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Computer multistage adaptive test (MST) combines the advantages of paper and pencil-
based test (P&P) and computer-adaptive test (CAT). As CAT, MST is adaptive based on
modules; as P&P, MST can meet the need of test developers to manage test forms and
keep test forms parallel. Cognitive diagnosis (CD) can accurately measure students’
knowledge states (KSs) and provide diagnostic information, which is conducive to
student’s self-learning and teacher’s targeted teaching. Although MST and CD have
a lot of advantages, many factors prevent MST from applying to CD. In this study, we
first attempt to employ automated test assembly (ATA) to achieve the objectives of MST
in the application of CD (called CD-MST) via heuristic algorithms. The mean correct
response probability of all KSs for each item is used to describe the item difficulty of
CD. The attribute reliability in CD is defined as the test quantitative target. A simulation
study with the G-DINA model (generalized deterministic input noisy “and” gate model)
was carried out to investigate the proposed CD-MST, and the results showed that the
assembled panels of CD-MST satisfied the statistical and the non-statistical constraints.

Keywords: cognitive diagnosis, computer multistage test, automated test assembly, cognitive diagnosis
modules, heuristic algorithms

INTRODUCTION

The computer multistage adaptive test (MST), as a “balanced compromise” between CAT and
P&P, not only can provide high measurement accuracy as CAT (Kim et al., 2015) but also can
meet the need of test developers to manage test forms and keep test forms parallel. CAT is
an item-level adaptive test; however, MST sets a module to manage items and to be adaptive
at the module level. MST allows subjects to modify the item answers in the current stage,
which is beneficial to reduce the examinees’ test anxiety and improve the measurement accuracy.
Compared with CAT, MST has many inherent advantages: (1) CAT does not allow examinees
to modify item answers, which leads to the lack of test control and generates test anxiety for
the examinees. MST can allow examinees to modify their item answers in the current stage,
which helps alleviate test anxiety while avoiding measurement mistakes caused by errors. (2) CAT
pursues the items with the maximum information during an adaptive stage, which will result from
overexposure of items with high information. In contrast, MST can effectively enhance the use
rate of item bank and control item exposure rate by constructing several parallel panels. (3) CAT
is not good at balancing the non-statistical characteristics of the test [e.g., content constraints,
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item types, enemy item (there are clues to the answers between
the items), word count, etc.]. MST can manage both statistical
and non-statistical characteristics, which can greatly improve
content validity and measurement precision. (4) Compared with
CAT online testing, MST preassembles a test before performing
the test administration, which can help test developers better
manage a test. Because of these benefits, many high-stake tests
have switched from the CAT mode to the MST mode (Wang et al.,
2015), such as the United States National Education Progress
Assessment (NAEP), the US Graduate Entrance Examination
(GRE), the Program for the International Assessment of
Adult Competencies (PIAAC), and other large examinations
(Yamamoto et al., 2018).

Currently, the classical test theory (CTT) and the item
response theory (IRT) have been widely used in education,
psychology, psychiatry, etc. However, both the CTT and the
IRT mainly focus on the examinees’ trait or competency level,
and therefore, they cannot provide further information on the
internal psychological processing, processing skills, and cognitive
structures hidden behind the results of the test scores (Embretson
and Yang, 2013). Unlike the CTT and IRT, which can only provide
an examinee’s score, cognitive diagnosis (CD) can further report
the examinee’s knowledge states (KSs), cognitive structures, and
other diagnostic information. This feature of CD can help
teachers carry out targeted teaching and promote education
development. Currently, CD, as a representation of the new
generation testing theory, has widely attracted the attention of
researchers and practitioners and has become an important area
of psychometrics research.

Recently, researchers consider that the cognitive diagnostic
model can be applied to the MST (von Davier and Cheng,
2014). It is called CD-MST, a new test mode that combines
the advantages of CD and MST. First, it can present items
with the function of CD and help test developers to manage
a CD test before administering it. Second, CD-MST can
provide rich diagnostic information to each examinee and guide
students and teachers to self-study, adaptive study, individual
teaching, remediation teaching, etc. Third, CD-MST is adaptive
in modules, where examinees can review and revise item answers.
That is closer to the examination scene and helps to reduce
examinees’ test anxiety. Finally, the adaptive CD-MST can
use fewer items to provide immediate and accurate cognitive
diagnostic feedback information, and the advantages of CD-MST
are especially highlighted in classroom assessment or practice.

Although CD-MST has many advantages, some problems
make its assembly infeasible: (1) Item difficulty index. In MST
with the IRT, the item difficulty parameter b can accurately
indicate the examinees’ traits value θ because they are in the
same scale. At this point, MST can use the b parameter to divide
the item bank and assemble modules based on item difficulty.
However, there is no item difficulty parameter in CD, and item
parameters and examinee parameters are not set on the same
scale. Even if the reduced reparameterized unified model (R-
RUM; Hartze, 2002) has a completeness parameter based on
the attribute, it is difficult to describe the item difficulty and
to explain the relationship between the attribute master pattern
and the item difficulty. Therefore, the key for CD-MST is to
develop a new item difficulty index in CD. (2) Information

or measurement precision index. MST with the IRT focus on
a continuous variable. Fisher information, a typical statistic
curving continuous variable, is used to ensure measurement
precision and to control measurement errors, but CD measures
discrete multidimensional variables, Fisher information is not
suitable. In order to ensure the test reliability, accuracy, or to
control measurement errors, selecting another robust statistical
information index of CD is worth further study.

This study aimed to address this aforementioned issue and to
develop a CD-MST framework. The rest of the paper is organized
as follows. The MST framework is briefly introduced first. Then,
the CD-MST framework is proposed, where two indexes, namely,
the item difficulty index and the information (or measurement
precision) index based on CD, and the automated test assembly
(ATA) method for CD-MST are also proposed. Furthermore, the
simulation study and the results were carried out to verify the
proposed CD-MST framework. Finally, we discuss the limitations
of this study and the further directions of CD-MST.

MST FRAMEWORK

Multistage Adaptive Test
MST is built on several parallel panels. A complete panel includes
the following elements: module, stage, and pathway, as shown
in Figure 1. In MST, the test has three adaptive stages, and
each stage contains several modules. Modules are composed
by items that are according to certain test specifications and of
different levels of item difficulty. In Figure 1, 1Medium indicates
that the item difficulty of the first stage is moderate; 2Easy,
2Medium, and 2Hard indicate that the item difficulty of the
second stage is easy, moderate, and difficult, respectively; and
3Easy, 3Medium, and 3Hard are analogous for the third stage.
Panels 1, 2, and N represent the parallel test panels. When the
test starts, examinees are randomly assigned to a pre-assembled
test panel, and then according to their responses in the first
stage, examinees are adapted to the module in the next stage
that matches their ability. A series of modules responded by
examinees is used to construct a response pathway. Each panel

FIGURE 1 | Three-stage multistage adaptive test (MST) of multiple parallel
panels.
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has seven test pathways, as shown in Figure 1 (see the arrow’s
direction in Figure 1). Among them, the solid line arrows (e.g.,
1Medium + 2Easy + 3Easy, 1Medium + 2Medium + 3Medium,
and 1Medium + 2Hard + 3Hard) denote the three primary
pathways that examinees are most likely to adapt, whereas
the dotted lines denote the four secondary pathways
(Luecht et al., 2006).

Parallel test panels are the core of MST. It needs to meet the
requirements of the test specifications. Test specifications include
both the statistical targets (e.g., test information) and the non-
statistical targets (e.g., content constraint), which ensure that
each test panel has precise reliability and validity. In MST, the
statistical and non-statistical targets mainly relate to the target
test information function (TTIF), the test length, the number of
stages and modules, the content balance, the exposure control,
etc. However, these factors are not independent from each other
when building panels, but rather are tightly integrated into the
MST architecture (Yan et al., 2014). Like in linear tests, to ensure
the safety of the test and the use rate of the item bank, MST
researchers hope to set up multiple parallel panels (Samejima,
1977). In linear tests, an item is preliminarily formed into a
fixed test form. When test information and other measurement
targets are sufficiently similar, it can be assumed that these pre-
assembled test forms are parallel. Test pathways in MST are
the same as test form in the linear test. However, modules
in MST have different difficulty levels; pathways constituted
by modules are often not parallel in statistical information.
Automated test assembly is a way to achieve parallelism between
tests and to meet the test specifications. We build parallel panels
according to specific test specifications. When two different
pathways in two different panels are parallel, the panels can be
viewed as parallel (Yan et al., 2014). It is important to note
that when parallel pathways are set up for the test specification,
it is not necessary to have parallelism between the modules
(Yan et al., 2014).

MST assembly should meet the following three goals: (1) the
module has a clear information curve enough to distinguish
between the different stages of tests; (2) the information of
corresponding pathways between panels is similar to ensure that
the panel is parallel; and (3) each pathway of each panel satisfies
non-statistical constraints (Yan et al., 2014).

Multistage Adaptive Test Design
The MST design includes the number of panels, the number of
stages in panels, the number of modules in stages, the number
of items in modules, the level of item difficulty, etc. (Yan
et al., 2014). It also involves the assembly strategies and the
assembly methods. The assembly strategies determine the item
difficulty levels, the content balance, and other elements parallel
in modules or pathways. The ATA method ensures that these
elements (statistical and non-statistical constraints) are parallel
on panels. Statistical constraints are initially determined by the
item difficulty and discrimination of the CTT (Gulliksen, 1950),
and now, the test information function (TIF) has become the
main form of statistical characteristics. The target TIF of IRT
usually uses the Fisher information, which was described in detail
by Luecht and Burgin (2003). Besides, the statistical constraints of
the target TIF need to consider whether the item bank meets test

specifications. For example, the quality and the number of items
in an item bank are required to provide a great TIF.

Multistage Adaptive Test Assembly
Strategies
After the MST design is completed, the parallel panels
need to be assembled by using MST assembly strategies,
which involve a bottom–up strategy and a top–down strategy
(Luecht and Nungester, 1998).

In the top–down strategy, parallel panels are based on the
pathways. Several parallel panels are constructed from an item
bank, and the corresponding pathways in different panels are
parallel. Here, parallel includes the statistical constraints (target
TIF) and the non-statistical constraints. The parallel pathways
contain two types of pathways, namely, the three primary parallel
pathways (see the three thick line pathways in Figure 1) and all
the parallel pathways. When the three primary parallel pathways
are used, the test specification is divided into three primary
pathways, and other pathways randomly assemble with the item
difficulty. Because the three primary pathways represent the
majority answer pathways of examinees, the panels only need to
ensure that the three primary pathways are parallel in different
panels. When all parallel pathways are used, test specifications
are divided into all possible pathways. When building parallel
MST panels with a top–down strategy, we set the target TIF
for the entire test and assign the non-statistical constraint
to the pathways.

In the bottom–up strategy, parallel panels are based on
the modules. The assembly of parallel modules is parallel
between the statistical constraints (target TIF) and the non-
statistical constraints. When the modules are parallel, we can
mix the parallel modules to assemble multiple parallel panels.
As the modules are parallel to each other, the corresponding
pathways of panels will automatically be parallel. When using
the bottom–up strategy to set up parallel MST panels, we set
different target TIF to modules with different item difficulties. In
contrast, non-statistical constraints are allocated to each module
(Yan et al., 2014).

THE CD-MST FRAMEWORK

Cognitive Diagnosis Combined With
Multistage Adaptive Test
As mentioned above, CD-MST combines the advantages of both
CD and MST. Similar to MST, CD-MST also includes similar
elements or parts, such as the panel, module, stage, pathway,
CD-MST design, assembly strategies, and assembly methods.
The main difference between MST and CD-MST is that the
latter can provide additional rich diagnostic information for each
examinee. The information can provide insight on self-study,
adaptive learning, and remediation teaching.

In the Introduction section, we noted some indexes in the
test assembly for MST, such as the item difficulty and the Fisher
information describing continuous variables and reflecting the
measurement precision. They may not be suitable for CD-MST
framework because CD mainly focuses on the multidimensional
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and discrete cognitive attributes or KSs. To develop a CD-
MST framework, we propose a new assembly method for CD-
MST as below.

CD-MST Assembly Strategy
The ATA method is the main algorithm for MST, which
currently contains heuristic methods, linear programming
methods (Zheng et al., 2012), and Monte Carlo methods (Belov
and Armstrong, 2005). The linear programming algorithm can
successfully complete the test requirements and strictly meet all
the test assembly constraints (e.g., content constraints and enemy
items) (Zheng et al., 2012). However, solving the 0–1 linear
programming problem is very complex (Theunissen, 1989) and
time consuming. With the test constraint complexity increasing,
the limited item bank cannot meet all the test constraints. It will
induce infeasible problems about overconstrained optimization
and lead to test assembly failure.

According to the heuristic algorithms, the test assembly
is decomposed into a series of local optimization problems.
Each local optimization problem is chosen as a single item
for tests (Ackerman, 1989; Lord, 1977). It uses statistical
information as a central function (such as the TIF) and
considers non-statistical constraints. Heuristic algorithms are less
computationally intensive and always effectively complete the
test assembly (Zheng et al., 2012); therefore, we used heuristic
algorithms to assemble a test for CD-MST in this study.

Item Difficulty Index for Cognitive
Diagnosis
In this study, the mean correct response probability of all KSs of
one item was used to indicate the item’s difficulty. The attribute
mastery pattern in an item is finite and known when the Q-matrix
is fixed. Therefore, the mean correct response probability of all
KSs can reflect this item’s difficulty levels, and it is expressed as:

Diffj =

∑2K

c=1 Pj (αc)

2K , (1)

where Diff j is the difficulty parameter of item j on CD, K is
the number of attributes, and Pj(ac) is the correct response
probability on item j for individuals with the KS of ac · Pj(ac),
which can be calculated by the item response function of CD
models (such as the G-DINA model, see Equation 16). The lower
the value of Diff j is, the more difficult item j is.

To investigate whether this index can represent item difficulty,
we compared Diff j and the item difficulty parameter estimated by
the IRT model (such as the Rasch model). We used the G-DINA
model (for details, see Equation 16) to generate the response data
(including 100 items, 1,000 individuals, and five independent
attributes), and then we used the G-DINA model and the
Rasch model to estimate the same response data, respectively.
We calculated each item difficulty on CD via Equation 1 and
the item difficulty parameter on Rasch model. The correlation
coefficient of item difficulty between CD and IRT reached a
value above 0.85 (p < 0.001), which clearly shows that the item
difficulty based on CD had a significantly high correlation with
the item difficulty on IRT. Therefore, the mean correct response

probability of all KSs can be viewed as an item difficulty index
under the CD framework.

Reliability of Cognitive Diagnosis
Templin and Bradshaw (2013) proposed an empirical reliability
index for CD. The reliability index defined the recalculation
consistency using the tetrachoric correlation coefficient. They
used the following steps to estimate the attribute reliability. (1)
Calculate the marginal mastery probability of attribute k for
examinee e p̂ek by using CD models. (2) Establish the replication
contingency table. For the binary attribute, four elements are
calculated as follows:

P(α.k1 = 1; α.k2 = 1) =

∑N
e=1 p̂ek p̂ek

N
, (2)

P(α.k1 = 1; α.k2 = 0) =

∑N
e=1 p̂ek(1− p̂ek)

N
, (3)

P(α.k1 = 0; α.k2 = 1) =

∑N
e=1(1− p̂ek) p̂ek

N
, (4)

P(α.k1 = 0; α.k2 = 0) =

∑N
e=1(1− p̂ek)(1− p̂ek)

N
, (5)

The attribute reliability was calculated by the tetrachoric
correlation coefficient of α.k1 and α.k2,which also represents
the re-test reliability of attribute k. More details can be
found in Templin and Bradshaw (2013).

Quantitative Targets for CD-MST
Quantitative targets include the test target reliability of CD, item
difficulty, etc. In this study, the attribute reliability of the cognitive
diagnostic model proposed by Templin and Bradshaw (2013)
was used as a metric of the test reliability. This index provides
attribute reliability to each cognitive attribute. In the study, the
reason for using reliability to assemble the test is that a good
reliability can reduce the measurement error and improve the
reliability for the test. Reliability or information has always been
used to measure the test reliability of both CTT and IRT. In
CTT, the reliability coefficient was used to control test error. In
IRT, information was used to control test error, but in CDM,
the attribute mastery patterns are discrete variables. Based on the
characteristics of CDM, Templin and Bradshaw (2013) proposed
attribute reliability to control test error and ensure reliability.
On the other hand, mainstream assembly algorithms in MST use
test information function (TIF) to assemble test pathways, for
example, Yang and Reckase (2020) used the Fisher information
to assemble test for optimal item pool design in MST, and
Xiong (2018) used the Fisher information in a hybrid strategy to
construct MST. Yamamoto et al. (2019) used test characteristic
curves (TCCs) in MST test design for PISA 2018. Whether
these studies use reliability or information, the purpose is to
control test errors and provide a greater reliability. Therefore,
borrowing the ideas from the previous studies, we used attribute
reliability to assemble tests and to control test errors because of
the characteristics of CDM and MST.
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THE NORMALIZED WEIGHTED
ABSOLUTE DEVIATION HEURISTIC FOR
CD-MST

The normalized weighted absolute deviation heuristic (NWADH;
Luecht, 1998), a popular heuristic algorithm, has been applied
to the MST assembly. The weighted deviations of constrained
targets are used in this algorithm, and the deviation of each
constraint is standard with the same scale (van der Linden and
Glas, 2000). They also are compatible with multiple contents or
classification dimensions, multiple quantitative targets, multiple
test modules, and other complex test group issues, such as
the enemy items (Luecht, 1998). Therefore, the NWADH is
employed for the test assembly in CD-MST.

In NWADH, both statistical and non-statistical constraints are
combined to set the objective function and to meet the current
test requirement. With the selection of each item, the objective
function is updated according to the measurement characteristics
of the selected item, which is done until the test assembly
is completed (Luecht, 1998). A well-designed test has a clear
test specification so that measurement properties, quantitative
targets, and other constraints should be considered in the test
assembly. The statistical and non-statistical constraints for a test
specification will be described in detail below.

Let Tk denote the target reliability of attribute k with test. uj
k

denotes the observed reliability of attribute k in the test with
a length of J items, which can be calculated by the tetrachoric
correlation coefficient, and the difference of attribute reliability
between the target attribute reliability and the observe attribute
reliability can be calculated as follows:

dJ
=

K∑
k=1

∣∣∣Tk − uJ
k

∣∣∣/K (6)

In Equation 6, J denotes the selected items in the test, and
dJ represents the mean absolute deviation between the target
attribute reliability and the observe attribute reliability with J
items. When the new item was added to the test with J items, the
test length is J+ 1 items. At this time, the difference of attribute
reliability between the target attribute reliability and the observed
attribute reliability can be calculated as Equation 7:

dJ+1
i =

K∑
k=1

∣∣∣Tk − uJ+1
k

∣∣∣/K; i ∈ RJ (7)

In Equation 7, RJ refers to the remaining items in the item bank
after selecting J items. The item i is selected from RJ . In order to
meet statistical constraints, in CD-MST, the next item i of RJ that
makes dj + 1

i with the smallest values was selected.
At the same time, in order to optimize the NWADH

algorithm, we can transform the minimizing of the absolute
deviation function in Equation 6 into the maximization, as
follows:

MAX(ei) (8)

where ei is the “priority index” and is expressed as:

ei = 1−
dJ+1

i∑
i∈RJ

dJ+1
i
; i ∈ RJ (9)

In Equation 8, ei denotes the priority index of item i. That means
that CD-MST priority selects the items to make ei with the
maximum values in the remaining item bank RJ .

Equations 6 and 9 are the NWADH algorithms (Luecht,
1998) when only considering the statistical quantitative target.
However, a complete CD-MST also needs to consider non-
statistical constraints such as content balance, item type, item
answer, and other constraints. The NWADH algorithm can
merge multiple content constraints (Luecht, 1998). When
considering the content constraints, it is necessary to give a
certain weight to constraints based on the test specifications.
In general, the weight values depend on the test specifications
that can be obtained by the pre-simulation (Luecht, 1998).
The NWADH algorithm (Equation 9) contains the content
constraints as follows:

ei
∗
=

[
1−

dJ+1
i∑

i∈RJ
dJ+1

i

]
+

ci∑
i∈RJ

ci
; i ∈ RJ (10)

where:
ci = vigWg + (1+ vig)Wg, (11)

Wg =W[max]
−

1
G

G∑
i=1

Wg . (12)

In Equation 10, ci denotes the content constraint weight for
each unselected item in the remaining item bank. In Equation
11, g denotes the total number of content constraints g = 1,
. . ., G. vig = 0 indicates that item i does not contain the
content constraint g, whereas vig = 1 indicates otherwise. Wg
represents the weight of each content constraint g. Wg represents
the mean weight of each content constraint g. In Equation 12,
W[max] represents the maximum weight values of G kinds of
content constraints. In this study, the weight of the non-statistical
constraints was according to the method proposed by Luecht
(1998). The non-statistical constraints in the study were set as
follows:

if
∑

i∈Rj−1

vi ≥ Z[max]
g , thenWg = 1, (13)

if
∑

i∈Rj−1

vi < Z[min]
g , thenWg = 2, (14)

subject to the constraints,

I∑
i=1

vig, g = 1, ..., G. (15)

Let Z[max]
g represent the maximum constraint values of constraint

g. Z[min]
g represents the minimum constraint values of constraint

g. Therefore, when tests contain non-statistical constraints, ei in
Equation 9 was instead replaced by ei

∗

in Equation 10.
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Test Assembly Procedure
After all experimental conditions are set up, the program of test
assembly, written under the NWADH (see Equations 6–15), was
run to assemble test. We briefly describe the assembly procedure
step-by-step as follows:

First: Take the hard pathway as an example; the test assembly
program is based on the initial items in the first stage to
find the new item in item bank. The new item needs to have
the largest ei

∗

value in the remaining item bank, and ei
∗

was
calculated by Equation 10.

Second: When the item with the largest ei
∗

was selected to the
hard pathway, we will select the next new item based on the new
item and initial item of the first stage. The next new item also
needs to have the largest ei

∗

in the remaining item bank.
Third: Repeat the above two steps until the test length meets

the experimental requirements. It should be noted that each item
was selected only once, which means that the selected new item
needs to be removed from the remaining item bank.

THE GENERAL COGNITIVE DIAGNOSIS
MODELS: THE G-DINA MODEL

Cognitive diagnosis models play an important role in CD.
They connect examinees’ external response and internal
knowledge structure. We need to select the appropriate cognitive
diagnostic models for the test to ensure the accuracy and
effectiveness of the test.

Generalized DINA (G-DINA; de la Torre, 2011) is an
expansion of the DINA model (Deterministic-in-put, noisy-and-
gate model; Haertel, 1984; Junker and Sijtsma, 2001). It considers
that examinees with different attribute mastery patterns have
different probability attributes. For G-DINA, K

∗

j =
∑K

k = 1 qjk,
where K

∗

j is the number of attributes k of item j. The G-DINA

model divides examinees into 2k
∗

j categories and let a
∗

lj denote
the reduced attribute mastery patterns based on the measurement

attributes of item j, l = 1, 2,..., 2k
∗

j . The G-DINA model has
different mathematical expressions depending on the function.
The three main link functions are the identify link function, logit
link function, and log link function. de la Torre (2011) pointed
out that the G-DINA model based on the identify link function
is a more general form of the DINA model, and its mathematical
equation is:

P(Xij = 1|α∗lj) = δj0 +

K∗j∑
k=1

δjkαlk +

K∗j∑
k′=k+1

K∗j −1∑
k=1

δjkk′αlk′

+ ...+ δj12...k∗

K∗j∏
k=1

αlk. (16)

δj0 denotes the intercept of item j. That is, if examinees do not
master all the attributes measured by an item, the value is a non-
negative value. δjk is the main effect for αk. δjkk′ is the interaction

effect between αk and αk′ . δj12...k∗j
denotes the interaction effect

from α1,...,αk ∗j
.

SIMULATION STUDY

Simulation Design
Generated Item Bank
In the simulation study, the number of attributes and the test
length were set to five attributes and 21/25 items, respectively.
The number of panels were fixed to five or 10 panels. Therefore,
there were 2 (the test length)× 2 (the number of panels) = 4 total
conditions for this study. Across the conditions, we generated
an item bank with 1,000 items. For both IRT and CDM, the
measurement of reliability requires a certain test length to ensure
that the test reliability can be accurately measured. The test length
in the study is based on the CAT and MST. In general, 21 items
can provide a good test information in CAT. At the same time,
the test is usually divided into three or four stages in MST, and
each stage with five or seven items. Therefore, the test length was
set to 21 and 25 items in the study.

Divided the Item Difficult
For the item difficult level of divide, we referred to the approach
of MST. In MST, the item difficult level is divided by the
theta parameters because the item difficult parameters and the
theta parameters are in the same scale in IRT framework. More
specifically, the method is averaged to divide the theta value from
large to small into three intervals, and three different intervals
represent three different difficulty pathways: easy, medium, and
hard pathways. So, we used the same method to divide the
difficulty in CD-MST. In the study, item difficulty called Diff j
was described as the mean correct response probability of all
KSs of one item. The Diff j is a probability between 0 and 1.
According to the value of Diff j from item bank, three cut-points
were averaged and generated from max Diff j 0.74 to min Diff j
0.24 (see Equation 1). We can classify items into easy (0.58–
0.74), medium (0.42–0.57), and difficult (0.24–0.41) intervals for
CD-MST. The difficult interval with a low value represents the
hardest item set. The easy interval with a large value represents
the easiest item set.

Set Reliability Criteria
Templin’s attribute reliability index is a probability between
0 and 1. Educational Testing Service (2018) proposed 0.9 as
representing a very good reliability in CDM. In order to guarantee
the test reliability, we chose a high value of 0.9 as the reliability
criteria. Therefore, the attribute reliability higher than 0.90 was
set as the target reliability value for each attribute.

Set the First Stage
In the study, each panel contained three stages. The number of
items in each stage is listed in Table 1. It is worth noting that items
in the first stage only measured one attribute, whose purposes
are to prove the parameters identifiability of CD models (Xu and
Zhang, 2016) in the early stage and to improve the classification
accuracy of attributes.

Frontiers in Psychology | www.frontiersin.org 6 May 2021 | Volume 12 | Article 509844

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-509844 April 30, 2021 Time: 20:6 # 7

Li et al. ATA for CD-MST

Set Quantitative Targets
Quantitative targets are defined as the target attribute reliability
proposed by Templin and Bradshaw (2013). The target attribute
reliability of each attribute was set to 0.90. The non-statistical
constraints in each panel are listed in Table 2, and it should be
noted that the test assembly needed to meet the minimum limit
constraints. For example, the content balance was divided into
four categories, where each category contained at least four items
after the test was completed.

Set Assembly Strategy
The top–down strategy was used to assemble the panels, so
the non-statistical constraints and quantitative targets would
remain parallel between the pathways. R (Version 3.5.1 64-bit;
R Core Team, 2018) was used to write the test assembly program
under the NWADH.

Simulation Process
Step 1: Knowledge states. In the study, the test included five
independent attributes, and all possible KSs were 25 = 32. The
KS of 1,000 examinees was randomly generated from 32 KSs.

Step 2: Q-matrix. The item bank included 1,000 items, and
the Q-matrix was randomly generated from 25 to 1 = 31 item
attribute patterns.

Step 3: Item parameters. It was generated by the GDINA
package (Version 2.1.15; Ma and de la Torre, 2017) in R
(Version 3.5.1 64-bit; R Core Team, 2018). According to de la
Torre (2011), the item parameters of the G-DINA model are
simulated according to Pj(0) and 1-Pj(1), and Pj(0) represents
the probability of examinees who do not master any attribute
required by item j and correctly respond to item j, 1-Pj(1)
represents the probability of examinees who master all the
attributes required by item j with wrong response to item
j. Here, the parameters Pj(0) and 1–Pj(1) were randomly
generated between uniform (0, 0.25). This simulation study was
replicated 100 times.

Step 4: Test assembly. After all experimental conditions are set
up, the program of test assembly, written under the NWADH (see
Equations 6–15), was run to assemble the test.

TABLE 1 | Number of items in each stage.

21 items for test length 25 items for test length

Pathway Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Easy 5 8 8 5 10 10

Medium 5 8 8 5 10 10

Hard 5 8 8 5 10 10

TABLE 2 | Number of non-statistical constraints in test assembly.

Constraints group Categories Constraints

Content balance 4 4

Item types 2 8

Answer balance 4 4

Enemy items 1 0

The number of each attribute 5 3

Evaluation Criteria
For this simulation study, some criteria were computed to
evaluate the target attribute reliability violated and the number of
constraints violated on each test pathway. The index of the target
attribute reliability violated is expressed as:

Dik = Rik − Tik, (17)

where Rik is the observed reliability of attribute k on pathway
i, Tikis the target reliability of attribute k on pathway i, and Dik
represents the difference between the observed reliability and the
target reliability.

The number of constraints violated on each constraint is
computed as:

V =
N∑

i=1

Vi, (18)

where Vi represents the number of constraints violated, N is the
constraint number of each test pathway, and V is the constraint
number for the test pathway.

Other criteria were reported in the results, for example, the
item difficulties based on CD, the item difficulties based on
the Rasch model, the expected number-correct score based on
CD, and the Cronbach α coefficient based on the CTT on
each test pathway.

Results
Figures 2–5 documented the results of the difference between
the observed and the target attribute reliability (i.e., Dik; see
Equation 17) under four experimental conditions. In Figures 2–
5, the points Dik represent the difference values between the target
attribute reliability and the experimental reliability value, and the
lower Dik value indicates a smaller test error. It means that the
observed reliability is closer to the target reliability 0.9. Three
lines represent different difficulty pathways. We also presented
the difference value under different experimental conditions in
Figures 2–5.

Figure 2 shows the experimental condition results for five
attributes, 21 items, and five panels, and A1–A5 represent
attributes 1–5, respectively. Each attribute reliability in each main
pathway reached about 0.9, and all the differences between the
observed and target reliability were within +0.2. It indicated
that the quantitative targets were satisfied. The results of the
three other experimental conditions (see Figures 3–5) were very
similar to the above experimental condition. Besides, the attribute
reliabilities (see Figures 2–5) had slight differences under
different item lengths. More detailed, the attribute reliability with
25 items was slightly higher than 21 items, which indicated that
the item length affected the attribute reliability, and this result
verifies that the test length also affects reliability in CD-MST.

Table 3 summarizes the item statistics for the three
primary pathways in different experimental conditions. First,
we show the item difficulty of different pathways. The results
indicated that item difficulty, in the same simulation data,
was very different among three primary pathways in the
CDM and the IRT Rasch model. More specifically, the hard
pathway with more difficult items has lower Diff j values
(mean correct response probability of all KSs) than those
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FIGURE 2 | The difference between observed and target reliability with five-attribute, 21-item, and five-panel conditions.

FIGURE 3 | The difference between observed and target reliability with five-attribute, 21-item, and 10-panel conditions.

of medium and easy pathways. The medium pathway had
a lower value of Diff j than that of the easy pathway. It
should be noted that the lower Diff j values represent the

harder item difficulty in this study. Moreover, the three
pathways also show the difference of item difficulty in IRT
Rasch model. For example, the item difficulty in the hard
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FIGURE 4 | The difference between observed and target reliability with five-attribute, 25-item, and five-panel conditions.

FIGURE 5 | The difference between observed and target reliability with five-attribute, 25-item, and 10-panel conditions.

pathway is higher than those of the medium and easy
pathways. Therefore, these results show that the proposed
Diff j can describe the item difficulty of CDM and can be
verified by IRT.

In addition, the standard deviation (SD) of Diff j in each
primary pathway was very small for all experimental conditions,
which showed that the items in the same pathway had very similar
difficulty levels. We also used the same data to verify the IRT
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TABLE 3 | Item difficulties and expected number-correct score statistics for each pathway.

Expected number- Expected number-

Five panels Cognitive diagnosis Rasch correct score Cronbach α 10 panels Cognitive diagnosis Rasch correct score Cronbach α

25 items item difficulties item difficulties Based on CD coefficient 25 items item difficulties item difficulties Based on CD coefficient

Pathway Mean SD Mean SD Mean SD Pathway Mean SD Mean SD Mean SD

Easy 0.6171 0.0125 –0.3868 0.0930 77.092 43.976 0.960 Easy 0.6148 0.0097 −0.9041 0.1329 153.493 83.948 0.978

Medium 0.4593 0.0143 0.5428 0.0895 57.587 28.532 0.924 Medium 0.4772 0.0213 0.2075 0.1261 119.492 59.728 0.962

Hard 0.3794 0.0150 1.0456 0.0924 47.561 27.548 0.916 Hard 0.3887 0.0143 0.9899 0.1342 97.276 56.009 0.958

Expected number- Expected number-

Five panels Cognitive diagnosis Rasch correct score Cronbach α 10 panels Cognitive diagnosis Rasch correct score Cronbach α

21 items item difficulties item difficulties Based on CD coefficient 21 items item difficulties item difficulties Based on CD coefficient

Pathway Mean SD Mean SD Mean SD Pathway Mean SD Mean SD Mean SD

Easy 0.6120 0.0139 –0.4374 0.0956 64.162 37.182 0.952 Easy 0.6099 0.0101 –0.9456 0.0849 127.912 71.358 0.974

Medium 0.4605 0.0138 0.5019 0.0950 48.533 24.348 0.910 Medium 0.4788 0.0214 –0.2315 0.0823 100.812 51.264 0.955

Hard 0.3845 0.0139 1.0091 0.0979 40.411 22.988 0.900 Hard 0.3932 0.0133 0.3654 0.0849 82.583 48.242 0.950

TABLE 4 | Number of constraints violated in each constraint group for each test pathway.

10 panels, 21 items 10 panels, 25 items 5 panels, 21 items 5 panels, 25 items

Constraint Easy Medium Hard Constraint Easy Medium Hard Constraint Easy Medium Hard Constraint Easy Medium Hard

group pathway pathway pathway group pathway pathway pathway group pathway pathway pathway group pathway pathway pathway

Content category 0 1 0 Content category 0 0 0 Content category 0 0 0 Content category 0 0 0

Item types 0 0 0 Item types 0 0 0 Item types 0 0 0 Item types 0 0 0

Answer keys 0 0 1 Answer keys 0 0 1 Answer keys 0 0 0 Answer keys 0 0 0

Attribute times 0 0 0 Attribute times 0 0 0 Attribute times 0 0 0 Attribute times 0 0 0

Enemy item 0 0 0 Enemy item 0 0 0 Enemy item 0 0 0 Enemy item 0 0 0
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difficulty via Rasch model, which results indicated that the two
types of difficulty parameters (IRT and CD) were very consistent.
From the above results, it is reasonable to use the mean correct
probability of all KSs as the item difficulty index for CD-MST.

Table 3 also displayed that the mean expected number-correct
scores were calculated under a large sample with 1,000 examinees.
It was shown in the sixtth and seventh columns of Table 3. First,
we calculated each examinee’s expected number-correct score in
each primary pathway. Then we calculated the mean and SD.
As expected, examinees had the highest mean expected number-
correct scores in the easy pathway, while they had the lowest
mean expected number-correct scores in the hard pathway. It
is theoretically reasonable because examinees usually get more
scores on easy items.

In Table 3, the Cronbach’s α coefficient was used to verify test
reliability. The α coefficients varied from 0.900 to 0.978 with an
average of 0.945, which indicates that the proposed CD-MST had
high reliability. This shows that the assembled test in the study
not only satisfies the reliability of CDM but also the reliability of
Cronbach’s α coefficient.

Table 4 documents the number of constraints violated in each
constraint group, and the constraints rae set in Table 2. As known
in Table 2, the constraint group involved 16 categories and 64
constraints. Table 4 shows that only three of 64 constraints were
not satisfied. Specifically, one content balance was not satisfied
in the medium pathway with the condition of 21 items and 10
panels, and two answer balances were not satisfied in the hard
pathway of the condition of 21 items and 25 items with 10 panels.
The overall non-statistical constraint violation rate was about
4.7%, which was an acceptable range. The results indicated that
the proposed test assembly had a very good performance in the
non-statistical constraints for CD-MST.

CONCLUSION AND DISCUSSION

The MST with the advantages of P&P and CAT is to
be applied to many large-scale international examinations.
However, the existing MST with the IRT focuses on the
examinees’ general ability and cannot provide further detailed
diagnostic information. Because CD mainly focuses on the
multidimensional and discrete cognitive attributes, some test
assembly indexes in MST (such as the item difficulty and the
Fisher information) are not suitable for CD-MST. There has
been no recent research on CD-MST. Although some studies
(such as Zheng and Chang, 2015) provided on-the-fly MST
(OMST; Zheng and Chang, 2015), which may be a practical
method of CD-MST, this may lead to many problems, such
as (1) the test developer having difficulty in managing tests
before administering, (2) the parallel of the test is difficult to
ensure, (3) and the non-statistical constraint also is difficult
to satisfy. To address the above issues, a CD-MST framework
that not only provides rich diagnostic information about the
candidates but also retains the inherent advantages of MST was
proposed in this paper. This paper also proposed and employed
two statistical indexes, namely, item difficulty and attribute
reliability, as the statistical constraints of CD-MST. In this paper,

the proposed item difficulty index is a good indicator of the
item difficulty based on CD, which has a very significant high
correlation with the item difficulty parameter based on IRT
(such as the Rasch model). The reliability index also guarantees
the reliability and measurement error of tests. These indexes
can provide statistical information, which makes it possible to
automate test assembly for CD-MST. At the same time, the results
showed that the NWADH algorithm under the CD framework
successfully satisfied the non-statistical constraints. It showed
that the proposed CD-MST framework and statistical indicators
are acceptable for CD-MST.

This study employed the NWADH heuristic method to
assemble the CD-MST under ATA. The results showed that the
statistical and non-statistical constraints were both well satisfied,
and the assembled test panels were parallel overall. At the same
time, the non-statistical constraints (such as the attribute balance
and content balance) were fully considered in CD-MST, which
helps improve the content validity and structural validity of CD-
MST. Therefore, the proposed CD-MST with NWADH heuristic
algorithms not only provides rich diagnostic information but also
retains the advantages of MST.

LIMITATIONS AND FURTHER RESEARCH

As an early exploration of CD-MST, despite the promising
results, there are still some limitations that need to be
studied further. First, even though the CD item difficulty
index, the mean correct probability of all KSs, fully represents
the item difficulty, it is verified by the IRT model. Further
research also can develop other indexes to measure the
item difficulty in CDM. For example, Zhan et al. (2018)
proposed the probabilistic-input, noisy conjunctive (PINC)
model, which defined attribute mastery status as probabilities
and reported the probability of knowledge status for examinees
from 0 to 1. According to Zhan et al. (2018), classifying an
examinee’s KSs to 0 or 1 will cause a lot of information
of examinees to be lost, so the PINC model can provide
more precise and richer information to examinees’ KSs than
the traditional CDMs. Therefore, researchers can try to use
the probability of examinees’ KSs to develop a new difficulty
index in the future.

Second, attribute reliability was regarded as a quantitative
target in this study, which is illustrative but not prescriptive.
In future studies, other reliability or information/measurement
error indicators may also be considered as quantitative targets.
For example, the classification accuracy was proposed by Cui et al.
(2012), the classification matches were proposed by Madison and
Bradshaw (2015), and the classification consistency was proposed
by Matthew and Sinharay (2018). In the future, the comparative
analysis of these reliability indexes can be applied to the test
assembly in CD-MST.

Third, the NWADH method was used in this study to
assemble the panels. Although this method can guarantee the
successful completion of the test assembly, there is still a small
violation of the constraints. For example, content constraints
were slightly violated in this study. Even if this violation
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is allowed in the NWADH method, other methods may be
considered to ensure that all constraints are met. In fact, the
linear programming method and the Monte Carlo method are
also widely used in MST. Although these two methods are
influenced by the size and quality of the item bank, they can
fully meet the test specification. Besides, Luo and Kim (2018)
proposed the mixed integer linear programming (MILP) to
assemble tests in MST. The result of the MILP method shows
that the method had the advantage of the heuristic algorithm and
0–1 linear programming algorithm. Perhaps, the MILP method
is also a reasonable ATA method for CD-MST and can resolute
the violence of constraints. Therefore, the development of new
methods that can fully meet the constraints and successfully
assemble tests is also one of the future research directions.

Finally, the test length also needs to be explored in a further
study. In the study, the difference between the reliability and
the constraints is not significant. The difference between test
length levels can be larger (e.g., 21 vs. 42) and be further
studied to explore the impact of test length. Researchers can
design the different item numbers to explore the best test
length that can provide the maximum information and meet the
test constraints.
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