfor-
mance in healthy populations [18,19]. Taken together, we may surmise that when using
traditional gait and balance measures, healthy individuals who report feeling anxious
may report a slower walking gait [14,16,17] and balance dysfunction [18–20] compared to
individuals who do not report feeling anxious.

Although there are no definitive mechanisms that link gait, balance, and feelings of
anxiety, based on previously published studies, we may hypothesize a biological link exists
between feelings of anxiety, gait, and balance control. Individuals who are fearful of falling
utilize strategies where they rely on the spinal reflex pathway that allows for faster process-
ing of information [21]. Further, evidence suggests that anxiety influences oculomotor and
gaze control [22], which may alter locomotion in individuals who are anxious [16]. Other
data suggest that individuals who report being anxious have lower attentional control but
higher attentional demands for locomotion [23,24]. When examining balance control, we
find that individuals who report feeling anxious have decreased visual processing [25] and
increased physiological arousal, which results in a reduced center of pressure displacement
and increased leg muscle activity [26–28]. Taken together, these findings [16,21–28], and
the findings of studies that have measured changes in gait and balance due to increased
feelings of anxiety [14–19], suggest that our study may be able to identify individuals who
report being anxious using a combination of gait and balance parameters.

Currently, we are aware of two studies [11,12] that have successfully identified individ-
uals who report feeling anxious from individuals who do not report feeling anxious using
a walking gait. However, these studies identified gait characteristics not normally reported
in the gait literature (i.e., ear movement, nose movement, and movement in the left ankle),
limiting the interpretability by researchers interested in understanding traditional gait
parameters needed to most accurately identify individuals who report being anxious.

Therefore, to add to the existing literature, our exploratory study aims are the follow-
ing: (1) identify variables most important for machine learning algorithms to utilize to
identify individuals who report feeling anxious; (2) determine the accuracy of machine
learning algorithms that use clinical variables to identify individuals who report feeling
anxious compared to those who do not; (3) identify differences in the various clinical
measures of gait and balance between individuals who report feelings of anxiety compared
to those who do not.

2. Methods
2.1. Study Design

A cross-sectional study design was used to identify individuals who reported feeling
anxious in the moment compared to those who did not.

2.2. Participants

Participants from the community were recruited using word of mouth, flyers,
campus-wide emails at the university and in-person announcements made in large
classes (>30 students). To be eligible for this study all participants had to be between the
ages of 18–36. Individuals were excluded from this study if they reported no neurologi-
cal conditions (e.g., stroke, Parkinson’s Disease), lower-extremity orthopedic surgeries or
injuries within the last 6 months, wounds of abscess on the plantar surface of their feet,
uncorrectable visual impairments, and/or the inability to ambulate for 2 min without an
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assistive device and stand independently without pain and/or discomfort. One hundred
and forty volunteers were screened and 133 were qualified to participate in this study.

2.3. Instruments
2.3.1. Self-Reported Feelings of Anxiety

The 30-item Profile of Mood States-Short Form (POMS-SF) [29] was used to assess
current feelings of anxiety. Participants reported their current intensity of subjective mood
states on a 5-point Likert scale ranging from “Not at all” (scored as 0) to “Extremely”
(scored as 4). Feelings of anxiety were calculated using a combination of five questions
(Tense + Shaky + Nervous + Anxious + Uneasy). The Cronbach’s alpha for current feelings
of anxiety was 0.839.

2.3.2. Gait

Using methodology from previous literature that used machine learning to identify
moods and emotions using walking gait, this study used a 6 m × 1 m track where par-
ticipants were asked to walk back and forth for two minutes at their own pace [11,30].
However, unlike previous studies that utilized the X-Box Kinect, this study utilized APDM
mobility LabTM (APDM Inc, Portland, OR, USA) as they have been proven to be valid and
reliable forms of gait measurements using similar protocols [31,32]. The APDM mobility
LabTM sensors are a set of wireless, OpalTM inertial sensors, each with a docking station
that has an access point for wireless data transmission and sub-millisecond synchronization
of the independent sensors. The OpalTM inertial sensors have a range of 6 m and contain
tri-axial accelerometers, gyroscopes, and magnetometers. The accelerometers measure
linear acceleration, gyroscopes measure angular velocity, and the magnetometers measure
heading with respect to the earth’s magnetic field. In this study, we used seven OpalsTM

that were attached to the body using VelcroTM straps [32]. The OpalsTM were placed at the
following locations: lumbar region (5th lumbar vertebra), sternum (body of the sternum
immediately superior to the xyphoid process), forehead (middle of the frontal bone, ap-
proximately 2.5 cm above the nasal bone), right and left foot (on the metatarsals, directly
superior to the metatarsophalangeal joint), and the right and left wrist (immediately supe-
rior to the radioulnar joint) [31,33]. These locations were used because they also allowed
the researchers to measure anticipatory postural adjustments prior to gait initiation [33].

2.3.3. Balance

Previous literature that has examined state anxiety and balance has utilized either force
plates [19] or the Neurocom Balance Master to perform the Sensory Organizational Test
(SOT) [20]. These authors chose to use the modified Clinical Test of Sensory Interaction and
Balance (mCTSIB) to measure balance using the OpalTM monitors as mCTSIB measures have
been shown to be highly correlated with scores on the SOT [34]. The mCTSIB is a clinically
relevant measure of balance that can be completed using the OpalTM monitors [35,36].
During the performance of this test, participants were asked to stand quietly for 30 s with
feet spaced apart by the APDM footplate (a clear trapezoidal plate) and hands were placed
on the hips. Balance was tested under the following 4 discrete conditions: A) Eyes open
(EO) firm surface, B) Eyes closed (EC) firm surface, C) EO foam surface (Airex Balance Pad
Foam Balance Board Stability Cushion, 50.5 cm W × 40.1 cm D × 6.0 cm H), and D) EC
foam surface [35,36].

2.3.4. Procedure

After screening for inclusion/exclusion criteria participants were scheduled for one,
75 min long session. Participants were asked to refrain from consuming alcohol, caffeine,
medications, and illicit drugs at least 24 h prior to testing. Participants were invited to
the lab where they completed a series of surveys on Surveymonkey.com (San Mateo, CA,
USA) to determine if they had followed pre-testing instructions. Participants who reported
consuming alcohol caffeine, medications, or illicit drugs in the past 24 h were re-scheduled.
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Those who were eligible to complete the study were assigned a random 5-digit ID
using randomizer.org and fitted for the APDM mobility monitors. They completed the
POMS-SF to determine their current moods states. Participants also completed these pre-
testing surveys using Surveymonkey.com using a Hewlett Packard Pavilion 15.6” Flagship
Laptop (model # B018YIGHVK, Hewlett Packard, Palo Alto, CA, USA). The entire pre-
testing procedure lasted approximately 10 min. After completion of the pre-test questions,
participants completed the mCTSIB (approximately 2.5 min) and the two-minute walk. The
mCTSIB was performed at the edge of the walking track and the two-minute walk was
started immediately following the performance of the mCTSIB.

Subsequently, participants’ height was measured using a stadiometer (SECA model
220 Crothal Healthcare, Chino, CA, USA) and their weight was measured using the Tanita
Body Composition Analyzer TBF-410 (Tanita Corporation, Tokyo, Japan). Participants were
then asked to complete a series of surveys that asked them about health-related lifestyle
factors such as diet, sleep quality, physical activity levels, and trait energy and fatigue,
which are not reported in this study.

2.4. Statistical Analysis
Pre-Processing of Data

Data from SurveyMonkey.com were downloaded and exported into Microsoft Excel
(Microsoft Inc., Redmond, WA, USA) where mood data were scored. Gait and balance
data were exported as h5 files into Python (version 3.7, Python Software Foundation,
Wilmington, DE, USA), where balance and gait characteristics for each participant were
calculated. For gait measures, we calculated mean measures for each gait parameter,
variation in each gait parameter by calculating standard deviation in the movement over
2 min (referred to as variation in this study). For upper and lower-extremity movement,
means were calculated for each limb and means were also calculated for both limbs, further
variations in inter- and intra-limb movements were also calculated. The following formulas
were used:

Mean for each gait parameter (i.e., turn velocity):

(mean turn velocity =
sum o f velocity o f all turns

number o f turns
)

Variation for each gait parameter (i.e., standard deviation in turn velocity):

(variation in turn velocity =

√√√√∑
i=number o f turns
i=1 (turn velocity − mean turn velocity)2

Number o f turns
)

Mean gait parameter for individual limb (i.e., mean gait speed for right leg only):

(mean gait speed right leg =
sum o f gait speed o f right leg during 2 − minute walk
number o f steps taken by right leg in 2 − minute walk

)

Variation in movement for each individual limb (i.e., standard deviation for right leg
gait speed only/intra-limb variation in movement):

(variation in right leg gait speed =

√√√√∑
i=number o f steps on right leg
i=1 (right leg gait speed − mean right leg gait speed)2

Number o f steps on right leg

Mean gait parameter for both limbs of upper and lower extremity (i.e., mean gait speed):

Mean gait speed =
∑(gait speed right leg + gait speed le f t leg)

Total number o f steps
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Imbalance in gait parameters between limbs (i.e., variation in gait speed between
limbs/inter-limb variation in movement) to assess for consistency of movement and syn-
chronization of movement on both sides [37,38].

Imbalance in gait speed between limb
= ∑ gait speed right leg−gait speed le f t leg

gait speed right leg+gait speed le f t leg /Total number o f steps

Mood scores were then uploaded into Python (version 3.8.5, Python Software Founda-
tion, Wilmington, DE, USA) and merged with gait and balance data. Records were deleted if
they were not collected properly or had features with missing values greater than 5%. Data
were then visualized in Python. Anxiety scores were split into statistical quartiles based on
frequency of distribution. The quartiles included POMS-SF Anxiety scores = 0, POMS-SF
Anxiety scores = 1, POMS-SF Anxiety scores = 2, and POMS-SF Anxiety scores ≥ 3. For
the purposes of this exploratory study, the researchers were only interested in determining
whether the models could classify individuals on the extreme ends. Therefore, this study
only included individuals who reported a POMS-SF Anxiety scores = 0 and those who
reported scores ≥ 3 in the final analysis. Therefore, the researchers grouped participants
by those who reported scores of ≥3 on the POMS-SF anxiety (Anxious) and those who
reported POMS-SF anxiety score of 0 (Not Anxious). Individuals who reported a score of
1 or 2 were not included in our final analysis. After pre-processing data, we had data for
88 participants with 190 gait characteristics, and 30 features for each of the four balance con-
ditions (i.e., 120 total features for balance) used in the analyses. The researchers then filled
in missing values through the mean value of that feature in the dataset [35]. Chi-square
goodness of fit was used to determine sex differences and independent sample t-tests were
used to determine differences in age, height, and weight between the two groups.

2.5. Main Analysis
2.5.1. Objective 1: Feature Importance

When recording high dimensional features, not every feature is equally important,
and there may be many redundant features that are of less importance. Therefore, to sort
through the 310 features and 71 valid data points collected during this study, the researchers
used the Random Forest (RF) according to their feature importance [39].

2.5.2. Objective 2: Model Training

After sorting the features, the dataset was used to train the model through classifiers.
The researchers classified the records who reported scores ≥ 3 on the anxiety portion of
the POMS-SF as Anxious and those who scored a 0 as Not Anxious. The researchers used
all features and top five features (using 0.024 as a cut-off for feature importance) to train
each model. The researchers trained the models in a 10-fold cross-validation manner to
avoid problems such as overfitting or selection bias to some degree [40]. The data were
randomly split into the training set (90%) and test set (10% and ran each of the ML models
10,000 times using a Monte Carlo method [41–43]. Further information may be found in
Supplementary Materials.

2.5.3. Objective 3: Mean Differences

An analysis of co-variance was used to determine statistically significant differences
between individuals who reported feeling anxious compared to those who did not while
accounting for sex, age, height, and weight.

3. Results

There were 51 individuals (21 males and 30 females) who reported not feeling anxious,
while 36 individuals (14 males and 22 females) who reported feeling anxious (p = 0.830). There
was no significant difference (p > 0.05) in height or weight between individuals who reported
feeling anxious (height = 174.09 ± 8.10 cm, weight = 74.86 ± 14.26 kg) compared to those who



Sensors 2022, 22, 3163 7 of 16

reported not feeling anxious (height = 174.13 ± 9.76 cm, weight = 73.00 ± 15.83 kg). There
was a statistically significant difference in age between the two groups (p = 0.034), with the
anxious group reporting being significantly younger (23.31 ± 3.69 years) than the non-anxious
group (25.20 ± 4.24 years).

3.1. Objective 1: Feature Importance

The top five features using an RF were the mean angles of turns, the variance of
neck bending in the frontal plane, variance in arm swing speed, movement of the lumbar
region in the sagittal plane, and the maximal lumbar rotation in the transverse plane
(Supplementary Table S1).

3.2. Objective 2: Model Training

Our top model was a RF with the top five features. The median accuracy was 75%,
and the mean accuracy was 69.7 ± 16.4%. The Alpha-Beta (AB) using the top five features
was the next most accurate model, with the median accuracy being 63% and the mean
accuracy being 67.9%.

3.3. Objective 3: Mean Differences
3.3.1. Gait

There were several significant differences in gait characteristics between the two
groups. Full results may be found in Supplementary Table S1. Significant results are
reported in Table 1.

Table 1. Top 5 Variables and Significant Gait Variables Only.

Anxious Not Anxious

Variable Relative
Importance Ranking Mean SD Mean SD Significant

Difference

Mean turns angle (◦) 0.05 1 188.30 4.17 185.87 3.43 Yes
Variance neck bending in frontal plane (◦) 0.03 2 1.74 1.18 2.04 1.14
Variance in L arm swing velocity (◦/s) 0.03 3 45.21 45.87 53.35 37.50
Mean lumbar max. in sagittal plane (◦) 0.02 4 5.46 5.10 3.27 4.42 Yes
Mean lumbar R rotation max. (◦) 0.02 5 6.91 13.07 10.88 15.11
Variance gait speed between legs (%) 0.02 7 0.91 0.80 1.23 0.74 Yes
Mean lumbar L bending max. in the frontal plane (◦) 0.02 9 6.94 2.74 5.62 2.46 Yes
Variance step variability between legs (%) 0.02 12 8.16 5.85 11.21 7.44 Yes
Mean lower limb stance GCT (s) 0.01 15 60.52 1.51 59.94 1.48 Yes
Variance mid-swing elevation between legs (%) 0.01 17 13.88 11.97 18.98 13.94 Yes
Variance neck in the sagittal plane range (◦) 0.01 18 3.31 2.01 3.77 1.37 Yes
Mean lumbar in the sagittal plane min. (◦) 0.01 20 -0.66 5.02 -2.96 4.52 Yes
Mean lumbar L max. rot. (◦) 0.01 29 4.76 12.43 0.03 15.23 Yes
Variance neck rot. range in frontal plane (◦) 0.01 41 2.78 1.74 3.80 2.95 Yes
Mean lumbar bending range in frontal plane (◦) 0.01 42 9.82 3.12 8.78 3.16 Yes
Variance R lower limb terminal double support (% GCT) 0.01 44 0.84 0.33 0.76 0.15 Yes
Variance toe out angle between legs (%) 0.01 45 2.78 1.97 2.21 1.70 Yes
Variance neck R max. rot. (◦) 0.01 46 12.78 17.13 9.55 5.61 Yes
Mean turns duration (#) 0.00 58 2.17 0.19 2.23 0.18 Yes
Mean lumbar coronal ROM (◦) 0.00 82 6.54 2.79 5.72 1.86 Yes
Variance turns angle (◦) 0.00 92 5.92 1.88 5.17 1.29 Yes
Mean neck R L rotation range (◦) 0.00 137 7.39 2.46 8.25 2.44 Yes
Mean R leg swing (% GCT) 0.00 149 39.48 1.51 40.06 1.48 Yes
Mean L Leg single limb support (% GCT) 0.00 179 39.59 1.50 40.10 1.45 Yes
Variance in turn duration (s) 0.00 189 0.21 0.09 0.24 0.08 Yes
Mean neck range in the sagittal plane (◦) 0.00 205 7.88 2.67 8.96 2.96 Yes
Variance in neck L max. rot. (◦) 0.00 243 12.90 17.14 9.63 5.82 Yes
Mean R leg terminal double support (% GCT)) 0.00 257 10.58 1.34 10.01 1.41 Yes
Variance in trunk ROM in sagittal plane (◦) 0.00 260 1.06 0.35 1.19 0.43 Yes
Variance in trunk ROM in transverse plane (◦) 0.00 261 1.81 0.58 2.05 1.18 Yes

L = left, R = right, rot = rotation, ROM = range of motion, max. = maximum, min. = minimum, avg. = average,
GCT = gait cycle time, # = number, % = percentage, cm= centimeter, GCD = gait cycle duration, ◦ = degrees.
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3.3.2. Neck Features

None of the features in the neck were in the top five selected features by our machine
learning models. Outside of the top five features, individuals who reported feeling anxious
also had less variance with neck rotation (2.78◦ ± 1.74 vs. 3.80◦ ± 2.95) and less neck
movement along the sagittal plane (7.88◦ ± 2.67 vs. 8.96◦ ± 2.96) while displaying increased
variance in neck rotation on the right side along the transverse plane (12.78 ± 17.13 vs.
9.55 ± 5.61), and increased variance in neck rotation to the left along the transverse plane
(12.90◦ ± 17.14 vs. 9.63◦ ± 5.82).

3.3.3. Trunk Features

Of our top five features, those who reported feeling anxious had a significantly greater
movement of their lumbar in the sagittal plane (5.46◦ ± 5.10) compared to those who did not re-
port feeling anxious (3.27◦ ± 4.42). For features outside of the top five, those who reported feel-
ing anxious had significantly greater left lumbar frontal plane bend (6.94 ± 2.74 vs. 5.62 ± 2.46),
greater minimum lumbar flexion/extension angle (−0.66◦ ± 5.02 vs. −2.96◦ ± 4.52), greater
maximum lumbar rotation to the left (4.76◦ ± 12.43 vs. 0.03◦ ± 15.23), greater lumbar range of
motion in the frontal plane (6.54◦ ± 2.79 vs. 5.72◦ ± 1.86), while having less variance in the
sagittal range of motion in the trunk (thoracic spine area) (1.06◦ ± 0.35 vs. 1.19◦ ± 0.43), and
less variance in trunk motion in the transverse plane (1.81◦ ± 0.58 vs. 2.05◦ ± 1.18).

3.3.4. Lower Extremity Characteristics

None of the lower extremity features were in the top five; however, many of the
features out of the top five were significantly different. Those who reported feeling anxious
also had a significantly lower variance for gait speed between limbs (0.91% ± 0.80 vs.
1.23% ± 0.73), less step variability between legs (8.16% ± 5.85 vs. 11.21% ± 7.44), and less
variance in mid-swing elevation between legs (13.88% ± 11.97 vs. 18.8% ± 13.94), and less
time spent in single leg support (39.59 s ± 1.50 vs. 40.10 s ± 1.45). Self-reported feelings
of anxiety also increased variance in double leg support time (0.84 ± 0.33 vs. 0.76 ± 0.15),
greater variance in toe-out angle between legs (2.78% ± 1.97 vs 2.21% ± 1.70), and increased
time spent in double leg support time (10.58 s± 1.34 vs 10.01 s ± 1.41).

3.3.5. Turning Features

Of the top five features in our model, those who reported feeling anxious took
significantly wider turns (188.30◦ ± 4.17) compared to those who were not anxious
(185.87◦ ± 3.43). For features outside of the top five, those who reported feeling anx-
ious had significantly greater variance in turn angles (5.92◦ ± 1.88 vs. 5.17◦ ± 1.29), faster
turns (2.17 s ± 0.19 vs. 2.23 s ± 0.18), and less variation in the amount of time spent turning
(0.21 ± 0.09 vs. 0.24 ± 0.08).

3.3.6. Anticipatory Postural Adjustment during Initiation of Gait

There were no significant differences (p > 0.05) in any of the variables we measured
that were associated with the initiation of walking gait.

3.3.7. Balance

None of the balance variables were considered to be part of the top five features
necessary to predict feelings of anxiety. However, several characteristics of balance were
significantly different between individuals who reported feeling anxious compared to
those who did not. The full set of results may be found in Supplementary Tables S2–S5.
Significant results are only reported in Tables 2–5.
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Table 2. Significant Variables Only for Eyes Open, Feet on Ground.

Anxious Not Anxious

Variable Relative
Importance Ranking Mean SD Mean SD Significant

Difference

Mean velocity in sagittal plane (m/s) 0.01 39 0.18 0.26 0.11 0.08 Yes
Sway angle area (◦) 0.00 95 1.24 2.31 0.86 0.93 Yes
RMS sway angle (◦) 0.00 100 0.52 0.62 0.37 0.20 Yes
Mean velocity (m/s) 0.00 141 0.19 0.26 0.12 0.10 Yes
Jerk in coronal plane (m2/s5) 0.00 144 0.41 0.34 0.57 0.82 Yes
Acceleration 95% ellipse radius on y-axis (m/s2) 0.00 153 0.21 0.25 0.15 0.08 Yes
Angle 95% ellipse radius on y-axis (◦) 0.00 188 1.25 1.52 0.87 0.49 Yes
Angle RMS Sway in sagittal plane (◦) 0.00 217 0.51 0.62 0.34 0.18 Yes
Acceleration 95% ellipse sway area (m2/s4) 0.00 265 0.04 0.07 0.02 0.03 Yes
Acceleration range in coronal plane (m/s2) 0.00 283 0.11 0.06 0.13 0.09 Yes
Acceleration range (m/s2) 0.00 284 0.47 0.63 0.35 0.26 Yes
Acceleration range in sagittal plane (m/s2) 0.00 288 0.45 0.63 0.32 0.25 Yes
Acceleration RMS sway in coronal plane (m/s2) 0.00 292 0.02 0.01 0.02 0.02 Yes
Acceleration RMS sway (m/s2) 0.00 293 0.09 0.10 0.06 0.03 Yes
Acceleration RMS sway in the sagittal plane (m/s2) 0.00 295 0.09 0.10 0.06 0.03 Yes
Angle Durations (s) 0.00 300 29.99 0.00 29.99 0.00 Yes
Angle RMS sway in coronal plane (◦) 0.00 302 0.11 0.05 0.13 0.11 Yes

rot = rotation, RMS = Root mean square, ◦ = degrees.

Table 3. Significant variables only for Eyes Closed, Feet on Ground.

Anxious Not Anxious

Variable Relative
Importance Ranking Mean SD Mean SD Significant

Difference

Acceleration 95% ellipse rot (m/s2) 0.01 32 1.55 0.14 1.62 0.25 Yes
Jerk in coronal plane (m2/s5) 0.00 148 0.37 0.28 0.54 0.67 Yes
Sway area rot (◦) 0.00 165 1.55 0.14 1.62 0.25 Yes
Mean velocity in sagittal plane (m/s) 0.00 172 0.10 0.05 0.12 0.05 Yes
Angle durations (s) 0.00 174 29.99 0.00 29.99 0.00 Yes

rot = rotation, RMS = Root mean square, ◦ = degrees.

Table 4. Significant Variables Only for Eyes Open, Feet on Foam Surface.

Anxious Not Anxious

Variable Relative
Importance Ranking Mean SD Mean SD Significant

Difference

Velocity range in coronal plane (m/s2) 0.02 8 0.17 0.05 0.21 0.07 Yes
Frequency dispersion 0.01 16 0.66 0.06 0.68 0.04 Yes
Acceleration 95% ellipse radius on x-axis (m/s2) 0.01 19 0.07 0.02 0.08 0.03 Yes
Centroidal frequency in coronal plane (Hz) 0.01 36 1.09 0.15 1.00 0.24 Yes
Sway angle area radius in coronal plane (◦) 0.01 40 0.40 0.10 0.49 0.15 Yes
RMS sway angle in coronal plane ◦ 0.01 43 0.18 0.05 0.21 0.07 Yes
Frequency dispersion in sagittal plane 0.00 154 0.69 0.04 0.71 0.04 Yes
Acceleration RMS sway in coronal plane (m/s2) 0.00 176 0.03 0.01 0.04 0.01 Yes
Acceleration 95% ellipse sway area (m2/s4) 0.00 267 0.04 0.02 0.05 0.03 Yes
Jerk in coronal plane (m2/s5) 0.00 271 0.78 0.47 0.99 0.82 Yes
Jerk in sagittal plane (m2/s5) 0.00 272 1.56 0.88 1.92 1.75 Yes
Acceleration range (m/s2) 0.00 286 0.39 0.12 0.41 0.13 Yes
Angle 95% ellipse radius in y-axis (◦) 0.00 298 0.97 0.38 0.98 0.33 Yes
Angle RMS sway in sagittal plane (◦) 0.00 305 0.39 0.16 0.39 0.14 Yes
Angle sway area (◦2) 0.00 306 1.27 0.64 1.59 0.95 Yes

rot = rotation, RMS = Root mean square, ◦ = degrees, ◦2 = degrees2.
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Table 5. Significant Variables Only for Eyes Closed, Feet on Foam Surface.

Anxious Not Anxious

Variable Relative
Importance Ranking Mean SD Mean SD Significant

Difference

Acceleration 95% ellipse rot (m/s2) 0.02 13 1.51 0.30 1.63 0.25 Yes
Frequency dispersion in coronal plane 0.00 122 0.63 0.07 0.65 0.05 Yes
Rot sway area (◦) 0.00 123 1.51 0.30 1.63 0.25 Yes
Jerk in coronal plane (m2/s5) 0.00 140 2.09 1.31 2.93 3.24 Yes
Angle durations 0.00 230 29.99 0.00 29.99 0.00 Yes
Acceleration RMS sway in sagittal plane (m/s2) 0.00 296 0.10 0.03 0.11 0.04 Yes
Angle 95% ellipse radius in y-axis (◦) 0.00 299 1.49 0.45 1.57 0.58 Yes
Angle RMS sway (◦) 0.00 304 0.69 0.20 0.72 0.24 Yes
Angle sway area (◦2) 0.00 307 3.77 2.09 4.15 2.56 Yes
Jerk in coronal plane (m2/s5) 0.00 271 0.78 0.47 0.99 0.82 Yes
Jerk in sagittal plane (m2/s5) 0.00 272 1.56 0.88 1.92 1.75 Yes
Acceleration range (m/s2) 0.00 286 0.39 0.12 0.41 0.13 Yes
Angle 95% ellipse radius in y-axis (◦) 0.00 298 0.97 0.38 0.98 0.33 Yes
Angle RMS sway in sagittal plane (◦) 0.00 305 0.39 0.16 0.39 0.14 Yes
Angle sway area (◦2) 0.00 306 1.27 0.64 1.59 0.95 Yes

rot = rotation, RMS = Root mean square, ◦ = degrees, ◦2 = degrees2.

3.3.8. Condition: Eyes Open, Feet on Ground

Individuals who reported feeling anxious reported a faster postural sway velocity
(0.19 m/s ± 0.26 vs. 0.12 m/s ± 0.10), faster velocity during postural corrections in the
sagittal plane (0.18 m/s ± 0.26 vs. 0.11 m/s ± 0.08), larger postural sway area (1.24◦ ± 2.31
vs. 0.86◦ ± 0.93), larger root mean square (RMS) sway (0.52◦ ± 0.62 vs. 0.37◦ ± 0.20), greater
acceleration in the y-axis (0.21 m/s2 ± 0.25 vs. 0.15 m/s2 ± 0.08), larger ellipses radius in
the y-axis (1.25◦ ± 1.52 vs. 0.87 ± 0.49), greater RMS sway in the sagittal plane (0.51◦ ± 0.62
vs. 0.34◦ ± 0.18), larger ellipsis sway area (0.04 m/s4 ± 0.07 vs. 0.02 m/s4 ± 0.03), greater
postural sway acceleration range (0.47 m/s2 ±0.63 vs. 0.35 m/s2 ± 0.26), greater postural
acceleration range in the sagittal plane (0.45 m/s2 ± 0.63 vs. 0.32 m/s2 ± 0.25), and greater
RMS sway in the sagittal plane (0.09 m/s2 ± 0.10 vs. 0.06 m/s2 ± 0.03). Self-report of anxiety
also produced less jerk in the coronal plane (0.41 m2/s5 ± 0.34 vs. 0.57m2/s5 ± 0.82), less
acceleration range in the coronal plane (0.11 m/s2 ± 0.06 vs. 0.13 m/s2 ± 0.09), less postural
sway acceleration in the coronal plane (0.02 m/s2 ± 0.01 vs. 0.02 m/s2 ± 0.02), greater
postural sway RMS sway (0.09 m/s2 ± 0.10 vs. 0.06 m/s2 ± 0.03), and lower RMS sway
angle in the coronal plane (0.11◦ ± 0.05 vs. 0.13◦ ± 0.11) (Table 2).

3.3.9. Condition: Eyes Closed, Feet on Ground

Individuals who reported feeling anxious had smaller ellipses during postural rota-
tions (1.55 m2 ± 0.14 vs. 1.62 m2 ± 0.25), less jerk in the coronal plane (0.37 m2/s5 ± 0.28
vs. 0.54 m2/s5 ± 0.67), and smaller postural sway area (1.55◦2 ± 0.14 vs. 1.62◦2 ± 0.25)
(Table 3).

3.3.10. Condition: Eyes Open, Feet on Foam Surface

Individuals who reported feeling anxious had a slower postural sway acceleration range
in the frontal plane (0.17 m/s2 ± 0.05 vs. 0.21 m/s2 ± 0.07), less postural sway frequency
dispersion (0.66 ± 0.06 vs. 0.68 ± 0.04), smaller ellipses along the x-axis (0.07 m2 ± 0.02 vs.
0.08 m2 ± 0.03), lower root mean square in the coronal plane (0.18◦ ± 0.05 vs. 0.21◦ ± 0.07),
less frequency dispersion in the sagittal plane (0.69 ± 0.04 vs. 0.71 ± 0.04), lower RMS
sway in the coronal plane (0.03 m/s2 ± 0.01 vs. 0.04 m/s2 ± 0.01), smaller ellipses sway
area (0.04 m/s4 ± 0.02 vs. 0.05 m/s4 ± 0.03), less jerk in the coronal (0.78 m2/s5 ± 0.47 vs.
0.99 m2/s5 ± 0.82), and sagittal (1.56 m2/s5 ± 0.88 vs. 1.92 m2/s5 ± 1.75) planes and larger
centroidal frequency in the coronal plane (1.09 Hz ± 0.15 vs. 1.00 Hz ± 0.24) (Table 4).
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3.3.11. Condition: Eyes Closed, Feet on Foam Surface

Individuals who reported feeling anxious had a slower acceleration in the ellipsoid
motion (1.51 m/s2 ± 0.30 vs. 1.63 m/s2 ± 0.25), less postural frequency dispersion in
the coronal plane (0.63 ± 0.07 vs. 0.65 ± 0.05), less sway area rotation (1.51◦ ± 0.30 vs.
1.63◦ ± 0.25), and less jerk in the coronal plane (2.09 m2/s5 ± 1.31 vs. 2.93m2/s5 ± 3.24)
(Table 5).

4. Discussion

To the knowledge of the researchers, this is the first study to utilize sensors and
machine learning to identify current feelings of anxiety using gait and balance measures.
Although the accuracy of the models in this study is aligned with previously reported
literature that identified feelings of anxiety over the last 2 weeks [11,12], the findings of this
study add significantly to the literature by reporting gait characteristics that have clinical
meaning and measures that can be used to identify individuals who currently report being
anxious. Although significant evidence indicates that there are differences in gait [14–19]
and balance [18,19] among individuals who report feeling anxious compared to those who
do not, the findings of this study suggest that gait may be the most important feature to
consider when using sensors to identify individuals who are anxious in the moment.

4.1. Objective 1

The findings from these analyses suggest that the turning angle, mean lumbar move-
ment, and variations in the neck and arm movements are the most important features in
predicting anxiety. To the knowledge of the researchers, there is limited literature to which
these findings can be compared. When examining the literature, findings report that older
adults usually adjust their turns [44], as turning requires maintaining balance [45] when
they report feeling anxious. These findings are similar to the findings of this study, as
young adults who reported feeling anxious in this study made wider turns compared to
those who were not anxious. This finding is unique in that the previous literature that has
used machine learning in walking gait to identify feelings of anxiety has used variations
in movements (i.e., nose and ear movement, ankle movement) [11,12], whereas this study
provides the gait characteristics most commonly used in the literature.

4.2. Objective 2

The median of the best model had a 75% accuracy, which is congruent with previously
reported literature [11,12]. However, the findings of this study add the following three
unique aspects to the literature: (1) This study used sensors, which are significantly less
data-intensive than the X-Box Kinect; (2) this study was able to identify individuals who
reported feeling anxious in the present, while previous literature identified individuals
who reported feeling anxious at any point over the last two weeks; (3) this study used
measures most often reported in gait literature to identify feelings of anxiety, while the
previous literature that reported variables not often reported (i.e., nose and ear movement).

4.3. Objective 3
4.3.1. Gait

Overall, our findings suggest that individuals who report feeling anxious had no
trouble initiating gait; however, based on the variables that were significantly different,
these individuals had more cautious gait patterns. The gait patterns found in the anxious
young adults in our study are similar to those observed in older adults who are fearful
of falling [14]. Individuals who self-report being anxious show a significantly greater
side-to-side rotation of the neck, but less up-and-down movement. These findings may
be explained by the fact that anxiety has an effect on oculomotor and gaze control [22],
which has been linked to alterations in locomotion [16]. The findings of this study suggest
a reduced smoothness of neck movement among individuals who report feeling anxious,
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which may be explained by previous hypotheses that suggest that individuals who report
feeling anxious are consistently performing threat assessments during locomotion [16].

When examining movements of the trunk and lumbar spine, our results found that
anxious individuals had an increased forward/backward and side-to-side movement as
they walked compared to individuals who did not report feeling anxious. These findings
also report that anxious individuals had a significantly greater bending to the left side when
compared to healthy individuals, but not on the right side. Our findings may be explained
by the fact that, in this study, participants were asked to walk around an oval track making
left turns only. The increased bending to the left by anxious individuals suggests that these
individuals were trying to create a base of support when turning. While this study reports
increased variations in lumbar movements, the results also found decreased variance in
thoracic movements. Taken together, this suggests that individuals who are anxious may be
trying to use the spinal reflex pathway (automatic control strategy) to control locomotion
rather than send information to the higher centers (executive strategy). Utilizing this
strategy allows for faster unconscious correction of the trunk (i.e., fast, parallel processing
of information) and is utilized by individuals who are fearful of falling [21].

The lower extremity movements of anxious young adults are also similar to those of
older adults who are fearful of falling [46]. For example, this study reports that there were
fewer variations in the lower extremity movements among anxious individuals and that
anxious individuals also spent more time in double leg support time, thus less time in single
leg support time when compared to their counterparts who reported not feeling anxious.
The lower extremity movements further reinforce the findings presented for trunk and
lumbar movements because they suggest a lower attentional control, but higher attentional
demands for locomotion [23] among anxious individuals. Previously, a meta-analysis
reported a significant negative relationship between anxiety and attentional control [24],
which the authors believe may have impacted the walking gait of anxious individuals
in this study. Based on the movement of the neck (increased visual scanning), trunk,
and lumbar regions (decreased trunk movement), the authors hypothesize that anxious
individuals may be scanning for threats by minimizing attentional control of locomotion.

Another potential hypothesis to explain walking gait differences may be that anxious
individuals may also have balance deficiencies in walking gait. This hypothesis is supported
by the findings in this study that show participants who reported feeling anxious had a
decreased stride velocity and spent more time in double leg support, yet they had a greater
variance in double leg support time, which suggests that they were trying to unsuccessfully
regulate and slow gait speed over the course of the two minutes to maintain balance. This
hypothesis is further supported by anxious individuals’ having an increased variance
in toe-out angle and mid-swing elevation, which suggests that these individuals were
trying to correct for information received by their balance system [47,48]. Additionally,
this hypothesis is further supported when examining how anxious individuals turn. In
these data, the authors report that anxious individuals take wider, more variable, yet faster
turns. Taken together, this suggests that anxious individuals may be trying to find a larger
base of support when turning (wider turns), while decreasing the amount of time spent in
unstable environments (faster turns, as turns, are less stable than straight walking). These
findings are similar to those reported among individuals with gait disorders who try to
avoid falling [49], as well as individuals who report feeling low energy [50,51]. A visual
representation of the gait differences can be found at https://gaitsim.dmanserver.com/
AnxietyYN (accessed on 12 January 2022).

4.3.2. Balance

Although none of the balance-associated variables were predictive of feelings of
anxiety in the machine learning model presented in this study, it was found that anxious
individuals had different balance corrections and errors compared to those who did not feel
anxious. This study reported that anxious individuals had greater front-to-back (sagittal
plane) movement; however, they had less side-to-side movement when their eyes were

https://gaitsim.dmanserver.com/AnxietyYN
https://gaitsim.dmanserver.com/AnxietyYN
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open and their feet were on a firm surface. The authors also found that anxious individuals
correct significantly faster front-to-back but slower side-to-side compared to non-anxious
individuals. Interestingly, when examining the balance condition where somatosensory
input is unreliable but visual input is present, postural sway is “smoother” with less spatial
displacement and slower temporal adjustments, except when correcting side-to-side. The
authors also found that when vision was occluded on both firm surface and foam surface
conditions, individuals who reported being anxious had a “smoother” balance with less
spatial displacement and slower temporal corrections. Taken together, these findings
suggest that visual input is impacted by feelings of anxiety [25], as shown by quicker
temporal corrections in both vision conditions, albeit in different planes. The balance
findings from this study further support the hypothesis put forth by the authors when
explaining the gait findings, as balance findings suggest that individuals who are anxious
may be visually scanning for threats. This hypothesis may explain greater front-back
movements with quicker corrections in the eyes open, feet on firm surface conditions and
quicker corrections in the eyes open, unstable surface conditions. However, these findings
do not explain the smaller spatial movements in unstable environments. Smaller spatial
movements in unstable environments and vision-occluded balance may be best explained
by the fact that anxiety increases physiological arousal, which is associated with a reduced
center of pressure displacement and increased leg muscle activation [26–28], although this
study did not measure leg muscle activity.

4.3.3. Implications

The findings of this study have implications in multiple fields, as it gives insight
into how best to recognize feelings of anxiety among young adults while also providing
the gait variables most often reported in the literature. The findings from this study
suggest that there are signals, specifically in locomotion, which can be helpful to identify
individuals who are feeling anxious using IMU sensor technology. Based on the accuracy
of the results of this study, the authors suggest future researchers try to capture additional
data during locomotion and should focus their efforts on trying to capture signals that
document variance in locomotion. Additionally, these findings suggest that even though
the participants of this study were young, those who reported feeling anxious mimicked the
gait patterns most often observed among older adults who are fearful of falling. Although
this study did not measure locomotion in athletic competition, these findings may be
of importance to tactical and sports athlete trainers as they may find individuals who
report feeling anxious are constantly threat scanning and walking in a protective manner,
which may influence their athletic performance. These findings may also be of interest
to clinicians working in the movement analysis realm (i.e., physiotherapists), as some of
the instability/declines in balance that they may note may be due to anxiety instead of
functional deficits.

4.3.4. Limitations

This study is not without limitations. The primary limitation of this study is its
cross-sectional design. However, a recent investigation suggests that not all individuals
report feeling anxious even when using anxiety-provoking conditions [52]; therefore,
suggesting that researchers trying to identify when an individual is feeling anxious may
have difficulty inducing anxiety. These inter-individual differences in responses to various
anxiety-provoking conditions suggest that for an exploratory study, a cross-sectional design
may be ideal. Another limitation is that feelings of anxiety are self-reported measures
that may have inherent reporting bias. The Hawthorne effect may also be at play here, as
individuals who normally would not report feeling anxious may have been anxious when
they reported to the lab [53]. The Hawthorne effect further underscores the importance
of this study, as there is a need for technology that may be used to identify feelings of
anxiety in the moment. Another potential limitation of the findings is that the individuals
identified in this study may have had gait deviations due to factors other than anxiety
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that may not have been accounted for in this study (i.e., pain). Additionally, this study
eliminated individuals who reported some anxiety (POMS-SF scores of 1 and 2), which
may have provided additional insight into how locomotion changes as feelings of anxiety
increase. Lastly, due to the small sample size, the models reported in this study had a
median accuracy of 75%, and some of the best models had 100% accuracy. The models
with 100% accuracy rates may have just been “lucky” in the training and test sets of data
that were used. However, those models that reported 100% accuracy do provide insight
into the fact that the accuracy of the models may significantly improve with larger sample
sizes. Future research should examine other movements and try to perform these studies
with larger sample sizes. Future studies should also try to understand the chronicity
of anxiety in the population and whether individuals who report feeling anxious more
frequently and/or more intensely may more permanently alter their gait patterns and/or
create compensatory mechanisms in walking gait.

5. Conclusions

The purpose of this exploratory study was to use machine learning to identify young
adults who currently report feeling anxious. The findings from this study are aligned with
previous literature in that these models were able to identify individuals who reported
feeling anxious with 75% accuracy. These results identified that locomotion was more
important than quiet balance at identifying anxious individuals. Additionally, this study
found that variances in the upper extremity, trunk, and neck movement may be the most
important features in identifying anxious individuals. These findings also suggest that
young adults who reported feeling anxious exhibit walking patterns similar to older adults
who report fear of falling. This study also reported that quiet balance among young adults
who currently report feeling anxious was different compared to those not feeling anxious.
Future studies should try to capture locomotion data in larger populations while also trying
to capture other signals that may help create more accurate models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22093163/s1, Table S1: Gait Variables. Table S2: Eyes Open, Feet
on Ground. Table S3: Eyes Closed, Feet on Ground. Table S4: Eyes Open, Feet on Foam Surface. Table
S5: Eyes Closed, Feet on Foam Surface.
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