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Digital twins in biomedical research, i.e. virtual replicas of biological entities such as cells, organs, or entire 
organisms, hold great potential to advance personalized healthcare. As all biological processes happen in space, 
there is a growing interest in modeling biological entities within their native context. Leveraging generative 
artificial intelligence (AI) and high-volume biomedical data profiled with spatial technologies, researchers 
can recreate spatially-resolved digital representations of a physical entity with high fidelity. In application to 
biomedical fields such as computational pathology, oncology, and cardiology, these generative digital twins 
(GDT) thus enable compelling in silico modeling for simulated interventions, facilitating the exploration of ‘what 
if’ causal scenarios for clinical diagnostics and treatments tailored to individual patients. Here, we outline recent 
advancements in this novel field and discuss the challenges and future research directions.
1. Introduction

Biomedical digital twins (DT), which commonly refer to high-fidelity 
digital representations of physical entities [38,16], are designed to accu-
rately mirror the biological, physiological, and pathological character-
istics of the organisms they emulate. Over the past decade, substantial 
efforts have been dedicated to developing DTs [38] for biomedical ap-
plications. The progress of modeling comprehensive DTs has been con-
tinuously fueled and reshaped by the growing demand for personalized 
healthcare [34].

By analyzing detailed biomedical data—such as a patient’s unique 
genetic profile, environmental factors, and lifestyle influences through 
methods of machine learning and artificial intelligence (AI), it be-
comes possible to accurately generate DTs with potential future clini-
cal utility [12]. Personalized simulations that can predict disease pro-
gression [3], optimize treatment plans [14], and enhance patient out-
comes [36] by tailoring interventions to the individual’s specific biolog-
ical and environmental context have significant potential in data-driven 
medicine. Further, these digital replicas allow for continuous monitor-
ing and adjustment, ensuring that healthcare strategies remain adaptive 
and responsive to real-time changes in a patient’s health status [70].

For biomarker and drug discovery [44,5,4], DTs can be created using 
comprehensive biomedical datasets to simulate drug effects and pre-
dict treatment efficacy. Future use of DTs and virtual patient cohorts 
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could offer a possible pre-stage to randomized clinical trials (RCT), 
helping to reduce costs and increasing efficacy. In the field of med-
ical diagnostics, DTs can enable the seamless integration of imaging 
data with genetic and molecular profiles to form virtual representations 
of disease states with great utility for medical research. Based on DT 
simulation, clinicians could potentially make more informed decisions 
regarding surgical planning, and targeted therapy selection, thereby im-
proving the accuracy and effectiveness of personalized diagnostics [62]. 
As most biological processes occur within native spatial contexts (e.g., 
the tissue microenvironment, TME), the development of spatially re-
solved analytical and simulation techniques is a crucial advancement 
for understanding the complex interplay between cellular, molecular, 
and environmental factors. These techniques enable precise mapping 
and modeling of biological events in their native architecture, offering 
insights into tissue-specific responses, disease progression, and thera-
peutic interventions, thereby enhancing our ability to design targeted 
treatments.

This mini-review starts with a concise overview of pertinent ap-
proaches from the converging domains of generative AI and spatial 
technologies. By incorporating spatially profiled molecular and bioim-
age data into training generative AI models, we discuss existing methods 
that illustrate novel paths towards the construction of GDTs and describe 
future opportunities and challenges in the field.
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1.1. The convergence of generative AI and spatial technologies

Generative AI, a novel technology that was initially developed for 
natural visual content creation [10], presents a promising analog for 
spatially resolved bioimage generation. Generative models demonstrate 
impressive proficiency in generating high-quality visual content [52,42]
through parallel GPU training. For instance, generative models have 
been employed in image generation for the study of rare diseases [1], 
graph learning, and molecular design [10]. These approaches can cap-
ture normal or disease phenotypes across various scales, from the cel-
lular level to tissues, organs, and entire organisms. By leveraging these 
capabilities, generative AI has the potential to revolutionize how we 
visualize and understand complex biological structures and processes, 
ultimately enhancing our ability to diagnose and treat diseases more 
effectively.

The development of generative AI is paralleled by the evolution of 
highly resolved in situ methods for the co-profiling of morphological and 
molecular features of diagnostic tissue samples using cutting-edge spa-
tial technologies in biomedical research [9]. The high-throughput quan-
tification of spatial molecular data encompassing epigenomics, tran-
scriptomics, and proteomics, alongside matched high-resolution bioim-
ages stained with Hematoxylin and Eosin (H&E), (immuno)fluorescence 
(IF), imaging mass cytometry (IMC) etc. is not only poised to stimulate 
innovative biomedical discoveries, but offers critical proxies and paired 
training data in modeling the morpho-molecular causal associations.

1.2. Generative digital twins (GDT)

Similar to how text and image data pairs are utilized to train genera-
tive AI models, matched molecular and bioimage data can be effectively 
employed to train such models. In this mini-review, we introduce a novel 
concept termed Generative Digital Twins (GDT), i.e., generated (spa-
tial) biological organisms by generative AI models trained with paired 
molecular and bioimage data. Profiling and intervening on input molec-
ular data, these generative AI models enable in-silico biomedical inves-
tigations on causal “what if” scenarios of GDTs, in terms of visualizing 
and quantifying morphological transitions driven by spatial molecular 
changes. Such extensive causal investigations would otherwise be non-
trivial or unethical to carry out using animal modeling. Given the virtual 
characteristics of GDTs, we can further circumvent the legal, ethical, 
and regulatory risks for implementing high-throughput biological in-
terventions, which may also help reduce the need for interventions on 
laboratory animals according to the 3R principle (Refine, Reduce, Re-
place).

2. Generative AI in vision

In the field of computer vision, Generative Adversarial Nets (GAN) 
[21] and diffusion-based models [28] are recognized as leading method-
ologies among various generative models. Characterized by the adver-
sarial training framework where a generator and discriminator engage 
in an iterative process, GANs have proven to be effective and efficient 
for image synthesis. As competitive alternatives, diffusion-based mod-
els represent a subset of probabilistic generative models that introduce 
noise to data and then learn to reverse this process for sample gen-
eration. In recent studies, these models have demonstrated superior 
performance in various generation tasks and thus challenged the dom-
inance of GANS. By feeding text prompts to GAN- or diffusion-based 
models [32,52], researchers can create realistic visual data for a wide 
range of real-world use cases, accommodating both unconditional and 
input-conditional generation.

In clinical diagnostics, generative AI has also shown exciting appli-
cations for algorithmic modeling of disease states [1]. By efficiently gen-
erating numerous (rare) disease images or virtual staining of high-plex 
biomarkers, they have the potential to substantially impact biomed-
ical research. However, directly applying existing methods to high-
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resolution biomedical data (e.g., whole slice images (WSI) in digital 
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pathology) remains challenging due to an exponential increase in com-
putational complexity. For instance, 96-128 A100 GPUs were used to 
train a large GigaGAN [21] to synthesize natural images at a 4096 ×4096
megapixel resolution. At the present time, the hardware requirements 
for generating WSIs at a gigapixel resolution can be computationally 
prohibitive, rendering the use of such models costly in biomedical re-
search. To resolve the memory bottleneck inherent in generating high-
resolution images, researchers frequently use patch-based generative 
models as a cost-effective and scalable solution. After training with a 
large amount of cropped patch-wise data, the methods summarized be-
low can generate (arbitrarily) large images at inference, successfully 
circumventing the hardware constraints.

2.1. Patch-based GAN models

The synthesis of high-resolution images by stitching together small 
generated image patches is a longstanding technique in computer vi-
sion and graphics [19]. Within the GAN framework, Single-image GAN 
(SinGAN [55]) was first introduced to learn internal statistics from ran-
domly cropped patches of a single natural image. Given its pyramid 
convolutional architecture, SinGAN has unlocked the generation of new 
images with an arbitrary size and aspect ratio, while maintaining the 
global and local structures of the training image. Motivated to solve the 
computational constraints, Lin et al. proposed conditional coordinate 
GAN (COCO-GAN [40]) to generate complete natural images. Trained 
with cropped and incomplete image patches, COCO-GAN employed the 
spatial coordinate as condition and can produce state-of-the-art full im-
ages during inference. To extend image generation beyond the boundary 
and resolution of learned images, InfinityGAN [41] decomposed global 
appearances into local structures and textures, both of which are instan-
tiated using a neural implicit function, denoted structure synthesizer, 
and a padding-free generator, termed texture synthesizer. At inference 
time, InfinityGAN achieves arbitrary-sized image generation without 
stitching artifacts. Following the seminal StyleGAN framework [33], 
the ‘aligning latent and image spaces’ method (ALIS [57]) improved 
the infinite high-resolution images with diverse and complex content 
that smoothly transition from one to another. Similar to coordinate-
conditioned studies, this was made possible using synchronous interpo-
lations and coordinate-aware latent codes. Subsequently, Any-resolution 
GAN (Anyres-GAN [13]) aimed to synthesize patches at continuous 
scales to match the distribution of real patches. Trained on multi-
resolution image datasets, the unconditional generator learns to gen-
erate image patches at continuous scales to match the distribution of 
real patches. At test time, Anyres-GAN can generate images at high res-
olutions with the desired sampling rate.

2.2. Patch-based diffusion models

Derived from the denoising diffusion model (DDM), the single im-
age DDM (SinDDM) [35], acts as the successor of SinGAN, aimed to 
match the single image distribution through the training of its ran-
domly cropped patches. Utilizing a fully convolutional denoiser with 
residual connections, SinDDM is capable of generating image samples 
of any desired dimensions that closely resemble the training image. 
To reduce the training time and improve data efficiency, Patch dif-

fusion [61] encoded the trained patch location into the coordinate 
channel, while patch sizes are randomized to encode the cross-region 
dependency across multiple scales. Such modifications resulted in the 
competitive generation quality in terms of outstanding Fréchet incep-
tion score (FID), along with improved training efficiency. To reduce the 
computational cost of diffusion models, Patchdiffusion [43] suggested 
to simply reshaping the image into non-overlapping patches, however 
this patch-based model cannot guarantee the seamless stitching of neigh-
boring patch images to complete a high-resolution image generation. 
More recently, another patch diffusion model (Path-DM) [18] imple-

mented a novel collage strategy of the learned representations, yielding 
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Table 1

Summary table of patch-based and biomedical generative models. Top: The patch-based generative models built upon the GAN methodology; Middle: The 
patch-based generative models built upon DDM methodology; Bottom; Miscellaneous generative models for biomedical applications.

GAN-based model Backbone Patch resolution Conditional input Patch → large image 
generation

Summary

SinGAN [55] Conv2d blocks coarse-to-fine N/A Input scaling Adversarial training with a single 
image.

Coco-GAN [40] Residual blocks 64 × 64 Coordinate Feature merging Synthesize large images by small 
patches conditioned on local 
coordinates and latent vectors.

ALIS [57] StyleGAN2 256 × 256 Coordinate Latent code 
interpolation

Interpolation between the learned 
latent codes with regard to a 2d 
coordinate system.

InfiniteGAN [41] StyleGAN2 101 × 101 Coordinate Padding-free 
convolution

Introducing a structure synthesizer 
and padding-free generator.

Anyres-GAN [13] StyleGAN3 64 × 64 Coordinate Increasing 
coordinate sampling 
rate

Two-stage training paradigm that 
learns the global information and 
then learns the patch details.

Diffusion-based model

SinDDM [35] Residual blocks coarse-to-fine learned text codes Input scaling Similar to SingGAN, the 
application of single-image 
training paradigm.

Patch diffusion [61] UNet random learned text codes N/A Reduce the training memory 
footprint via patch-wise operations 
and position embedding 
concatenation.

Patchdiffusion [43] UNet 64 × 64 learned text codes N/A Reshaping the image into 
non-overlapping grid patches.

Path-dm [18] UNet 64 × 64 learned text codes 
and coordinate

Feature collage Performing the latent 
representation collage for both the 
training and inference.

Biomedical generative model

Phenexplain [37] StyleGAN2 128 × 128,256 × 256 Drug perturbation 
label

N/A Condition on drug perturbation 
with different concentration levels.

GILEA [66] StyleGAN2 64 × 64 N/A N/A Perturbation on real constructed 
cells by GAN inversion.

Grid-shift diffusion [24] UNet coarse-to-fine N/A Grid-shift sampling Synthesis of WSIs by grid-shift 
technique.

RNA-cdm [11] UNet 256 × 256 1-D mRNA vector N/A Synthesis of WSI tiles using bulk 
RNA-sequence.

SST-editing [67] StyleGAN2 128 × 128 1-D mRNA vector N/A Reconstruction of cellular 
morphological images using 
sub-cellular gene expression 
patterns.

IST-editing [64] StyleGAN2 133 × 133 3-D mRNA array Padding-free 
convolution and 
overlapped spatial 
mRNA array

Reconstruction of the gigapixel 
mouse pup using sub-cellular gene 
expression patterns.
high-resolution generation results with reduced memory footprints. In 
this approach, smooth transitions between neighboring image tiles are 
imposed through the generation from concatenated latent representa-
tions.

Similar to standard generative models, these patch-based approaches 
can effectively generate desired images conditioned on textual input 
representations. Nevertheless, it remains non-trivial to apply the afore-
mentioned methods for creating GDTs. For example, though it is the-
oretically feasible for SinGAN and SinDDM to generate images with 
any desired resolution, studies [64] suggest that the generation qual-
ity deteriorated drastically at the scale factor of 4. As shown in Table 1
that summarizes the existing patch-based models, many of which are 
additionally required to be conditioned on spatial coordinates. Such a 
design choice is not well-suited for biomedical applications, because the 
arrangement of biological structures is not governed by a rigid coordi-
nate system. Instead, it is shaped by the complex interplay of genetic, 
epigenetic, gene expression and protein expression variability, which 
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collectively determine the phenotype of a biological entity [23]. There-
fore, seamlessly integrating these advancements into the construction of 
GDTs remains an open area that requires further exploration.

3. Spatial technologies

Emerging spatial technologies, which profile molecular data in 
space, are driving groundbreaking biomedical discoveries [39]. The 
rapid development and application of these technologies have been ex-
tensively reviewed in recent literature [39,9,45], underscoring their 
transformative impact across various domains of biological and med-
ical sciences. Leveraging spatial omics technologies [49,25,30,68], 
alongside multiplexed bioimaging including (immuno)fluorescence 
(IF) [6,51] and imaging mass cytometry (IMC) [29,48], researchers can 
simultaneously co-profile tens of thousands of data points on gene and 
protein expression in a spatial context. Spatial co-profiling enabled the 
unprecedented analysis of molecular landscapes within tissue samples, 
providing novel insights into the spatial organization and functional in-
teractions of cellular components. Furthermore, the availability of fully 

integrated datasets holds great potential to uncover novel causal associ-
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Table 2

The overview of widely-used spatial technologies.

Methods Company Imaging/Sequencing 
technology

Resolution N_readouts (Processed) Representation

Imaging mass cytometry 
(IMC) [2]

Standard BioTools Multiplexed mass 
spectrometry (MMS)

Sub-cellular <50 protein markers learned latent representation

Multiplexed ion beam imaging 
(MIBI) [48]

Ionpath MMS Sub-cellular <50 protein markers learned latent representation

Co-detection by indexing 
(CODEX) [6]

Akoya Biosciences Cyclic 
immunofluorescence 
(IF)

Diffraction-limited Up to 60 protein markers learned latent representation

COMET [51] Lunaphore Cyclic IF Diffraction-limited Up to 40 protein markers learned latent representation
GeoMX DSP [27] Nanostring Light-based 

dissection
<10 microns Whole transcriptome and 

>570 proteins
Imputed readouts between 
the spot gap

Visium [49] 10x Spatial barcoding 55 microns in diameter Whole transcriptome Imputed readouts between 
the spot gap

Visum HD [46] 10x Spatial barcoding 2 × 2 microns in square Whole transcriptome Processed readouts through 
bin aggregation

Stereo-seq [15] BGI Spatial barcoding 220 nm in diameter Whole transcriptome Processed readouts through 
bin aggregation

CosMx [25] Nanostring Multiplexed in situ 
hybridization (ISH)

Sub-cellular Up to 6000 RNAs and 64 
proteins

Raw readouts

Xenium [30] 10x Multiplexed ISH Sub-cellular Up to 5000 RNAs Raw readouts
MERFISH [68] Vizgen Multiplexed ISH Sub-cellular Up to 1000 RNAs Raw readouts
ations linking molecular-guided changes to morphology at the scale of 
cell, tissue, organ, and an entire organism [64].

3.1. Spatial omics

One of the initial attempts at achieving spatial molecular profil-
ing was based on sequencing methods [54,59]. Solutions such as the
Visium [49] and Stereo-seq [15] platforms subsequently emerged as 
widely-used alternatives enabling the in-situ profiling of RNA expression 
through the adaptation of next-generation sequencing (NGS) technolo-
gies. To achieve the seamless generation of GDTs using spatial molecular 
data, sequencing-based methods are nonetheless sub-optimal, primarily 
due to their limited spot-wise spatial resolution and the lack of molecu-
lar readouts in gaps between adjacent spots.

In contrast, in situ hybridization (ISH)-based approaches have 
demonstrated strong capabilities in detecting high-plexed gene expres-
sion at sub-cellular resolution, exemplified by newly released platforms 
such as CosMx [25], Xenium [30] and MERFISH [68] (Please see also 
Table 2 for reference). Specifically, a recent report [26] has showcased 
the successful in situ characterization of up to 6000 transcriptomes us-
ing CosMx technology, while maintaining the sub-cellular resolution 
for individual mRNA readouts. This further substantiates the potential 
of ISH-based technologies in profiling high-quality molecular data for 
training path-based generative models.

3.2. Multiplexed imaging

At the same time, multiplexed bioimaging has become increasingly 
available and standardized, enabling the application to clinical sam-
ples at scale. For instance, imaging mass cytometry (IMC) [2,58], which 
simultaneously profiles up to 50 protein biomarkers at sub-cellular res-
olution in human or animal tissues, demonstrates potential in under-
standing cellular identity, function and spatial distribution patterns at 
scale. Similar applications are also achievable by IF-based methods such 
as e.g., Codex [6], Vectra Multispectral Imaging [20] and COMET [51]. 
Given the critical role of the mRNA-to-protein translation process in 
spatial biology, there is considerable potential for technological syner-
gies between spatially resolved sequencing approaches (DNA, RNA) and 
multiplexed imaging or mass spectrometry solutions (protein) in the fu-
ture development of GDTs. Integrating these technologies could deliver 
new insights into the spatial analysis of mRNA-to-protein translation oc-
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curring in biological systems.
3.3. Spatial training data for generative AI

Derived from the data processing pipeline used for single-cell se-
quencing, a prevalent approach in handling spatial transcriptomic (ST) 
data is the summarized gene-versus-cell table [47]. Concretely, the spa-
tial gene-level readouts (the number of RNA transcripts detectable for a 
given gene) are often reduced to a one-dimensional column associated 
with individual cells. Since the precise spatial coordinates are excluded 
from the summarized gene table, this data formality does not fully re-
flect the spatial localization of gene expression patterns and is not ideal 
for establishing a high-resolution GDT. Instead, a multi-channel gene 
expression ‘image’, which preserves the exact spatial organization of 
transcripts, is more favorable to seamlessly construct a large-scale vir-
tual organism. To improve the data availability as well as reduce the 
computational cost, it is necessary to collect patch-wise image data with 
low pixel resolutions from the whole tissue sections for training gener-
ative models.

Analogous to the text-image data pairs used for training generative 
AI models, we take spatial molecular readouts (arrays) as the input and a 
‘prompt’. These molecular prompts are then utilized to construct biolog-
ically plausible high-resolution representations of physical entities, i.e., 
GDTs. For effective modeling of morpho-molecular causal associations, 
the combination of ST data and optionally prepared (H&E-stained) WSI 
from the same tissue section becomes essential to facilitate the genera-
tive process. In exploring the mRNA-to-protein causal linkage, we can 
approach these biomedical questions using synergistic spatial ST data 
and multiplexed bioimages. By feeding edited gene expression patterns 
to the constructed GDT, we can simulate and assess multi-scale pheno-
typic transitions within the virtual system.

4. Towards GDT of an entire organism

Given the costly and rapidly evolving nature of spatial technologies, 
not until recently did we gain access to large-scale standardized datasets 
including spatial molecular data [31]. For those pioneer methods that 
did not train on spatially-resolved molecular data, we nevertheless dis-
cuss their insights and contributions relevant to this novel research field 
(see also Table 1).

To reveal invisible and subtle phenotypic effects induced by genetic, 
chemical, or disease-based perturbations, Lamiable et al. [37] suggested 
new variants of conditional-GAN (Phenexplain) to traverse the latent 
representations between two trained conditions. Depending on pertur-

bation type and drug concentration level, such latent traversals enable 
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the simulation of smooth transitions from untreated to treated cells that 
can be applied to a wide variety of drug candidates for high-throughput 
in silico screening. Using multiplexed cell datasets, Phenexplain has 
shown the effective generation of otherwise invisible cell phenotypes, 
where the quantitative differences between real and generated pheno-
types can be measured by well-established statistical tests.

Subsequently, Wu and Koelzer introduced GAN Inversion-enabled
Latent Eigenvalue Analysis (GILEA) for cell-level phenome profiling and 
editing [66]. Trained on large-scale SARS-CoV-2 datasets RxRx19 [17]
stained with the multiplexed fluorescence Cell Painting protocol [8], 
this study developed a two-stage GAN Inversion model to reconstruct 
digital replicas of a comprehensive in vitro cell culture dataset including 
stimulation conditions with over 1800 drug compounds at up to 8 differ-
ent concentrations. By quantifying the sorted eigenvalue difference of 
latent representations used in the reconstruction (a simple alternative 
to the FID score [65]), GILEA measures drug efficacy in restoring the 
phenoprint of SARS-CoV-2 infected cells to the normal condition. More 
importantly, this study demonstrated that latent representations can be 
indirectly modulated through their largest principal components, lead-
ing to plausible phenotypic transitions that provide biomedical inter-
pretations of drug effect identification. While these studies investigated 
the generation of cell culture images, the adaptation of these findings 
to the tissue, organ, and organism system requires further experimental 
evidence.

Meanwhile, the generation of virtual whole slide images (WSI) at 
a gigapixel scale has been explored under the DDM framework (Grid-

shift diffusion [24]). This approach employs a coarse-to-fine sampling 
scheme to synthesize high-resolution WSIs. To address and mitigate 
stitching artifacts, Grid-shift diffusion introduces a computationally effi-
cient grid-shift technique applied at each diffusion step. This technique 
ensures that boundary pixels between adjacent patches are seamlessly 
transferred, resulting in a more coherent image with reduced artifacts. 
However, due to limitations in the available datasets, these methods are 
unable to incorporate spatial molecular data into the generative process, 
which limits their potential for molecularly guided bioimage generation.

This issue has been partially addressed in the study [11] in ex-
periments on well-curated TCGA datasets. Trained on pairwise im-
age tiles extracted from WSIs and associated (bulk)RNA-sequencing 
data, Carrillo-Perez et al. utilized RNA-guided cascade diffusion models 
(RNA-cdm [11]) to synthesize digital tumor samples. Though the pro-
posed RNA-cdm can alleviate the issue of biomedical data scarcity and 
facilitate data augmentation for downstream prediction tasks, the bulk 
RNA expression profile is unlikely to fully capture the spatial variabil-
ity embedded in gigapixel cancer WSIs. Therefore, it becomes critical to 
generate local ground truth of gene expression readouts to address the 
heterogeneity present in cancer tissue.

Leveraging advanced spatial transcriptomic profiling at a sub-
cellular resolution, In Silico Spatial Transcriptomic editing (SST-editing

[67]) was introduced to generate cellular digital twins stained with IF 
biomarkers such as DAPI and B2M. Given a center-cropped tumor or 
normal liver cell, SST-editing enables the faithful reconstruction of a 
cell phenotype when taking its spatial gene expression table as the in-
put. The reconstruction accuracy can be quantitatively assessed using 
well-established Peak Signal-to-Noise Ratio (PSNR) and Structural Simi-
larity Index Measure (SSIM). By modifying the sample covariance matrix 
of tumor cell collections to resemble that of normal cells (or vice versa), 
SST-editing can reverse the tumor cellular morphology to the normal 
one, demonstrating the in silico editability of the proposed method. Im-
portantly, this study was conducted at the cellular level, and the spatial 
resolution of generated digital cells is less than 256 × 256 pixels. This 
highlights the need for innovative approaches that can be scaled up to 
encompass tissue, organ, and even whole-organism levels.

To extend model applicability to large-sized organisms, Wu et al. 
[63] developed Infinite Spatial Transcriptomic editing (IST-editing) to 
reconstruct a gigapixel digital twin of an entire mouse pup. This was 
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accomplished by utilizing padding-free StyleConv layers and incorporat-
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ing overlapping gene expression images between adjacent tiles, which 
guarantees the seamless generation of high-resolution digital represen-
tations. Further, IST-editing showcased biologically plausible interven-
tions through multi-scale gene expression editing on mammalian organs, 
such the colon and liver regions. Last but not least, initial experiments 
on the 3D mouse brain atlas [69], which profiles a comprehensive 500-
plexed gene profile and cell morphology across the entire mouse brain, 
provided proof-of-concept for constructing a digital twin of a whole 
mouse brain in 3D space, as shown in Fig. 1. These advancements thus 
pave a promising path towards developing GDTs of an entire organism.

5. Outlook and future directions

Developing robust and intervenable GDTs with low ethical risks 
presents a promising and inexpensive alternative for testing disease ther-
apeutics. This methodology extrapolates previously unseen physiologi-
cal and pathological states of the generated virtual entity, empowering 
researchers to conduct counterfactual predictions on the whole biolog-
ical system. Importantly, this once science-fiction vision is becoming 
increasingly attainable thanks to the advancement and convergence of 
patch-based generative AI and spatial technologies. Researchers now 
have access to highly detailed spatial omics data, e.g., the mouse brain 
atlas [69]. Utilizing patch-based models trained on paired gene expres-
sion and bioimage data cropped from the atlas, it is then feasible to 
reconstruct a 3D digital mouse brain with affordable hardware budgets. 
Built upon attention blocks [60], this interaction-through-construction 
methodology provides a powerful framework for deciphering complex 
gene-gene interactions within stratified anatomical structures and neu-
ral layers. In addition, we gain valuable insights into the causal asso-
ciation between spatial genetic organization and cellular morphology, 
through the lens of quantifiable neuron phenotypic transitions driven by 
gene expression-guided editing. As promising as the long-term vision for 
GDTs may appear, several challenges should be tackled on the way to 
deliver a reliable in silico system.

5.1. Data storage and processing at unprecedented scales

Trained on cropped biomedical data, patch-based AI approaches in-
deed resolve the computational bottlenecks within the highly parallel 
GPU training paradigm. However, this improvement in computational 
efficiency does not mitigate the storage and processing challenges asso-
ciated with raw omic data from which patch-wise training samples are 
extracted. This is simply because of the large-scale and high-resolution 
nature of the biomedical data with up to a gigapixel resolution [64]. 
If we extend the organism profiling to the 3D space, by preparing con-
secutive slices of tissue sections, the resulting raw data resolution can 
be up to petavoxel, as exemplified by both mouse brain atlas [69] and 
the fragment of human cerebral cortex studies [56]. At unprecedented 
scales of data volume, selecting the appropriate data format—such as 
tables, arrays, or tensors—as well as the choice of storage hardware and 
its placement within the computational cluster, becomes crucial for en-
hancing workflow efficiency.

Another distinctive challenge is the high-sparsity and high-plex na-
ture of gene expression readouts. While existing tools can handle sparse 
data with a limited number of channels, they will immediately exhaust 
CPU and GPU memory resources when processing spatial gene expres-
sion arrays with up to 20000 channels. This limitation underscores the 
need for developing novel, open-source sparse matrix tools designed to 
efficiently manage and process such molecular data.

5.2. Aligning in silico discoveries to real biological processes

Complementary to in vivo experiments, generative modeling can 
provide insightful predictions about how complex biological compo-
nents interact through the construction of GDTs and unlock the ex-

trapolation capability of virtual biological systems among novel and 
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Fig. 1. Conceptual illustration of the algorithmic paradigm for constructing a generative digital twin (GDT). A. The image registration of consecutive slide 
sections profiled for an entire organism. Here, we illustrate the example of registering coronal sections of the mouse brain atlas. B. The training of generative AI 
models using patch-wise paired data, which consists of spatial gene expression arrays and associated cellular morphological bioimages. C. The construction of the 
entire digital brain atlas using spatial gene expression as the input. On top of that, selected molecular-level interventions can be performed and drive associated 
morphological transitions.
unseen experimental conditions. Additionally, the ability to simulate 
interventions [67,64] on specific gene groups or well-established path-
ways within GDTs represents an important advantage of algorithmic 
approaches. Such simulations provide a powerful tool for understand-
ing and manipulating biological processes in ways that may be ethically 
or legally prohibitive in traditional in vivo settings.

Reliable biological simulation. Nonetheless, special care must be 
taken when interpreting results derived from GDTs. Despite signifi-
cant advances in multi-scale spatial profiling technologies, how to fully 
model a biological system with all its necessary functional and organiza-
tional details remains unclear [50]. As discussed in the previous section, 
the number of spatially resolved protein readouts in many studies is still 
limited to less than 100, which significantly lags behind the amount of 
over 100’000 proteins [53] that perform functions in the human body. 
Second, many biological processes and interactions remain unknown or 
only partially characterized, leading to gaps in our domain knowledge.

Trustworthy hypothesis validation. The complexity of spatial in-
terpretations generated by computational modeling and especially any 
biological conclusions drawn from this simulated data require thorough 
external validation. To ensure reliability and biological relevance, in sil-
ico findings must be carefully compared against empirical data. Further, 
new ways of measuring the accuracy of generated outputs may be re-
quired for application in the biomedical research space. Instead of using 
widely used measurements in calibrating modern generic AI models [7], 
biomedical-tailored metrics may need to be proposed for more special-
ized applications such as assessing the construction fidelity of GDTs. 
Such challenges, for instance, have been investigated in the IST-editing 
study [64] using nuclear morphometrics. By quantitatively assessing 
differences in nuclear size and count between GDTs driven by edited 
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gene expressions and the ground truth, the authors rigorously evaluated 
construction quality through biologically interpretable metrics. These 
specialized metrics would then provide a more accurate evaluation of 
the models’ performance in capturing the intricate details of biological 
systems. When analyzing emerging phenomena within virtual systems, 
close collaboration between computational scientists and biomedical 
domain experts is critical to ensure that the models are grounded in bi-
ological reality and that the insights gained are both scientifically valid 
and clinically relevant.

5.3. Developing dynamic GDTs using spatial-temporal technologies

Biology occurs not only in spatial dimensions but also over time. 
Given the wide range of cellular organizations obtained by multi-omic 
technologies, continuous patterns can be discerned through pseudo-time 
trajectory analysis [22] or multi-section analysis at different develop-
mental stages [15]. To construct dynamic GDTs, time- and spatial-
resolved measurements can be utilized to train temporal generative 
AI models, which have proven effective in diverse video generation 
tasks [42].

However, pseudo-temporal analyses unavoidably rely on static snap-
shots of different samples at various stages of development or disease 
progression. These snapshots, while informative, do not directly track 
the changes within the same individual over time, potentially missing 
transient or rapid events. In the meantime, these analyses typically infer 
temporal trajectories by averaging data across a population of cells or 
tissues, which can obscure individual variability and unique responses. 
This averaging effect might overlook rare or stochastic events that are 
crucial to understanding biological processes. To develop robust and 
dynamic GDTs, true spatial-temporal technologies need to be advanced, 

and continuous temporal data need to be generated for individual bi-
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ological objects to facilitate the complete modeling of a physical sys-
tem. Alongside progressing profiling technologies, more efficient data 
management strategies are required to handle the exponentially grow-
ing data volume with up to exa- and zetta-resolutions. Despite these 
challenges, we stay optimistic and enthusiastic about the future of this 
nascent research domain.
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