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ABSTRACT
Claudins (CLDNs) represent major transmembrane proteins of tight junctions and contribute to the 
barrier function. They also serve as anchors for several signaling proteins, but the underlying 
molecular basis has yet to be established. The present review covers the recent progress in our 
understanding of the CLDN signaling pathway in health and disease. We discuss the functional 
relevance of phosphotyrosine motifs in the C-terminal cytoplasmic domain of CLDNs and define 
mutual regulation between CLDNs and Src-family kinases (SFKs). In addition, we focus on the 
crosstalk between CLDN and transcription factor signaling. We also describe how aberrant CLDN– 
transcription factor signaling promotes or inhibits cancer progression. We propose that a link 
between various cell adhesion molecules and transcription factors coordinates a range of physio
logical and pathological events via activation or suppression of target genes.
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Introduction

The claudin (CLDN) family is capable of forming 
tight-junction strands and thereby represents the 
backbone of tight junctions in vertebrate epithelial 
and endothelial cells, as well as in other types of 
cells.1,2 It is composed of 27 members in mammals, 
and a specific combination of CLDNs is expressed 
in a given cell/tissue type. CLDNs are tetraspan 
transmembrane proteins that include two extracel
lular loops (EC1 and EC2) and N- and C-terminal 
cytoplasmic domains. The CLDN-EC1 creates 
paracellular barriers or pores for selective ions 
and solutes,3–7 whereas both CLDN-EC1 and 
CLDN-EC2 contribute to cis- and trans- 
interactions between CLDNs.7–11 On the other 
hand, the C-terminal cytoplasmic domain of 
many CLDN subtypes contains specific sequence 
motifs such as PDZ domain-binding motifs and 
phosphorylation consensus sites5, 12–16 and receives 
or propagates a magnitude of intracellular signals 
as platforms; however, it remains poorly defined 
how CLDN signaling reaches the nucleus and reg
ulates gene expression.17

CLDNs are absolutely required for human health, 
and their dysregulations are involved in the pathogen
esis of diverse diseases.4-6,18-16 For instance, it is well 
known that mutations in several CLDN genes cause 

various human hereditary diseases. In addition, 
CLDNs frequently show aberrant expression and/or 
localization in a wide variety of cancers, resulting in 
either promotion or repression of tumor progression, 
most probably by dysregulated CLDN signaling.22,26– 

32 Moreover, recent studies have established the 
region-selective CLDN5 breakdown in brain disor
ders, such as schizophrenia, depression, Alzheimer’s 
disease, and multiple sclerosis.33–39 In this respect, we 
and others have previously reported how endothelial 
CLDN5 expression is regionally disrupted in these 
psychiatric disorders.40,41

In the current review, we focus on the link 
between CLDN and transcription factor signaling 
because it is theoretically attributed to the organi
zation of a broad range of cellular processes, includ
ing cell growth, survival, differentiation, polarity, 
migration, and metabolism, via regulation of the 
expression of corresponding target genes. We also 
discuss aberrant CLDN–transcription factor signal
ing in cancer. We do not describe recent progress in 
our understanding of numerous aspects of other 
tight-junction players, such as junctional adhesion 
molecules (JAMs), tight junction-associated 
MARVEL domain-containing proteins (TAMPs: 
occludin, tricellulin, and MarvelD3), and the ZO 
family of scaffolding proteins.42–55
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The CLDN/SFK/PI3K/AKT/transcription factor 
signaling cascade

We previously reported that retinoid X receptor α 
(RXRα)/retinoic acid receptor γ (RARγ) and 
another member of the nuclear receptor superfam
ily, hepatocyte nuclear factor 4α (HNF4α), trigger 
the formation of mature cell–cell junctions and 
microvilli, expression of tight-junction markers 
(CLDN6, CLDN7, occludin, and ZO-1α+ variant) 
and a microvilli marker (ezrin/radixin/moesin- 
binding phosphoprotein 50 [EBP50]), as well as 
morphological differentiation into epithelial cells 
from stem cells.56–59 These effects are incredibly 
similar to the CLDN6-triggered ones,60 implying 
a possible crosstalk between them. Along this line, 
we have recently identified the CLDN–transcrip
tion factor signaling pathway.61

Reciprocal regulation between CLDNs and SFKs

First, we showed, by using the corresponding 
deletion mutants, that the CLDN6–adhesion sig
nal is transduced through the EC2 domain and 
the first half C-terminal cytoplasmic domains 
but not through the EC1 domain (Figure 1). 
Second, we paid attention to the four tyrosine 
residues in the C-terminal domain of CLDN6, 
which are completely conserved among verte
brates, and revealed that Y196/200, but not 
Y213/218, are definitely required for CLDN6- 
signaling ability. Third, we disclosed that 
CLDN6 recruits and activates Src-family kinases 
(SFKs) in EC2-dependent and Y196/200- 
dependent manners, and SFKs in turn phosphor
ylate CLDN6 at Y196/200 in an EC2-dependent 
fashion. The functional relevance of the EC2 in 
the CLDN6–adhesion signal was also supported 
by using the C-terminal half of Clostridium per
fringens enterotoxin (C-CPE).60,61 Moreover, we 
have identified SFK members associated with 
CLDN6 and obtained evidence showing that 
recombinant proteins corresponding to the Src 
homology 2 (SH2) domains of certain SFKs 
directly bind to the C-terminal cytoplasmic 
domain of CLDN6 and the Y196/200- 
containing peptide (our unpublished results).

Through a careful search for amino acid 
sequence of human and mouse CLDN1–20, both 

Y196 and Y200 in the C-terminal cytoplasmic 
domain of CLDN6 are conserved in CLDN2/4/12 
(Figures 2 and 3). It is also noteworthy that 
CLDN6Y196 and CLDN6Y200 are conserved in 
CLDN3/7/8/10/14/16 and CLDN1/5/9/17/18, 
respectively.

We have found mutual regulation between 
certain CLDN subtypes (tyrosine residues cor
responding to CLDN6Y200) and SFKs (our 
unpublished results). In addition, Li et al.62 

have recently reported that CLDN11 is phos
phorylated at two adjacent tyrosine residues, 
which are positioned at different sites from 
CLDN6Y196/200, as described above, and acti
vates SRC. The C-terminal domain of CLDN1 is 
also associated with SRC although the involve
ment of the pY motifs is not determined.63 It 
should also be noted that amino acids around 
pY, in particular 3–5 residues at the C-terminal 
side, influence the binding specificity of the 
SH2 domain.64–67 For instance, the C-terminal 
amino acids of the CLDN6Y200-corresponding 
tyrosine residue in human and mouse CLDN18 
are very different from others; therefore, it does 
not seem to function as the pY motif. CLDN18 
is known to decrease PI3K and AKT 
activities,68,69 suggesting this notion. Further 
studies are required to determine whether 
other CLDN subtypes, similar to CLDN6, cou
ple with SFKs via the pY motifs in the 
C-terminal cytoplasmic domains.

SFKs are known to be activated by several cell– 
cell and cell–matrix adhesion proteins lacking 
intrinsic kinase activity, such as E-cadherin, integ
rins, and cellular prion protein.62,70–76, In addition, 
engagement of JAMs, the JAML (junctional adhe
sion molecule-like) and CAR (coxsackie and adeno
virus receptor), stimulates PI3K,77which is the major 
downstream signal of SFKs. Besides, it is well known 
that certain signaling proteins, which contain the 
SH2, phosphotyrosine-binding (PTB), Hakai- 
tyrosine binding (HYB), C2, and pyruvate kinase 
M2 domains, bind to the pY motifs.66,67,78–81 

Taken together, these findings strongly suggest that 
the pY motifs in the C-terminal cytoplasmic 
domains of diverse cell–cell and cell–matrix adhe
sion molecules generally serve as the signaling land
scapes for SFKs and other pY motif-binding 
proteins.

e1908109-2 K. SUGIMOTO AND H. CHIBA



Figure 1. Schematic model for regulation of the nuclear receptor activity by the CLDN–adhesion signaling. The schema is modified 
from that reported previously (Sugimoto et al., 2019). SH2/3: Src homology 2/3 domain; Kinase: kinase domain; AF1: activation 
function-1; DBD: DNA-binding domain; LBD: ligand-binding domain; RARE: retinoic acid response element; ERE: estrogen response 
element; RA: yellow circle; estrogen: pink circle.
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A link between CLDN/SFK and transcription 
factor signalings

Importantly, the CLDN6/SFK/PI3K/AKT axis tar
gets the AKT-phosphorylation sites in the RARγ 
and the estrogen receptor α (ERα) and stimulates 
their activities, thereby regulating the expression of 
respective target genes. This conclusion was drawn 
from the following results: (1) the CLDN6-induced 
cellular events were hindered in three distinct F9: 
Rxra–/–:Rarg–/–:Cldn6 cell lines, despite SFKs being 
activated; (2) AKT formed a complex with either 

RXRα/RARγ or ERα; and (3) characterization of F9: 
Rxra–/–:Rarg–/–:Cldn6:iRxra-Rarg2S379A (here
after, “i” means doxycycline-inducible expression 
of a give gene) and F9:Rxra–/–:Rarg–/–:Cldn6:iRxra- 
Rarg2S379E cells, as well as MCF-7:ESR1S518E 
cells, revealed that CLDN6 signaling directs S379 
and S518 in mouse RARγ and human ERα, respec
tively. In addition, CLDN6-provoked RARγS379 
phosphorylation in mice resulted in releasing the 
nuclear receptor corepressor (NCoR) from several 
retinoic acid response elements (RAREs) of three 

Figure 2. Amino acid sequences of a part of the C-terminal cytoplasmic domain in human CLDN1-20. Tyrosine residues corresponding 
to CLDN6Y196/200 are highlighted and the conserved ones are indicated in red.
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distinct RA target genes, including Cldn6. Since 
RXRα/RARγ heterodimer appears to induce 
Cldn6 gene expression,56,61 the positive loop of 
the CLDN6–RARγ cascade could contribute not 
only to triggering but also to the maintenance of 
CLDN6-initiated cellular events. Intriguingly, the 
AKT-consensus phosphorylation motifs are con
served in 14 of 48 members of human nuclear 
receptors, implying the biological relevance of this 
phosphorylation site.

Aberrant CLDN–transcription factor signaling in 
cancer

We have recently reported that aberrant CLDN6 
expression in endometrial cancer tissues is significantly 
associated with several clinicopathological variables, 
such as surgical stage III/IV, histological type, histolo
gical grade 3, lymphovascular space involvement, 
lymph node metastasis, and distant metastasis.82 

Additionally, we showed that the high CLDN6 expres
sion in endometrial cancer represents an independent 

Figure 3. Amino acid sequences of a part of the C-terminal cytoplasmic domain in mouse CLDN1-20. Tyrosine residues corresponding 
to CLDN6Y196/200 are highlighted and the conserved ones are indicated in red.
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prognosis marker, and the 5-y survival rate was 
approximately 30%, which was one-third of that in 
the low-expression group.

In an additional study, we found that aberrant 
CLDN6 expression promotes the malignant pheno
types of endometrial cancer in vitro and in vivo via 
hijacking the CLDN6–ERα axis.83 For instance, we 
demonstrated that abnormal CLDN6–ERα signaling 
stimulates not only cell proliferation but also collective 
cell migration in the leading front of endometrial 
cancer cells. It is noteworthy that activated SFKs appear 
to be concentrated at the cell borders together with 
CLDN6 in Ishikawa:CLDN6 cells but not in parental 
Ishikawa cells (Figure 4). The EC2 domain and Y196/ 
200 of CLDN6 were required to recruit and activate 
SFKs and to stimulate malignant phenotypes of endo
metrial cancer cells. In addition, the CLDN6/SFK/ 
PI3K pathway propagates both AKT and serum- and 
glucocorticoid-regulated kinase (SGK), which share 
a high degree of homology and the same consensus 
phosphorylation motif,84 resulting in targeting S518 in 
human ERα and activating target genes in a ligand- 
independent manner. Furthermore, RNAseq and RT- 

qPCR analyses indicated the presence of not only ERα- 
dependent but also ERα-independent CLDN6 signal
ing (Figure 5). The identification of this machinery 
highlights the regulation of transcription factor activity 
by cell adhesion to advance tumor progression.

Another issue that should be mentioned is other 
abnormal CLDN–transcription factor signaling in 
health and disease. The CLDN18/Yes-associated pro
tein (YAP) pathway regulates the homeostasis of nor
mal lung stem and progenitor cells, and its deficiency 
promotes tumorigenesis and progression of lung and 
gastric adenocarcinoma.69,85–87 By contrast, CLDN2 
activates YAP, leading to self-renewal of human col
orectal cancer stem-like cells.88 Since CLDN2 has two 
conserved pY in the C-terminal cytoplasmic domain 
as described above, it should also be verified whether 
CLDN2/SFK signaling is involved in the self-renewal 
of various cancer stem-like cells.

Conclusions and future directions

The work discussed in the present review highlights 
the CLDN–transcription factor signaling pathway, 

Figure 4. Aberrant SFK activation in human endometrial cancer cells by CLDN6. Scale bar, 20 μm.
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notably the CLDN/SFK/PI3K/AKT/nuclear recep
tor cascade. Cell–cell and cell–matrix adhesion 
molecules are indispensable not only for proper 
tissue integrity but also for signaling properties 
that coordinate a wide range of cell behaviors. In 
other words, appropriate tissue formation con
nected by various cell adhesion proteins should be 
pre-requested for normal cell-adhesion signal. 
Since cell–cell and cell–matrix adhesion proteins 
are broadly expressed in distinct cell types, we 
propose that various combinations of cell adhesion 
molecules and transcription factors coordinate 
diverse physiological and pathological processes, 
including cancer. The cell-adhesion signals most 
probably lead to posttranslational modification of 
transcription factors, thereby regulating their activ
ities. In future, it would be interesting to generalize 
the cell adhesion–transcription factor signaling 
pathway in health and disease.
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