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Abstract: Coating nanosized anticancer drug delivery systems (DDSs) with poly(ethylene glycol)
(PEG), the so-called PEGylation, has been proven an effective method to enhance hydrophilicity, aque-
ous dispersivity, and stability of DDSs. What is more, as PEG has the lowest level of protein absorption
of any known polymer, PEGylation can reduce the clearance of DDSs by the mononuclear phagocyte
system (MPS) and prolong their blood circulation time in vivo. However, the “stealthy” characteristic
of PEG also diminishes the uptake of DDSs by cancer cells, which may reduce drug utilization.
Therefore, dynamic protection strategies have been widely researched in the past years. Coating
DDSs with PEG through dynamic covalent or noncovalent bonds that are stable in blood and normal
tissues, but can be broken in the tumor microenvironment (TME), can achieve a DePEGylation-based
“tumor-triggered” targeting or intracellular drug release, which can effectively improve the utilization
of drugs and reduce their side effects. In this review, the stimuli and methods of “tumor-triggered”
targeting or intracellular drug release, based on DePEGylation, are summarized. Additionally, the
targeting and intracellular controlled release behaviors of the DDSs are briefly introduced.

Keywords: DePEGylationg; tumor-triggered targeting; dynamic protection strategy; controlled release

1. Introduction

It was reported by Global Cancer Statistics 2020 that cancer has become the first or second
leading cause of death before the age of 70 years in more than 110 countries in 2019, and there
were an estimated 19.3 million new cases and 10 million cancer deaths worldwide in 2020 [1].
Due to disadvantages, such as poor solubility, unstable, unfavorable pharmacokinetics and
poor biodistribution in vivo, lack of targeting capability, etc., traditional anticancer drugs
show limited therapeutic effects with serious side effects [2]. Combined with nanotechnology,
the anticancer drug delivery systems (DDSs) developed in recent decades have proved
an efficient medium for targeted delivery and release of drugs to organelles, tissues, or
cells, thus enhancing the stability, solubility, circulating half-life, and tumor accumulation of
drugs [3–5]. As summarized by Shen et al., for efficient inhibition of a solid tumor, an excellent
nanoparticle (NP)-based anticancer DDS should efficiently accomplish a process called the
CAPIR cascade [6,7]. That is, the DDS should firstly have a long circulation (C) time in the
blood compartments after being injected into the vein. After that, it needs to accumulate (A)
in the tumor through the enhanced permeability and retention (EPR) effect; it then needs
deep intratumoral penetration (P). Finally, the internalization (I) of the DDS by cancer cells is
necessary for intracellular drug release (R) [6].

As the first step in the CAPIR cascade, enough circulation time of DDSs in vivo is
important, it allows the DDSs to fully accumulate in tumor tissue through the EPR effect.
However, after injection in the bloodstream, xenobiotics, such as DDSs, can interact with
biomolecules, such as opsonins, which promote cellular opsonization and clearance by the
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mononuclear phagocyte system (MPS) [3,4,8,9]. Therefore, suitable protection strategies
have to be introduced, in order to reduce the interaction between DDSs and MPS and make
NPs “stealthy” [10]. For example, cell membranes are one kind of common “stealthy” coat-
ing, due to their functions, such as intercellular communication, bioantifouling, immune
defense, etc. [10–25], including, but not limited to, membranes isolated from erythro-
cyte [15,16], monocyte [17], macrophage [18,19], neutrophil [20,21], lymphocyte [22,23],
and platelet [24,25], which have been reported to mimic cells for DDS protection [10].
Similarly, the exosomes or extracellular vesicles derived from cells are also important
“stealthy” coatings [26–28]. Besides biomembranes, some polymers with low protein ab-
sorption capability can also be used to prevent the conjugation of DDSs to proteins or cells,
which protects DDSs from clearance [10]. As the electrostatic interaction between DDSs
and organisms is important for circulation and cellular uptake, and negatively charged
NPs have a longer circulation time, compared to positively/neutrally charged ones [29,30];
polyanions are considered to be a kind of effective “stealthy” coatings [30–32]. Compared to
other “stealthy” materials, poly(ethylene glycol) (PEG), which has the lowest level of protein
absorption of any known polymer, is undoubtedly the most widely used one [33–36]. PEG is
a kind of highly flexible linear or branched synthetic polymer or oligomer with a molecular
weight of 0.4-40 kDa; it is hydrophilic, with excellent biocompatibility, which is classified as
generally regarded as safe (GRAS) by the Food and Drug Administration (FDA) [36,37]. It has
been used in almost all kinds of DDSs, such as polymeric micelles [38–40], liposomes [41–43],
hydrogels/nanogels [44–46], polymeric NPs [47,48], inorganic NPs [49,50], aggregation-
induced emission luminogens (AIEgens) [51], etc. As a kind of hydrophilic polymer, PEG
can also improve the water solubility, dispersibility, and stability of DDSs both in vitro and
in vivo [37]. Since it was firstly reported to modify proteins (so-called PEGylation) in 1977,
tens of thousands of research works on PEG-based DDSs have been published, and tens of
PEG-based nanomedicines have been approved by the FDA [5,35].

However, though “stealthy” coatings represented by PEG can prolong the circulation time
of DDSs in vivo and improve their pharmacokinetics, “stealthy” coatings can also diminish
cellular uptake [29,31,52], which interferes with step I in the CAPIR cascade and may reduce
the therapeutic effect of DDSs. As a result, dynamic protection strategies have been developed
in the last decade. The charge reversal strategy, based on tumor-acidity-cleavable maleic acid
amide (TACMAA), is a representative one [31]. For amino group-based polycations coated on
the surface of DDSs, modification of the amino groups with 2,3-dimethylmaleic anhydride or
citraconic anhydride can change them to carboxyl-contained polyanions. The hydrolysis of
the TACMAA in the slightly acidic tumor microenvironment (TME) can return the acid amide
to the amino group, thus achieving a negative-to-positive charge-reversal, which activates
the “stealthy” DDSs to “visible” to the cancer cells [31,53–56]. Another common dynamic
protection strategy is DePEGylation, that is, stripping the “stealthy” PEG coating after DDSs
accumulation in tumors, with the help of TME (Scheme 1) [57]. Based on the DePEGylation
strategy, Zhang’s group proposed a concept called “tumor-triggered” targeting, or intracellular
drug release, in 2010 [58]. It offers a new way to design DDSs, with both long circulation time
in vivo and good internalization capability by cancer cells using the most popular “stealthy”
coating PEG. In this review, we try to briefly introduce the development of DDSs with
“tumor-triggered” targeting or intracellular drugs or genes, a kind of macromolecular “drug”,
release property based on DePEGylation in the last decade. Additionally, the targeting and
intracellular controlled release behaviors are briefly introduced.
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2. pH-Sensitive DePEGylation for “Tumor-Triggered” Targeting or Intracellular
Drug Release

Due to the non-fouling feature of the PEG molecular chain, PEGylation mainly depends
on PEG’s functional end group(s). To modify DDSs with PEG, there are three typical methods,
as follows [59]. (1) Adsorption of PEG through noncovalent bonds, such as the hydrogen
bond and electrostatic and coordination interaction, on the surface of DDSs. (2) Grafted PEG
on the surface of DDSs through covalent bonds. (3) Linking PEG as the hydrophilic block(s) to
other polymeric chains to form block copolymers, for instance, amphiphilic polymers that can
self-assemble into PEGylated NPs (micelles, vesicle, etc.) in water [60]. For PEGylation based
on noncovalent adsorption, the differences (in most cases, pH) between the environment in
blood/normal tissues and TME may destroy or weaken the noncovalent interaction, thus
leading to DePEGylation [61]. For the other two PEGylation strategies, PEG could be grafted
on the surface of DDSs or linked with other polymeric chains through dynamic chemical
bonds, which are reversible in blood/normal tissues and TME. Endogenous stimuli, such as
pH, enzyme, and redox, and exogenous stimuli, such as light, can drive the broken of the
dynamic bonds in tumor tissues, resulting in DePEGylation.

Compared to normal cells, cancer cells usually ingest and consume more glucose, and
the aerobic glycolysis, or so-called Warburg effect, in cancer cells produces a large amount
of lactate, which was discharged into the extracellular matrix (ECM) and reduced tumoral
extracellular pH (pHe) [62]. As a result, pH-sensitive noncovalent and covalent bonds are
widely introduced for DePEGylation.

2.1. Benzoic Imine Bond-Based DePEGylation for “Tumor-Triggered” Targeting or Intracellular
Drug Release

In 2008, Gu et al. reported a micellar DDS self-assembled from an amphiphilic poly-
cation, cholic acid (CA), and PEG-grafted poly-L-lysine (PLL), with PLL-g-CA as a hy-
drophobic block, and PLL and PLL-g-PEG as hydrophilic blocks. PEG was grafted to
PLL via a pH-sensitive benzoic imine bond formed from benzaldehyde and amino group
(Figure 1). The benzoic imine bond is stable in neutral and alkaline environments but can
be hydrolyzed in a weakly acidic environment (pH < 6.8); as a result, the micelles were
“stealthy” at physiological pH but could reveal the positive charge in a weakly acidic envi-
ronment, e.g., TME, for better uptake by cancer cells [63–65]. Based on this work, Zhang’s
group proposed the concept of “tumor-triggered targeting” in 2010 [58]. In this work, they
reported the noncovalently connected micelles (NCCMs) for anticancer drug delivery. As
shown in Figure 2, hydrophilic poly(N-isopropylacrylamide-co-N-acroyloxysuccinimide)
(P(NIPAAm-co-NAS)) and hydrophobic poly(ε-caprolactone) (PCL) were linked through an
α-β cyclodextrin (CD) dimer via host–guest interaction to form an amphiphilic copolymer
that could self-assemble to micelles. A cancer cell over-expressed αvβ3 integrins targeting
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peptide, glycine-arginine-glycine-aspartic acid-serine (GRGDS) [66], was coated on the
hydrophilic shell of the micelles and shielded by methoxy PEG benzaldehyde (mPEG-CHO)
through a benzoic imine bond. DePEGylation, caused by the weakly acidic environment,
led to the revealing of GRGDS and achieved a “tumor-triggered targeting”. PNIPAAm is
temperature-sensitive with a lower critical solution temperature (LCST)~32 ◦C and could be
adjusted to 38 ◦C by copolymerization with hydrophilic NAS [67]. Therefore, the NCCMs
could shrink and disassemble in the overheating cancer cells to release the loaded drug
doxorubicin (DOX).
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After that, the method of “tumor-triggered targeting” has been widely applied to
the design and fabrication of novel anticancer DDSs. For example, Yang et al. reported a
kind of mixed micelles self-assembled from two amphiphilic polymers cyclic RGD (cRGD)
functionalized PEG-b-PCL (cRGD-PEG-b-PCL) and benzoic imine-linked PEGylated DOX
(PEG-DOX). The micelles were “stealthy” by the protection of PEG-DOX and could turn to
cancer cell-affinitive due to the DePEGylation of PEG-DOX in TME to reveal the targeting
cyclic peptide [68]. The loaded anticancer drugs DOX and paclitaxel (PTX) could be released
intracellularly, due to the acid-trigged structure changes.

In 2014, Zhang’s group further introduced this method to mesoporous silica nanoparti-
cle (MSN)-based DDS [69]. MSN is a kind of hot material, due to its good biocompatibility,
plasticity of size, shape, and pore size, easy surface modification, high drug loading ca-
pability, etc. [70,71], and it is well-studied in the drug delivery field. In this work, they
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loaded MCM-41-typed MSN with DOX, then used peptide RGDFFFFC as the “gatekeeper”,
and shielded it by mPEG-CHO through a benzoic imine bond. The peptide contained
the targeting sequence RGD, the four-phenylalanine (FFFF) sequence to block the pores
through the π-π stacking and hydrophobic interactions between the benzene rings, as
well as a cysteine (C) residue to linked with MSN through a redox-sensitive disulfide
bond. DePEGylation resulted in “tumor-triggered targeting”. The addition of disulfide
reducing agents DTT (to imitate reduced glutathione (GSH) intracellular) could break the
disulfide bond, thus leading to DOX release. Our group also reported the “tumor-triggered
targeting” MSN-based DDSs with chitosan (CHI) as the “gatekeeper” [72,73]. CHI is the
only natural alkaline polysaccharide with low toxicity, excellent biodegradability, and low
immunogenicity; it is obtained from organisms such as the shell and cartilage of arthropods
and mollusks, and the cationic polysaccharide characteristic allows CHI to stick to the
cell membrane and enter cells via electrostatic interaction [74,75]. As shown in Figure 3,
we prepared β-CD-grafted CHI (CHI-g-CD) and coated it on DOX-loaded MSN through
host–guest interaction between β-CD and benzimidazole (Bz). After that, CHI was grafted
with peptide GRGDS and then mPEG-CHO through a benzoic imine bond, respectively.
Besides the “stealthy” characteristic, PEG could also enhance the stability of the NPs (the
particle size kept ~260 nm within a week in the culture medium containing 10% fetal
bovine serum (FBS)). After the DePEGylation, both GRGDS and the positive charge of CHI
promoted the uptake of the NPs. Then, the more acidic environment intracellular destroyed
the host–guest interaction between β-CD and Bz [76,77], thus leading to the departure of
CHI for drug release. The targeting peptide also ensured the better endocytosis capability
of the NPs by mouse breast cancer (4T1) cells than that of normal cells of human renal
epithelial (293T). Both in vitro and in vivo experiments proved that DDSs could improve
the utilization of DOX and reduce its side effects.
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Zhang’s group also introduced “tumor-triggered targeting” into metal-organic-framework
(MOF)-based DDS in 2015. In this work, they applied a one-pot and organic solvent-free
“green” post-synthetic method to fabricate a MOF/β-CD/peptide-PEG DDS [78]. The nano-
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sized iron-based MOF MIL 101 with a mesoporous structure was used to load DOX. β-CD
acted as the “gatekeeper” to block the pores through a disulfide bond to avoid premature
drug release. Peptide-PEG copolymer K(ad)RGDS-PEG1900, which was a cancer-targeting
peptide KRGDS (K stands for lysine) with adamantine (Ad) modified on the K terminal,
and PEG modified on the S terminal was introduced as the “tumor-triggered targeting”
dynamic protection layer. K(ad)RGDS-PEG1900 was coated on the NPs through the host–
guest interaction between β-CD and Ad, and PEG was linked with the peptide through
a benzoic imine bond. The DePEGylation in the weakly acidic TME revealed the peptide
KRGDS for cancer targeting, and the interruption of the disulfide bond intracellular led to
the leave of β-CD to “open the gate” for DOX release.

Besides”tumor-triggered targeting”, “tumor-triggered” intracellular drug release
based on benzoic imine bond has also been reported. By utilizing the supermolecular
(host–guest) interaction between mono-6-deoxy-6-EDA-β-CD (β-CD-NH2) and the guest
molecules, Wang et al. prepared a series of DOX-loaded supramolecular NPs [79,80]. β-CD-
NH2 also offered an amino group for the grafting of mPEG-CHO through the benzoic imine
bond. DePEGylation of the NPs in the weakly acidic TME revealed the positively charged
amino groups to promote the uptake of the NPs by cancer cells via electrostatic interaction.
Then, the more acidic environment intracellular broke the linkage of the guest molecules
(interrupting pH-sensitive acetal or boronate ester bonds), thus leading to the dissolution of
the NPs and DOX release. Our group also applied β-CD-NH2 as the “gatekeeper” to block
the pores via acetal or boronate ester bonds to prepare the dual-pH-sensitive MSN-based
DDSs with mPEG-CHO coated through the benzoic imine bond, which could also achieve
a “tumor-triggered” intracellular drug release [81,82]. Recently, Hung et al. reported a poly-
meric vehicle-based DDS (ID@PbCTPNs) fabricated from the co-assembly of amphiphilic
PEG-benzoic imine-octadecane (mPEG5k-b-C18) and tocopheryl PEG succinate (TPGS),
as well as hydrophobic poly(lactic-co-glycolic acid) (PLGA) for both photothermal agent
indocyanine green (ICG) and drug DOX delivery [83]. With the pH decreased from 7.4 to
6.5 and then 5.0, ID@PbCTPNs could drop their PEG protection layer for cellular uptake
and reduce the particle size for both drugs release intracellular in succession, thus achieving
a photothermal/chemo-combinatorial cancer therapy.

2.2. TACMAA-Based DePEGylation for “Tumor-Triggered” Targeting or Intracellular
Drug Release

The negative-to-positive charge reversal strategy, based on TACMAA, is an important
dynamic protection strategy [31]. It is expected that both the pH-trigged charge reversal
and the break of TACMAA could be introduced to DePEGylation. In 2014, Zhang’s group
reported a TACMAA charge reversal-based “tumor-triggered” intracellular drug release
DDS, named MSN-TPep/PEG-PLL(DMA), for the co-delivery of drug and therapeutic
peptide to mitochondria with a DePEGylation feature in TME. As shown in Figure 4, they
firstly loaded MSN with anticancer drug topotecan (TPT), then used triphenylphospho-
nium (TPP)-modified antibiotic peptide (Lys-Leu-Ala-Lys-Leu-Ala-Lys)2 (Tpep) as the
“gatekeeper” to block the pores via a disulfide bond; after that, they applied PEG-b-2,3-
dimethylmaleic anhydride-modified PLL (PEG-PLL(DMA)) to shield the positive charge of
the nanoparticles through the electrostatic interaction between TPP and PLL(DMA) [84].
The charge reversal of PLL(DMA) in TME resulted in the electrostatic repulsion of the
copolymer and the nanoparticles, thus leading to DePEGylation. After entering the cancer
cells with the help of the positive charge, the DDS could release both TPT and Tpep, due
to the redox sensitivity of the disulfide bond. The mitochondria-targeted TPP brought
the Tpep to specific mitochondria-induced damage, and TPT could break the nucleus.
The dual-sensitive and combination therapy characteristics made the system a nice choice
for safe and effective cancer therapy. Similarly, Zhao et al. grafted a β-carboxylic amide
functionalized PEG (PEG-DA) layer on the poly(ethylenimine) (PEI)-poly(trimethylene
carbonate)/DNA (PEI-PTMC/DNA) complex nanoparticles through the electrostatic in-
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teraction, which achieved a “tumor-triggered” intracellular DNA release for cancer gene
therapy [85].
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Wang’s group who first introduced the TACMAA-based charge reversal strategy
also reported the TACMAA-based chemical DePEGylation [86,87]. They prepared the
nanoparticles based on a kind of block copolymer with PEG linking to poly(d,l-lactide)
(PDLLA) through the TACMAA, which were used for docetaxel (DTXL) delivery. Similar
to other pH-sensitive chemical bonds, such as benzoic imine, the break of TACMAA in
acidic TEM could result in DePEGylation and a rise of the zeta potential, which significantly
enhanced the cellular uptake and in vivo cancer therapy effect, compared to the control
system without pH-sensitivity. Then, Zhou et al. grafted PLL-lipoic acid (PLL-LA) with
PEG through TACMAA to prepare a nanosystem for DOX and programmed death receptor
1 (PD-1) small interfering RNA (siPD-L1) delivery, thus achieving a “tumor-triggered”
intracellular both drug and gene release for combined chemotherapy and gene-mediated
immunotherapy [88]. In 2020, this strategy has also been introduced to a tumor photother-
mal therapy (PTT) system. By coating of CHI-wrapped carbon nanotubes (CHI-CNTs) with
TACMAA-modified eight-armed PEG, a “tumor-triggered targeting” photothermal deliv-
ery nanoplatform was obtained. The DePEGylation resulted in a highly effective uptake of
the nanoparticles by murine bladder cancer cells (MB49) and mitochondrial targeting [89].
Then, the photothermal effect of CHI-CNTs under irradiation with a near-infrared (NIR)
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light (808 nm) could damage the mitochondria, which further induced the reactive oxygen
species (ROS) for cell death. Wang et al. applied photosensitizer zinc phthalocyanine (ZnPc)
as a drug and bridge, thus linking PEG through the TACMAA and hyaluronic acid (HA)
chain through a disulfide bond to obtain the copolymer PEG4000-CDM-ZnPc-S-S-HA, which
could assemble into nanoparticles for tumor passive targeting [90]. The DePEGylation
revealed HA, a cancer cell overexpressed CD44 receptor targeting polysaccharide [91], thus
achieving a “tumor-triggered targeting”. ZnPc could be released intracellularly, due to the
high concentration of GSH for NIR light-triggered photodynamic therapy (PTT). By mixing
PEI-crosslinked β-CD (PEI-β-CD) and TACMAA-linked adamantyl PEG (Ad-CDM-PEG)
through the host–guest interaction, Tang’s group prepared a polymer-based nanoplatform
PCACP for microRNAs, miR-199a/b-3p mimics (miR199), and antimiR-10b (antimiR10b)
delivery for hepatocellular carcinoma (HCC, one of the most malignant primary cancers)
cocktail therapy [92]. The introduction of Ad/β-CD host–guest interaction made the sur-
face modification of dynamic PEG chains easier, and the TACMAA-based DePEGylation
strategy, as well as the cocktail therapy, could effectively inhibit tumor cell proliferation,
migration, and invasion, as well as reduce the side effects of normal cells.

2.3. Ortho Ester-Based DePEGylation for “Tumor-Triggered” Targeting or Intracellular
Drug Release

Ortho ester is another kind of pH-sensitive bond that can be broken in a slightly
acidic environment and used for DePEGylation and controlled drug release [93]. Based
on ortho ester, amphiphilic graft copolymer dynamic micelles with polyurethanes or
poly(disulfide)s backbones and PEG hydrophilic side chains were reported [94,95]. The
ortho ester-linked PEG could be stripped at pH 6.5, resulting in the size changes of the
micelles, which allowed the micelles to penetrate the centers of SH-SY5Y multicellular
spheroids quickly for controlled intracellular drug release and enhanced chemotherapy.
The same group also reported a kind of anticancer PEG-modified nanogels through ortho
ester with a “tumor-triggered targeting” property [96,97]. As shown in Figure 5, they
used four functional monomers, i.e., 4-(hydroxymethyl)-phenylboronic acid pinacol ester,
3-(acrylamido)phenylboronic acid slightly acid-sensitive, PEG derivative, and cisplatin
(Pt(IV)) crosslinker, for copolymerization to obtain the dynamic PEG-modified nanogels.
After accumulation in tumor tissues through the EPR effect, the breaking of the ortho ester
bond led to DePEGylation to reveal phenylboronic acid (PBA) for cancer cells overexpressed
in sialic acid active targeting. The nanogels could further deplete the GSH intracellular
by the dual-regulation of Pt(IV) and boronic acid pinacol ester, which could enhance the
therapeutic effect of the released Pt(II) reduced from Pt(IV). Additionally, this kind of
nanogel-based DDS showed a high accumulation in the tumor region (6.4% ID/g), due
to both passive and “tumor-trigged” active targeting. In 2021, they also copolymerized
diamine monomer of ortho ester with drug derivatives (modified Pt(IV) or methotrexate
(MTX)) and then terminated the copolymers by PEG-active ester to obtain dynamic drug-
backboned nano-prodrugs, which could self-assemble into micelles for passive targeting
and “tumor-trigged” intracellular drug release [98,99].
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2.4. Other pH-Sensitive Linkages-Based DePEGylation for “Tumor-Triggered” Targeting or
Intracellular Drug Release

Similar to benzoic imine, both imine (-N=CH-) and hydrazide-hydrazone (-CO-NH-
N=CH-) are pH-sensitive chemical bonds responsive to the pH changes in tumor tissue [100]
and can also be used for DePEGylation. For example, a kind of polysaccharide-based poly-
meric lipid vesicles was designed for “tumor-triggered targeting” in 2014 [101]. Folate acid
(FA)-modified dextran was grafted with hydrophobic stearyl alcohol through a disulfide bond
and PEG through a hydrazone bond, and the amphiphilic macromolecules could self-assemble
into vesicles to load DOX. After enrichment in tumor tissues through EPR effect-trigged pas-
sive targeting, the hydrolysis of the hydrazide-hydrazone bond led to DePEGylation to reveal
the active targeting ligand FA, thus achieving a “tumor-triggered targeting”. Additionally,
the vesicles could further release loaded DOX intracellular, due to the redox sensitivity. Simi-
larly, Sun et al. synthesized a series of FA-modified amphiphilic block-statistical copolymers,
monomethoxy PEG-FA-poly(oligo(ethylene glycol)monomethyl ether methacrylate)-st-poly(2-
hydroxyethyl methacrylate-g-lactide) (mPEG(FA)-P(OEGMA300)-st-P(HEMA-g-LA)) that
could self-assemble into micelles, with PEG shielding FA through hydrazone [102]. Af-
ter acidic “tumor-triggered targeting”, the redox-sensitive micelles could intracellularly re-
lease drugs. This method could also be introduced to fabricate liposome-based DDSs [103].
Cheng et al. reported the FA and PEGylated phospholipid-modified ammonium bicarbon-
ate (ABC) liposomes, in which PEG was linked with phospholipid through an imine bond
that made the traditional ABS liposomes, which could only release drugs extracellularly
and bring DOX into the cancer cells, due to the “tumor-triggered targeting” property [104].
Additionally, the acid (pH 6.4), as well as the high temperature (42 ◦C), led to the produc-
tion of CO2 bubbles, which trigged the DOX release intracellular. Recently, Domiński et al.
also prepared copolymer micelles with the hydrophilic block PEG linking to hydrophobic
block through a hydrazone bond, which could be hydrolyzed under an acidic pH for
DePEGylation and achieve an intracellular drug release [105].

Another kind of pH-sensitive bond, phenyl-substituted vinyl ether (PIVE), was in-
troduced by Kim et al. for DePEGylation. In these works, PEG has been linked with 1,3-
dioctadecyl-rac-glycerol (DOG) lipids through PIVE, and the obtained PEG-PIVE-DOG was
implanted in the liposome-based drug or gene delivery system. Hydrolysis of PIVE bond
in the acidic environment led to DePEGyltion and, more importantly, the pH-sensitivity of
PIVE could be adjusted by rational selection of the phenyl ring substituent [106,107].

Protonation of acid radicals in an acidic environment can reduce the electrostatic
interaction between the acid radicals and cations. As a result, Luo et al. synthesized
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12-hydroxystearic acid-PEG-YGRKKRRQRRR (HA-PEG-TAT) to load disulfiram (DSF),
in the form of cationic nanoparticles, and then coated them with negatively charged
poly(glutamate acid)-graft-PEG (PGlu-PEG) through the electrostatic interaction between
glutamic acids and arginine [108]. At pH 6.5, the protonation of glutamate acid radical
weakened the electrostatic interaction; PGlu-PEG transformed into α-helix and left the
nanoparticles to achieve a charge reversal. Then, the cell-penetrating peptide TAT induced
the membrane tension for DSF releasing intracellular.

Coordination is another interaction for PEG grafting. Based on coordination,
Tseng et al. prepared a PEI-based polymeric gene delivery system. They synthesized
the histidine-grafted PEI (hisPEI) and nitrilotriacetic acid end-capped PEG, followed by
chelation with Zn2+. After the formation of hisPEI/DNA complexes, PEG was coated
through the coordination interaction between Zn2+ and histidine. At pH 4.0, the breaking
of the coordination interaction led to DePEGylation for intracellular DNA release and gene
therapy [109].

3. Other Stimuli-Sensitive DePEGylation for “Tumor-Triggered” Targeting or
Intracellular Drug Release
3.1. Enzyme-Sensitive “Tumor-Triggered” Targeting or Intracellular Drug Release

Another difference between tumors and normal tissues is the overexpression of
enzymes, such as matrix metalloproteinases (MMPs), caspases, phospholipases, and
hyaluronidases [110]. MMPs are a kind of zinc-dependent protease enzyme that can
degrade the ECM components; among MMPs, both MMP-2 and MMP-9 are overexpressed
in many kinds of cancers and often explored for enzyme-triggered, controlled drug re-
lease [110,111]. Linking the “stealthy” polymers on the surface of the DDSs through MMP
degraded peptides, such as Pro-Leu-Gly-Val-Arg (PLGVR), can achieve MMP-triggered
DePEGylaytion or dynamic protection [29,112].

Based on this method, Zhang’s group reported a PEG/β-CD/MSN complex DDS
with the “gatekeeper” β-CD, coated on MSN, to block the pores through a thermal-labile
Azobenzene (Azo) linker and GGPLGVRGRGDK-Ad peptide-linked PEG-grafted outside
via host–guest interaction. The cleavage of PLGVR in the existence of overexpressed MMP-
2 led to DePEGylation and the revealing of the targeting peptide RGD, thus resulting
in a “tumor-triggered targeting” [113]. Photothermal agent ICG and drug DOX were
loaded in this DDS; as a result, NIR exposure aroused the photothermal effect of ICG
and broke the Azo linker to “open the gate” for DOX release, thus achieving a combined
chemo/photothermal-therapy. Similarly, Ge’s group reported a series of amphiphilic
block copolymers, which could self-assemble into micelles or vesicles to load drugs, in
which hydrophilic PEG linked with hydrophobic segments via MMP-2-sensitive peptide
GPLGVRGDG; these systems could also achieve the “tumor-triggered targeting” and
intracellular DOX release [114–116]. These kinds of block copolymers could also be used
for intracellular gene therapy, with a “tumor-triggered targeting” property [117]. As shown
in Figure 6, Gordon et al. prepared a kind of polymethacrylate-based nanogels, with
polymer chains crosslinked by disulfide bonds and surface modification by GPLG-linked
PEG. After passive targeting of tumor tissues through the EPR effect, the cleavage of
GPLG by MMP-9 could reveal the positive charge on the surface of the nanogels for better
cellular uptake, as well as the breaking of disulfide bonds in a high concentration of GSH
disintegrating the nanogels and resulting in drug release intracellular [118].

To prevent the metastatic and local-regional recurrence of cancer after surgery,
Li et al. reported a polymersome-based DDS, assembled from a triblock copolymer PEG-
GPLGVRG-PCL-PGPMA, composed of MMP-cleavable peptide-linked PEG and PCL,
and CPP-mimicking polymer poly(3-guanidinopropyl methacrylamide) for codelivery
of microtubule-disrupting and anti-inflammatory agent colchicine and MMP inhibitor
marimastat [119]. In TME, the overexpressed MMPs led to the DePEGylation for not only
the transformation of the polymersomes into multicompartmentalized nanoassemblies
(revealing guanidine groups for tissue/cell-targeting), but also colchicine and marimastat
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release. After the surgical removal of large primary tumors, the released drugs from the
DDS could influence the generation of microtubules and inhibit overexpressed MMPs, thus
reducing metastatic and local-regional recurrence [119].
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In 2015, Bruun et al. reported a titratable cationic lipid nanoparticle-based SiRNA
delivery system that could cross the impermeable blood-brain barrier (BBB) with a DePEGy-
lation property [120]. By coating the lipid nanoparticles with both angiopep-terminated 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-PEG2000 (DSPE-PEG2000) and dimyristoyl-
PEGylated cleavable lipopeptide (DM-PCL), the carriers could anchor the overexpressed
low-density lipoprotein receptor-related protein-1 (LRP-1) through the targeting ligand
angiopep firstly and then take off the PEG protection layer, due to the MMP-degradation
of the GWIPVSLRSGEE peptide of DM-PCL for uptake by brain endothelial and glioblas-
toma cells, which achieved the crossing of the BBB. The MMP-triggered dePEGylation
substantially increased the uptake and gene silencing efficiency of the carriers.

3.2. Redox-Sensitive “Tumor-Triggered” Targeting or Intracellular Drug Release

Glutamate–cysteine–glycine, or GSH, is an important reduced tripeptide and the most
abundant intracellular small molecule biothiol, which plays an important role in some
cellular processes, such as maintaining the redox balance intracellular [121]. A feature of
GSH is that the GSH concentration intracellular (1–0 mM) is considerably higher than that
of extracellular (1–10 µM), and GSH is overexpressed inside certain cancer cells, which
makes GSH an ideal stimulus for designing redox-sensitive DDSs with an intracellular
controlled release behavior [121,122]. However, different from other strategies, GSH-based,
redox-sensitive DePEGylation should happen inside the cancer cells, thus resulting in
“tumor-triggered” intracellular drug release.

In 2010, Li’s group reported an “intelligent” nanoassembly (INA) for gene deliv-
ery. It contained a plasmid DNA (pDNA)/protamine sulfate (PS) condensed core and
dioleoylphosphatidyl ethanolamine (DOPE)-based lipid envelope with PEG linked on the
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DOPE through a GSH-sensitive disulfide bond [123]. PEG could stabilize the structure
of INA and prolong its systemic circulation time. Additionally, the DePEGylation of the
INA in the reductive intracellular environment led to the broken structure of INA and a
tumor-triggered release of pDNA. Additionally, this system showed a better transfection
efficiency and lower cytotoxicity than that of the commercialized gene delivery reagent
LipofectamineTM 2000. Then, Zhang’s group reported a corona-shell-core copolymer
PEG-b-poly(L-lysine)-b-poly(racleucine) (PEG-SS-PLys-PLeu), with PEG linked with the
poly(amino acid) chains through a disulfide bond. As shown in Figure 7, the copolymer
could self-assemble into micelles to load DOX, and the PLys shell of the micelles was also
cross-linked by disulfide bonds. In the presence of a high concentration of GSH intracellular,
PEG could leave the micelles, and the micelles could collapse to release DOX [124]. Similarly,
Ai et al. prepared star-shaped, disulfide bond-linked PEG-Lysine-di-tocopherol succinate
copolymer-based micelles for “tumor-triggered” intracellular DOX release [125]. Besides
the TACMAA-based nanoplatform PCACP fabricated by Ad-CDM-PEG and PEI-β-CD [92],
Tang’s group also reported a GSH-sensitive DePEGylation Ad-SS-PEG/PEI-β-CD-based
gene delivery system for HCC therapy [126].
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Similar to disulfide, the diselenide bond is GSH-sensitive and can be cleaved by
GSH intracellular [122,127,128]. Li et al. also prepared a diselenide-linked polycation
mPEG-SeSe-PEI for “tumor-triggered” intracellular DNA release [129].

Hypoxia is a noteworthy characteristic observed in most solid tumors, due to the
demand for a large number of nutrients and oxygen by the rapidly proliferating cancer
cells, as well as the structurally defective and irregular tumor micro-vessels [130]. Azo
is a hypoxia-sensitive group and has been used for DePEGylation, too. In 2018, Li et al.
synthesized a copolymer methoxy PEG-Azo-poly(aspartic acid), with imidazole as the side
chains, that could self-assemble into conjugate micelles to load photosensitizer chlorin e6
(Ce6) [131]. In the anoxic tumor tissues, the collapsing of Azo led to DePEGylation to facili-
tate cellular uptake. Irradiation of Ce6 by NIR (660 nm) produced singlet oxygen, which
oxidated imidazole to disassemble the micelles for Ce6 release. As a result, the intracellular
Ce6 concentration increased, oxygen level was decreased, and diffusion range and half-life
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of singlet oxygen were enhanced. Additionally, this system showed a good anticancer
photodynamic therapy (PDT) effect. Im et al. loaded Ce6 in MSN, which was coated with
glycol CHI (GC) and PEG through Azo linker, then adsorbed CpG oligonucleotide through
the electrostatic interaction with GC to obtain a DDS, named CAGE, for PDT-enhanced
cancer immunotherapy (CIT) [132]. The leaving of both GC and PEG facilitated the uptake
of CAGE by dendritic cells (DCs), and the released CpG could bind toll-like receptor 9 (TLR
9) and activate the DCs, as well as upregulate costimulatory markers essential for antigen
presentation. Additionally, the reactive oxygen species (ROS) obtained by irradiation of
Ce6 could generate immunogenic debris, recruit DCs, and kill cancer cells.

3.3. Light-Trigged DePEGylation for Targeting or Intracellular Drug Release

Light, especially NIR light, is a kind of important exogenous stimuli in anticancer
fields. Photosensitizer-based PDT, photothermal material-based photothermal therapy
(PTT), and light-trigged controlled release are widely studied, as light-based cancer ther-
apy is non-invasive, non-destructive, and non-ionizing [133–135]. Though light is not a
biosignal in TME, it can be controlled to target irradiated tumor tissues; therefore, the light-
trigged DePEGylation for targeting or intracellular drug release is also briefly introduced in
this review. In 2012, Ji’s group reported a simple light-trigged DePEGylation DDS for intra-
cellular DNA release [136]. In this work, they synthesized the β-CD-modified PEI (PEI-CD)
and Azo-modified PEG (Az-PEG), grafted the Az-PEG to PEI-CD via host–guest interaction
between β-CD and Azo, and then packed DNA through electrostatic interaction. Besides
being hypoxia-sensitive, Azo is also light-sensitive and can be reversibly isomerized from
trans isomer to cis isomer by irradiation at 365 nm, and it loses its host–guest interaction
with β-CD [136,137]. As a result, the ultraviolet (UV) light could trigger the DePEGylation
of the gene carriers for the DNA release intracellular.

Other light-trigged DePEGylation strategies are mainly based on light-cleaved co-
valent bonds. For example, Li et al. synthesized two amphiphilic copolymers, i.e., the
nucleus localization sequence (NLS) PKKKRKVR peptide-linked 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-(PEG2K) (DSPE-PEG2K-NLS) with a short PEG chain (molec-
ular weight 2k Da) and photoresponsive prodrug PEG5K-[7-(diethylamino)coumarin-4-
yl]methyl (DEACM)-Chlorambucil (Cb) (PEG5K-DEACM-Cb) with a long PEG chain
(molecular weight 5k Da), which were assembled into the long-chain PEG5K shielded
nanoparticles [138]. The irradiation of 420 nm LED light triggered the breakdown of the
linkage between DEACM and Cb, thus resulting in DePEGylation of PEG5K. After entering
the cancer cells, targeted NLS brought the nanoparticles into the nucleus to release Cb, an
anticancer drug that kills cancer cells by interfering with DNA.

As shown in Figure 8, Zhou et al. prepared a hydrophilic PEG and hydrophobic
pH-sensitive poly(β-aminoester)s (PAE) containing amphiphilic polymer PEG-Nbz-PAE-
Nbz-PEG with the o-nitrobenzyl (Nbz) linkers connected the blocks and cRGD-modified
PAE, which self-assembled into micelles to load both DOX and NaYF4:Yb/Tm@NaYF4
up-conversion nanoparticles (UCNPs). The UCNPs could convert the irradiated NIR to
UV light to break the Nbz linkers for DePEGylation of the micelles [139], thus achieving a
reversed cRGD-mediated cancer targeting, better vascular extravasation, and deep tumor
penetration [140]. The pH-sensitive of PAE led to the disassembly of the micelles and
intracellular DOX release. By using of UCNPs, the cleavage of Nbz was transformed
from UV light to NIR and more suitable for in vivo applications. By application of Nbz, a
light-trigged targeting liposomal DDS was also reported, and the drug delivery behavior
was studied in a zebrafish xenograft model [141].

Zhu et al. applied an indirect method to achieve a light-triggered DePEGylaiton in
2019 [142]. They also synthesized the amphiphilic light-sensitive thioketal (TK) bond-
linked PEG and Ce6 (mPEG-TK-Ce6), which was used to assemble into nanoparticles with
polylactide (PLA) to load the Pt(IV) prodrug. After the accumulation of the nanoparticles
in tumor tissues, the irradiation at 660 nm stimulated the generation of ROS by Ce6, which
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could break the TK link for DePEGylation and an enhanced cellular uptake, and then the
redox-sensitive Pt(IV) released intracellular to kill the cancer cells.
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4. Conclusions and Perspectives

As one of the most important strategies to protect nanosized anticancer DDSs, PEGy-
lation has been widely used for more than 40 years. From primary liposomes and micelles
to multifunctional compounded nano-systems, their solubility and dispersibility in water
can be effectively enhanced by PEG. What is more, the characteristic of the lowest level
of protein absorption of any known polymer makes PEG an excellent “stealthy” coating
to help DDSs to escape from the clearance by the MPS, which can improve their pharma-
cokinetics, prolong their blood circulation time and enhance their accumulation in tumor
tissues through the EPR effects. Though PEG is a kind of synthetic polymer, compared
to other common materials used in drug delivery fields such as biopolymers [143–145],
its biosafety is also approved by the FDA. Additionally, the better “stealthy” character
makes PEG better protective coatings than biopolymers [143]. However, the shortcomings
of PEGylation are also nonnegligible. Compared to the abundant functions such as cancer
targeting and biodegradation of biopolymers represented by polysaccharides, proteins,
and nucleic acid [143–145], no more functions, besides “stealth”, can be offered to DDSs by
PEG. On the other hand, though the cost of synthesizing unfunctionalized PEG is not high,
the functionalization of its terminal group(s) is costly. In contrast, biopolymers are rich
in sources and easy to be extracted from plants and animals, rich in hydroxyl, carboxyl,
aminos, and other groups, thus making them easily chemically-modified; many of them
have been industrialized and are low cost. Most importantly, the lacking active targeting
makes PEGylated DDSs hard for uptake by cancer cells, which reduces the utilization
of drugs.
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Table 1. Summary of DDSs with DePEGylaiton-based “tumor-triggered” targeting or intracellular
drug release property.

Stimuli of
DePEGylation

Dynamic
Interaction Targeting Mode Stimuli of Cargo

Release Carrier Cargo Biology
Experiment Ref.

pH

Benzoic imine

Positive charge

N.A. Micelles N.A. In vitro [63]

GSH MSNs DOX In vitro [72]

pH
NPs DOX In vitro [79,80]

MSNs DOX In vitro [81,82]

Polymeric
vehicle ICG/DOX In vitro [83]

Targeting peptide

Temperature Micelles DOX In vitro [58]

GSH MSNs DOX In vitro [69]

MOFs DOX In vitro/in vivo [78]

Positive charge/
targeting peptide pH MSNs DOX In vitro/in vivo [73]

TACMAA

Positive charge

GSH MSNs TPT In vitro [84]

NPs siRNA/DOX In vitro/in vivo [88]

pH
Micelles DTXL In vitro/in vivo [87]

NPs DNA In vitro/in vivo [85]

miRNA In vitro/in vivo [92]

HA GSH Micelles ZnPc In vitro/in vivo [90]

Mitochondrial
targeting N.A. NPs Carbon nanotubes In vitro [89]

Ortho ester

Positive charge pH Micelles DOX In vitro/in vivo [94,95]

PBA
GSH Nanogels Pt(IV) In vitro/in vivo [96]

H2O2 Nanogels Pt(IV) In vitro/in vivo [97]

N.A.
pH Micelles MTX/DOX In vitro/in vivo [98]

pH/GSH Micelles Pt(IV) In vitro/in vivo [99]

Hydrazone FA GSH

Polymeric
lipid vesicles DOX In vitro [101]

Micelles DOX In vitro [102]

Imine FA Temperature/pH Liposomes DOX In vitro [104]

PIVE Positive charge pH Liposomes
Calcein In vitro [106]

DNA In vitro [107]

Electrostatic
interaction Positive charge N.A. NPs DSF In vitro/in vivo [108]

Coordination
interaction Positive charge pH NPs DNA In vitro [109]

Enzyme MMP-sensitive
peptide

Targeting peptide

NIR MSNs ICG/DOX In vitro/in vivo [113]

pH/esterase Micelles DOX In vitro [114]

MMP-2 Micelles PTX In vitro/in vivo [115]

Positive charge
MMP-2

Vesicles Calcein/PTX In vitro [116]

NPs DNA In vitro/in vivo [117]

Polymersomes Colchicine/marimastat In vitro/in vivo [119]

GSH Nanogels DiI In vitro [118]

Angiopep pH NPs siRNA In vitro [120]

Redox

Disulfide bond N.A. GSH

NPs DNA In vitro [123]

Micelles DOX In vitro [124,125]

NPs miRNA In vitro/in vivo [126]

Diselenide bond N.A. GSH NPs DNA In vitro [129]

Azo bond Positive charge NIR
Micelles Ce6 In vitro/in vivo [131]

MSNs CpG/Ce6 In vitro/in vivo [132]

Light

Host–guest
interaction N.A. N.A. NPs DNA In vitro [136]

DEACM bond Targeting peptide N.A. NPs Cb In vitro [138]

Nbz bond
Targeting peptide pH/NIR NPs DOX In vitro/in vivo [140]

Targeting peptide/FA N.A. Liposomes Propidium iodide In vitro/in vivo [141]

TK bond N.A. GSH NPs Pt(IV) In vitro/in vivo [142]
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To keep the advantage of the “stealth” of PEG and overcome the disadvantage of
hindering endocytosis by cancer cells, dynamic protection strategies were introduced
to DDSs. Among these strategies, the DePEGylation-based “tumor-triggered” targeting
or intracellular drug release has been developed for more than 10 years and one of the
important methods to dynamically protect the nanosized anticancer DDSs, as well as endow
the DDSs with the capability of full circulation in the blood compartments to accumulate in
tumor tissues through the EPR effect and enhanced internalization by cancer cells through
active targeting or electrostatic interaction for intracellular drug or gene release, which
are usually considered contradictory. As summarized in Table 1, nowadays, endogenous
stimuli, such as pH, enzyme, redox, and exogenous stimuli, such as light, have been
applied for DePEGylation by cleaving the dynamic chemical bonds, such as benzoic imine,
TACMAA, ortho ester, MMP-sensitive peptide, Azo, etc., or destroying the noncovalent
interaction, such as the electrostatic or host–guest interactions. Additionally, revealing
targeting ligands, such as RGD peptide, HA, and FA, etc., or positive charge can significantly
improve the uptake capability of cancer cells. As it is difficult for traditional nanosized
anticancer DDSs to obtain both “stealthy” property for long blood circulation and good
cancer cells endocytosis capability, DePEGylation-based “tumor-triggered” targeting or
intracellular drug release offers a good idea to further enhance the utilization of anticancer
drugs, as well as reduce their side effects, and shows excellent prospects in both scientific
research and clinical application fields.

Of course, DePEGylation-based “tumor-triggered” targeting or intracellular drug
release strategies still have some shortcomings in the fabrication of dynamic DDSs. One
of them is the further enlarged synthetic difficulties. As certain chemical structures are
needed for DePEGylation, the synthesis of both specific functional PEG and PEG-coated
nanoparticles is more difficult than that of non-dynamic PEGylation DDSs. This also
increases the synthesis costs and makes clinical application difficult. Therefore, it is expected
that other bonds or interactions could be introduced in this field to simplify the synthesis
process and reduce the cost, in order to meet the needs of clinical use. On the other hand,
the response speed of DePEGylation, in most cases, is not high enough. For example, the
processes of the most studied benzoic imine bond and TACMAA-based DePEGylation
need hours to complete, which may reduce the cellular uptake efficiency of the DDSs in
the tumor. Additionally, the TME of each patient, or even tumor tissue, is different. As
a result, for different cases, different methods of DePEGylation, cancer active targeting,
and intercellular drug release should be precisely selected for precision medicine, which
requires more systematic scientific and clinical research.
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Abbreviations

β-CD-NH2, mono-6-deoxy-6-EDA-β-CD; 293T, human renal epithelia cells; 4T1, mouse breast can-
cer cells; ABC, ammonium bicarbonate; Ad, adamantine; Ad-CDM-PEG, TACMAA-linked adamantyl
PEG; AIEgens, aggregation-induced emission luminogens; antimiR10b, antimiR-10b; Azo, azoben-
zene; Az-PEG, Azo-modified PEG; BBB, blood-brain barrier; Bz, benzimidazole; CA, cholic acid;
Cb, chlorambucil; CD, cyclodextrin; Ce6, chlorin e6; CHI, chitosan; CHI-CNTs, CHI-wrapped car-
bon nanotubes; CHI-g-CD, β-CD-grafted CHI; CIT, cancer immunotherapy; cRGD, cyclic RGD;
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cRGD-PEG-b-PCL, cRGD functionalized PEG-b-PCL; DCs, dendritic cells; DDSs, drug delivery sys-
tems; DEACM, [7-(diethylamino)coumarin-4-yl]methyl; DM-PCL, dimyristoyl-PEGylated cleavable
lipopeptide; DOG, 1,3-dioctadecyl-rac-glycerol; DOPE, dioleoylphosphatidyl ethanolamine; DOX,
doxorubicin; DSF, disulfiram; DSPE-PEG2000, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
PEG2000; DSPE-PEG2K-NLS, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(PEG2K); DTXL,
docetaxel; ECM, extracellular matrix; EPR, enhanced permeability and retention; FA, folate acid;
FBS, fetal bovine serum; FDA, Food and Drug Administration; FFFF, four-phenylalanine; GC, gly-
col CHI; GRAS, generally regarded as safe; GRGDS, glycine-arginine-glycine-aspartic acid-serine;
GSH, glutathione; HA, hyaluronic acid; HA-PEG-TAT, 12-hydroxystearic acid-PEG-YGRKKRRQRRR;
HCC, hepatocellular carcinoma; hisPEI, the histidine-grafted PEI; ICG, indocyanine green; INA,
“intelligent” nanoassembly; LCST, lower critical solution temperature; LRP-1, lipoprotein receptor-
related protein-1; MB49, murine bladder cancer cells; miR199, miR-199a/b-3p mimics; MMPs, ma-
trix metalloproteinases; MOF, metal-organic-framework; MPS, mononuclear phagocyte system;
mPEG-CHO, methoxy PEG benzaldehyde; mPEG5k-b-C18, the co-assembly of amphiphilic PEG-
benzoic imine-octadecane; mPEG(FA)-P(OEGMA300)-st-P(HEMA-g-LA), monomethoxy PEG-FA-
poly(oligo(ethylene glycol)monomethyl ether methacrylate)-st-poly(2-hydroxyethyl methacrylate-g-
lactide); mPEG-TK-Ce6, thioketal bond-linked PEG and Ce6; MSN, mesoporous silica nanoparticle;
MTX, methotrexate; Nbz, o-nitrobenzyl; NCCMs, noncovalently connected micelles; NIR, near-
infrared; NLS, nucleus localization sequence; NP, nanoparticle; PAE, poly(β-aminoester)s; PBA,
phenylboronic acid; PCL, poly(ε-caprolactone); PDLLA, poly(d,l-lactide); pDNA, plasmid DNA;
PDT, photodynamic therapy; PD-1, programmed death receptor 1; PEG, poly(ethylene glycol);
PEG-DA, a,β-carboxylic amide functionalized PEG; PEG-DOX, PEGylated DOX; PEG-PLL(DMA),
PEG-b-2,3-dimethylmaleic anhydride-modified PLL; PEG-SS-PLys-PLeu, PEG-b-poly(L-lysine)-b-
poly(racleucine); PEG5K-DEACM-Cb, PEG5K-[7-(diethylamino)coumarin-4-yl]methyl-Chlorambucil;
PEI, poly(ethylenimine); PEI-CD, β-CD-modified PEI; PEI-PTMC/DNA, PEI-poly(trimethylene car-
bonate)/DNA; PEI-β-CD, PEI-crosslinked β-CD; PGlu-PEG, poly(glutamate acid)-graft-PEG; pHe, ex-
tracellular pH; PIVE, phenyl-substituted vinyl ether; PLA, polylactide; PLGA, poly(lactic-co-glycolic
acid); PLGVR, Pro-Leu-Gly-Val-Arg; PLL, poly-L-lysine; PLL-LA, PLL-lipoic acid; P(NIPAAm-co-
NAS), poly(N-isopropylacrylamide-co-N-acroyloxysuccinimide); PS, protamine sulfate; PTT, pho-
tothermal therapy; PTX, paclitaxel; Pt(IV), cisplatin; ROS, reactive oxygen species; siPD-L1, pro-
grammed death receptor 1 small interfering RNA; TACMAA, tumor-acidity-cleavable maleic acid
amide; TK, thioketal; TLR 9, toll-like receptor 9; TME, tumor microenvironment; TPGS, tocopheryl
PEG succinate; TPP, triphenylphosphonium; TPT, topotecan; UCNPs, up-conversion nanoparticles;
UV, ultraviolet; ZnPc, zinc phthalocyanine.
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