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The Glial cell line-derived neurotrophic Family Ligands (GFL) are soluble neurotrophic
factors that are required for development of multiple human tissues, but which are
also important contributors to human cancers. GFL signaling occurs through the
transmembrane RET receptor tyrosine kinase, a well-characterized oncogene. GFL-
independent RET activation, through rearrangement or point mutations occurs in thyroid
and lung cancers. However, GFL-mediated activation of wildtype RET is an increasingly
recognized mechanism promoting tumor growth and dissemination of a much broader
group of cancers. RET and GFL expression have been implicated in metastasis or
invasion in diverse human cancers including breast, pancreatic, and prostate tumors,
where they are linked to poorer patient prognosis. In addition to directly inducing
tumor growth in these diseases, GFL-RET signaling promotes changes in the tumor
microenvironment that alter the surrounding stroma and cellular composition to enhance
tumor invasion and metastasis. As such, GFL RET signaling is an important target for
novel therapeutic approaches to limit tumor growth and spread and improve disease
outcomes.
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INTRODUCTION

The neurotrophins are a family of soluble neurotrophic factors, originally recognized for their
abilities to regulate growth, survival and differentiation of neural-derived cell types. Neurotrophins
have well characterized roles as guidance, survival and differentiation factors in developing neurons
in the central (CNS) and peripheral nervous systems (PNS) and may also promote survival or
regrowth of mature neurons, by binding their cell-surface receptors and stimulating downstream
signals in their target cells. However, with the increasing availability of tissue and cell-specific
transcriptome and proteome data, it is becoming clear that neurotrophic factors and their receptors
are also broadly expressed on other, non-neural cell types, where they can contribute to cell
growth, differentiation and migration and tissue maturation. Importantly, the aberrant expression
or activation of these signaling complexes can allow these normal growth signals to contribute to
the growth or spread of cancer cells, making expression and functions of neurotrophins and their
receptors important contributors to human cancer, and potentially valuable therapeutic targets.
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THE GDNF FAMILY AND RET RECEPTOR

The Glial Cell-line Derived Neurotrophic Factors (GDNF) are
a family of neurotrophins with similarities to the transforming
growth factor β growth regulatory proteins. There are four
structurally similar family members: GDNF, neurturin (NRTN),
artemin (ARTN), and persephin (PSPN) that are recruited
to corresponding non-signaling co-receptors of the GDNF
Family Receptors α (GFRα1-4), which are tethered to the
plasma membrane through glycosylphosphatidylinositol-anchors
(Airaksinen and Saarma, 2002; Figure 1). GDNF Family
Ligands (GFL) and GFRα family members have distinct but
overlapping tissue-specific expression patterns that determine
their biological roles, however, all GFL-GFRα complexes signal
through a single transmembrane receptor, the RET (REarranged
during Transfection) tyrosine kinase (Mulligan, 2014). GFL-
GFRα complexes associate with RET’s large extracellular domain,
promoting dimerization and activation of its intracellular kinase
domain, leading to stimulation of multiple downstream pathways
(Mulligan, 2014; Figure 1). In early development, GFL-RET
signals promote proliferation and migration of neural crest-
derived cells to populate neuroendocrine organs and contribute
to the development of central and peripheral nerve lineages,
most notably the enteric nervous system (Avantaggiato et al.,
1994; Schuchardt et al., 1994). In the genitourinary system,
activation of RET receptor signaling is essential for growth
and formation of the kidney, and later for maturation of
spermatogonia (Schuchardt et al., 1996; Meng et al., 2000).
More recently, important roles for GFL-RET in formation of
the Peyer’s patches, lymphoid structures in the gut, and the
maintenance and expansion of hematopoietic stem cells have
been recognized (Vargas-Leal et al., 2005; Veiga-Fernandes et al.,
2007; Fonseca-Pereira et al., 2014). However, the developmentally
important processes of cell proliferation and migration and stem
cell renewal can also be “hijacked” to promote the growth and
spread of cancer. RET is a well characterized contributor to
the neoplastic process, acting as an oncogenic driver in several
cancers, and has been more recently recognized as a critical
determinant of invasion and spread in diverse tumor types
(Mulligan, 2014). These processes can be GFL-independent or -
dependent, with variations depending on the type of tumor and
the mechanisms leading to stimulation of RET receptor signaling.
Although GFL-GFRα complexes have been demonstrated to
induce intracellular signaling through other receptors (Paratcha
et al., 2003; Popsueva et al., 2003), their role in RET-associated
processes is best described in the cancer setting and will be the
focus here.

RET DEPENDENT, GFL INDEPENDENT
CANCERS

Oncogenic mutations that constitutively activate the RET
receptor in the absence of GFLs have been recognized for
over 30 years (Fusco et al., 1987; Mulligan et al., 1993).
Clinically, screening for these mutations can be a valuable
tool in establishing differential diagnosis and guiding disease

management. RET mutations fall into two distinct classes based
on mutational mechanisms and are consistently associated with
distinct tumor types.

RET Gene Rearrangements
Somatic rearrangements of the RET gene, resulting from
chromosomal rearrangements or inversions, lead to the
juxtaposition of the RET intracellular kinase domain sequences
with N-terminal sequences from another protein which contain
dimerization domains such as coiled-coil motifs (Romei et al.,
2016). RET fusions have been found in 10–20% of papillary
thyroid carcinoma (PTC), ∼1–2% of non-small-cell lung
carcinoma (NSCLC), and more recently, in 3% of Spitzoid
tumors (Wiesner et al., 2014; Romei et al., 2016; Drilon et al.,
2018a; Liang et al., 2018). Increasingly, deep sequencing
approaches on a wider variety of tumors are identifying less
frequent RET rearrangements in other cancer types including
chronic myelomonocytic leukemia and colorectal, breast, ovarian
and head and neck tumors (Ballerini et al., 2012; Kato et al.,
2017; Gozgit et al., 2018; Mulligan, 2018; Paratala et al., 2018;
Pietrantonio et al., 2018; Skalova et al., 2018).

The chimeric RET fusion proteins generated in response
to these rearrangements, localize in the cytosol and are
constitutively active in the absence of any GFL. Because
of their location, they are able to escape many of the
processes that regulate a membrane-associated RET protein
and promote sustained activation of downstream survival and
growth pathways (Richardson et al., 2009; Xing, 2013). Over 30
RET fusion partner genes have been identified to date, and the
distribution of different partners varies amongst tumor types.
For example, the kinesin family 5B-RET gene rearrangement is
the most commonly found in lung adenocarcinoma but is rare
in other tumor types, while coiled-coil domain containing 6-RET
rearrangements are common in PTC and several tumor types
(Romei et al., 2016; Gautschi et al., 2017; Ferrara et al., 2018).

Identification of RET mutations can provide valuable
prognostic and predictive tools to guide patient management.
In PTC, RET rearrangements appear to be an early event in
tumourigenesis (Viglietto et al., 1995). Although not essential
for PTC formation, presence of a RET fusion protein or
increased expression is linked to more malignant phenotypes
including regional invasion and lymph node metastasis (Miki
et al., 1999; Wang et al., 2008; Yip et al., 2015; Khan
et al., 2018). Thus, RET rearrangements are an important
marker for risk of malignancy in fine needle aspirates of
thyroid nodules with indeterminate cytology. As part of a
positive predictive multigene panel (e.g., ThyroSec v3, or
ThyGenX/ThyraMIR), recognition of RET variants can help
to distinguish benign lesions from cancer and identify cases
requiring surgery (Sapio et al., 2007; Onenerk et al., 2017;
Paschke et al., 2017; Steward et al., 2018). In contrast to
PTC, RET mutations appear to be oncogenic drivers in
NSCLC, and are more common in younger never-smokers
(Wang R. et al., 2012; Tsuta et al., 2014; Gautschi et al., 2017).
Although RET rearrangements are infrequent, screening as
part of a multigene panel or in patients where other lung
cancer genes have been excluded, is recommended to identify
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FIGURE 1 | The RET receptor, associates with GDNF family ligands and coreceptors. (A) The RET receptor tyrosine kinase showing its major functional domains.
RET is the transmembrane receptor for the four GFLs. GFLs are recruited to RET by interactions with cell surface coreceptors of the GFRα family, consisting of either
two or three globular protein domains tethered to the cell membrane by a GPI-linkage. Locations of key RET residues are indicated. (B) GFL-RET signaling
complexes. GFL and GFRα family members associate in a 2:2 ratio (Parkash et al., 2008). Theses complexes recruit RET to lipid raft membrane domains where
signaling occurs (Tansey et al., 2000).
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patients who may benefit from RET targeted therapies (below)
(Kalemkerian et al., 2018). Interestingly, recent studies indicate
that increased expression of wildtype RET occurs in an even
larger pool of NSCLC, where it may be linked to poor tumor
differentiation (Tan et al., 2018), suggesting that, in addition to
RET fusions, GFL-RET signaling may also contribute to these
tumors.

RET Point Mutations
In contrast, gain-of-function point mutations in the RET
receptor give rise to multiple endocrine neoplasia 2 (MEN2), an
inherited cancer syndrome characterized by medullary thyroid
cancers (MTC) and the adrenal tumor pheochromocytoma
(Mulligan, 2014; Wells, 2018). Similar mutations also occur
somatically in 40–65% sporadic MTC where they are an
important biomarker that identifies more aggressive disease
(Mulligan, 2014; Vuong et al., 2018; Wells, 2018). Interestingly,
unlike RET rearrangements, activating RET point mutations
are extremely rare outside of the neuroendocrine tumors. In
MEN2, mutations in the RET extracellular domain result in
constitutive dimerization and activation, while mutations of
intracellular sequences generally affect kinase autoinhibition
or ATP-binding and facilitate activation of RET monomers
(Mulligan, 2014; Plaza-Menacho, 2018). As a result, full-length
MEN2-RET receptors at the cell membrane are constitutively
active in the absence of GFLs and stimulate unregulated signaling
through pathways associated with wildtype RET activity (Asai
et al., 1995; Santoro et al., 1995). However, because these active
RET forms localize on the cell surface, they can also associate
with GFL-GFRα complexes, which may further enhance their
oncogenic activity (Bongarzone et al., 1998; Cranston et al., 2006;
Gujral et al., 2006). There are strong associations of MEN2
disease phenotype with specific RET mutations, with more severe
disease associated with relatively greater increases in mutant
RET kinase activity (Eng et al., 1996; Wells et al., 2015). These
associations provide the basis of clinical management guidelines
for patients with MEN 2. Genetic screening for RET mutations
as early as possible is now the standard of care for all at-risk
individuals, allowing recommendations to be tailored to the risks
associated with specific RET mutations (Wells et al., 2015). For
example, a specific methionine to threonine change at codon 918
(M918T) in the RET kinase domain (Figure 1), leads to a 10-fold
increase in ATP-binding and RET kinase activity and is associated
with the earliest disease onset and poorest prognosis (Gujral
et al., 2006; Wells et al., 2015). In these cases, thyroidectomy
is recommended in the first year of life, to minimize risks of
MTC micrometastasis (Sanso et al., 2002; Zenaty et al., 2009;
Wells et al., 2015). In patients with other “high risk” RET
mutations (e.g., C634R, A883F) surgery may be delayed within
the first 5 years, while a combination of biochemical monitoring
and delayed surgery may be appropriate for families with other
more moderate mutations and later familial disease onset (Wells
et al., 2015; Voss et al., 2017). The effects of RET mutations
in familial and sporadic cancers and further details of specific
genotype-phenotype correlations have been well documented in
recent reviews (Romei et al., 2016; Drilon et al., 2018a; Mulligan,
2018).

GFL-MEDIATED RET ACTIVITY IN
CANCER

In addition to oncogenic mutations, increased expression or
activity of wildtype RET is now being recognized in many
additional tumor types where it may have a range of different
implications. In response to GFLs, which are released at
some level by many tumors as well as by many cell types
in the tumor microenvironment, RET signaling can enhance
growth, promote tumor spread or even affect response to
therapies.

Breast Cancer
RET and GFRα1 are expressed in approximately 30–70% of
human breast cancers (Esseghir et al., 2007; Boulay et al., 2008;
Morandi et al., 2011). Recent data have suggested that RET
variants or amplification may also occur in ∼1% of breast
tumors or metastases (Paratala et al., 2018), while tumor-specific
expression of GDNF and ARTN is relatively frequent and can
promote autocrine activation of RET downstream signaling
(Kang et al., 2009; Kan et al., 2010; Morandi et al., 2013;
Nik-Zainal et al., 2016). RET expression is more common in
estrogen receptor positive (ER+ve) tumors, which are the most
common breast cancer subtype, but it is also detected in other
subtypes (Morandi et al., 2011; Gattelli et al., 2013). Expression
is higher in recurrent cancers compared to normal tissues and
corresponding primary tumors and is correlated with larger
tumor size, higher tumor stage and reduced metastasis-free and
overall survival (Esseghir et al., 2007; Boulay et al., 2008; Plaza-
Menacho et al., 2010; Wang C. et al., 2012; Gattelli et al., 2013;
Morandi et al., 2013). In in vitro cell and animal models of breast
cancer, activation of RET signaling by GFLs enhances tumor
cell proliferation, and survival and has been shown to promote
estrogen-independent expression of a normally estrogen−ER-
dependent transcriptional profile (Esseghir et al., 2007; Boulay
et al., 2008; Plaza-Menacho et al., 2010; Wang C. et al., 2012;
Gattelli et al., 2013, 2018). Both the RET and GFRA1 genes are
also positively regulated by estrogen-ER, suggesting a potential
feedback loop enhancing growth in ER+ve tumors (Stine et al.,
2011; Horibata et al., 2018).

Importantly, RET expression in breast cancer is also correlated
with resistance to endocrine therapies via stimulation of
the mTOR signaling pathway (Plaza-Menacho et al., 2010;
Gattelli et al., 2013; Morandi et al., 2013). Treatments that
target tumor responses to estrogen, including selective estrogen
receptor modulators (e.g., tamoxifen), agents blocking estrogen
biosynthesis (e.g., aromatase inhibitors), and estrogen receptor
antagonists (e.g., fulvestrant) are an important adjuvant to first
line surgery, chemotherapy or radiation for women with ER+ve
breast cancers (Pagani et al., 2010; Liu et al., 2017). Acquired or
intrinsic endocrine resistance to these therapies limits options
to block tumor growth or recurrence in these patients (Liu
et al., 2017). RET expression is frequently elevated in ER+ve
tumors, and patients with RET +ve tumors are over represented
amongst cases with acquired endocrine resistance, suggesting a
functional link (Plaza-Menacho et al., 2010; Morandi et al., 2013).
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Recent data suggest that upregulation of GFL ligands in these
tumors may facilitate the transition of these “predisposed” RET-
expressing tumors to endocrine resistance (Horibata et al., 2018).
Excitingly, several recent studies in preclinical animal models
have suggested that targeting RET function could both limit
tumor growth and resensitize tumors to endocrine therapies,
prolonging the efficacy of these agents (Nguyen et al., 2015;
Andreucci et al., 2016; Hatem et al., 2016; Gattelli et al., 2018).

Pancreatic Cancer
RET and GFRαs are expressed in 40–65% of pancreatic ductal
adenocarcinomas (PDAC) and are an indicator of poorer
prognosis and reduced overall survival (Zeng et al., 2008; He et al.,
2014). Expression is more frequent in high grade and metastatic
tumors and in patients with lymphatic and perineural invasion
(Ito et al., 2005; Zeng et al., 2008). The pancreatic environment is
rich in GDNF and ARTN, which are robustly secreted by PDACs
themselves but also by intra- and extra-pancreatic nerves, and by
macrophages in the perineural space (Ito et al., 2005; Zeng et al.,
2008; Gil et al., 2010; Amit et al., 2017). Secretion of GFLs and
soluble forms of GFRα1 within the nerve, stimulates movement
of RET-expressing tumor cells along a chemotactic gradient of
GFLs to invade the perineural space and move along nerve fibers
toward the central nervous system, an invasive process which
is strongly linked to poorer patient outcomes, neuropathy and
tumor-related pain (Veit et al., 2004; Zeng et al., 2008; Gil et al.,
2010; Cavel et al., 2012; He et al., 2014; Amit et al., 2016).

Interestingly, although activating RET mutations are very
rare in PDAC, a common polymorphic glycine to serine
sequence variant at codon 691 (G691S) in the RET intracellular
juxtamembrane region is over represented in PDAC patients
(∼20% cases) and has been linked to increased GDNF-dependent
proliferation and invasion (Sawai et al., 2005), suggesting this
variant may act as a risk allele to modify RET function.

Prostate Cancer
RET protein has been detected in 20–75% of high grade prostate
adenocarcinomas (Gleason score >3) while GDNF is upregulated
in both prostate tumors and surrounding stroma (Dawson
et al., 1998; Dakhova et al., 2009; Ban et al., 2017). GDNF-
mediated RET activity also promotes cell proliferation, invasion
and perineural spread in in vitro and preclinical animal models
of prostate cancer and can be further enhanced in the presence of
soluble forms of GFRα1 released by nerves (Gil et al., 2010; Liu
et al., 2012; Ban et al., 2017). Upregulation of RET and GDNF
is associated with increased expression of matrix degrading
metalloproteinases that facilitate the invasion of tumor cells into
the perineural space (Baspinar et al., 2017). Importantly, GDNF
is robustly secreted by fibroblasts in the tumor environment upon
treatment-induced DNA damage, which can promote prostate
cancer cell proliferation and may act as a feedback mechanism
contributing to treatment resistance (Huber et al., 2015).

Colorectal Cancer
The effects of GFL-mediated RET activation in colorectal
cancer are less clear. RET expression is relatively low in
colon adenocarcinoma and several studies have noted frequent

methylation of the RET promoter, suggesting reduced RET
expression may be associated with worse prognosis in some cases
(Luo et al., 2013; Draht et al., 2014). Interestingly, ARTN, NRTN,
GFRα1, and GFRα3 are found in colon tumors, potentially
arising from gut nerves or associated with chronic inflammation
of the intestine (Qiao et al., 2009; Luo et al., 2013; Han
et al., 2015), which increases cancer risk, suggesting a subset
of RET-expressing colon tumors may be responsive to GFL
stimulation (Mendes Oliveira et al., 2018). Increasingly, whole
genome profiling or focused mutation panels are identifying RET
rearrangements in colorectal cancers similar to those in thyroid
and lung (Le Rolle et al., 2015; Kloosterman et al., 2017; Mendes
Oliveira et al., 2018; Pietrantonio et al., 2018). RET chimeric
oncoproteins are rare (0.2–0.5% cases), but promote tumor
growth and migration in animal and cell based models (Gozgit
et al., 2018) and have been correlated with worse prognosis,
poor treatment response and reduced overall survival in colon
adenocarcinoma patients (Le Rolle et al., 2015). Together, these
data suggest that at least in some cases, RET may act as an
oncogenic driver in colon as well. Thus, further investigation
is required to establish significance of RET and GFL activity in
colorectal cancer.

Myeloid Malignancies
RET is expressed in myeloid tumors but is rare in lymphoid
tumors (Gattei et al., 1997). Increased RET activity, mediated
through NRTN or ARTN ligand complexes secreted by stromal
cells, is detected in 60–70% of Acute Myeloid Leukemia (AML)
cases with myelomonocytic differentiation, where it may promote
cell viability and proliferation through suppression of autophagy
by mTORC1-mediated signals (Gattei et al., 1997, 1998; Camos
et al., 2006; Rudat et al., 2018). Expression is higher in AML
cases with worse prognosis (Yu et al., 2015). In patients with
AML associated with a t(8;16)(p11;p13) translocation, increased
RET expression may be a result of altered levels of a group of
miRNAs predicted to regulate its normal expression (Diaz-Beya
et al., 2013). In a single study, rare RET rearrangements have been
found in patients with the myeloproliferative disorder, chronic
myelomonocytic leukemia (Ballerini et al., 2012).

Other Cancers
Elevated levels of GFL and RET expression, without mutation, are
detected in a subset of several other cancers including: melanoma,
glioma, neuroblastoma, seminoma, endometrial, and head and
neck cancers and renal cell carcinomas (Wiesenhofer et al., 2000;
Narita et al., 2009; Pandey et al., 2010; Flavin et al., 2012; Chuang
et al., 2013; Kosari et al., 2014; Lin et al., 2016). In many of
these diseases, RET appears to stimulate tumor cell migration or
invasion and is correlated with reduced overall survival (Narita
et al., 2009; Pandey et al., 2010; Chuang et al., 2013; Kosari et al.,
2014; Lin et al., 2016; Pietrantonio et al., 2018). Intriguingly,
RET and GFL expression is found even more broadly in cancer
cell lines from various tissues, although in vivo correlates of this
in primary tumors are not always available and significance in
some cases is not yet clear (Fielder et al., 2018). Together, these
data suggest that targeting RET may be therapeutically valuable
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FIGURE 2 | GFL-mediated influences in the tumor microenvironment. Activation of RET receptor signaling in tumor cells promotes expression of a portfolio of
proteins that regulate interactions with the tumor microenvironment. RET activity promotes changes in the composition of the tumor environment and stimulates
autocrine and paracrine signals to recruit immune cells, remodel the extracellular matrix (ECM) and promote invasion toward the neural environment. Black arrows –
Direct targets of RET activity.

in a broader and more diverse group of human cancers than
recognized to date.

GFL-RET MODULATION OF THE TUMOR
MICROENVIRONMENT

One of the most important roles of GFL-RET signaling
in cancer is in modulating the relationship between the
tumor and its surroundings. The tumor microenvironment
is complex, comprising vessels (blood and lymph), and a
plethora of cellular components including cancer-associated
fibroblasts (CAF), stromal, and immune or inflammatory cells
all surrounded and supported by non-cellular components of
the extracellular matrix (ECM) (Figure 2). Interactions of tumor
cells and their environment can result in reciprocal remodeling
that enhances the ability of the tumor to grow, and invade
surrounding tissues or escape immune response and initiate
metastasis. In multiple cancers, stimulation of RET activity
leads to changes in expression of transcription factors (e.g.,
SLUG, SNAIL, ZEB, TWIST), adhesion proteins (e.g., E-cadherin,
N-cadherin, vimentin) and matrix remodeling proteins (e.g.,
matrix metalloproteases) that can cause cancer cells to take
on more mesenchymal phenotypes (Melillo et al., 2005; Lian

et al., 2017; Castellone and Melillo, 2018). Cells undergoing RET-
mediated epithelial to mesenchymal transition (EMT) remodel
their actin cytoskeleton and lose cell polarity, becoming more
motile, and have enhanced abilities to degrade the ECM to
promote cell invasion (Tang et al., 1998; Asai et al., 1999; Melillo
et al., 2005; Lian et al., 2017).

Importantly, RET is implicated in promoting tumor-related
inflammation, the infiltration of immune cells into the tumor
environment, a key indicator of disease outcomes and therapeutic
responses (Borrello et al., 2008). RET activation, either by
oncogenic mutations or GFL stimulation, has been shown
to contribute to this process by inducing expression of
proinflammatory proteins including cytokines, chemokines and
their receptors (Borrello et al., 2005; Puxeddu et al., 2005;
Cavel et al., 2012; Menicali et al., 2012; Gattelli et al., 2013;
Rusmini et al., 2014; Figure 2). When released, these molecules
may act directly on the tumor cell, leading to an autocrine
loop that further enhances tumor growth or motility (e.g.,
CXCR8/IL8), or they may promote changes in the tumor
microenvironment, acting as chemoattractants for primary
immune cells (lymphocytes, neutrophils, macrophages, mast
cells) (Figure 2) that infiltrate the growing tumor, which in turn
contribute to matrix degradation, angiogenesis and increased
inflammation (Borrello et al., 2005; Cavel et al., 2012; Gattelli
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et al., 2013). For example, RET activity in thyroid, breast and
pancreatic cancers can enhance tumor expression of chemokine
receptor CXCR4, triggering responses to circulating chemokines
released by CAFs or the tumor itself, to recruit endothelial
progenitors that promote angiogenesis to sustain the growing
tumor mass (Castellone et al., 2004; Borrello et al., 2005;
Lu et al., 2011; Werner et al., 2017; Wang et al., 2018).
Inflammatory cytokines can also promote release of GFLs by
infiltrating macrophages or fibroblasts (Figure 2), particularly in
the perineural environment, to further enhance RET-mediated
effects (Vargas-Leal et al., 2005; Esseghir et al., 2007; Cavel et al.,
2012). Several studies have shown that varying levels of RET
are expressed broadly on immune cells of both myeloid and
lymphoid lineages, suggesting that recruitment of these cells
to the tumor microenvironment may be enhanced by higher
localized GFL levels, further potentiating tumor growth and
invasive spread (Borrello et al., 2005; Vargas-Leal et al., 2005;
Cavel et al., 2012; Gattelli et al., 2013; Rusmini et al., 2014;
Ibiza et al., 2016). Together, these data reveal a complex web
of autocrine and paracrine stimulatory signals that promote
remodeling of the tumor environment, facilitating the oncogenic
potential of RET-expressing tumors.

GFL-RET AND THE THERAPEUTIC
LANDSCAPE

As recognition of RET’s impact in diverse cancers expands, it
has become an increasingly important therapeutic target. As yet,
there are no agents that specifically target the RET kinase in
clinical use, however, multikinase inhibitors originally developed
against other kinases that also inhibit RET activity are proving
valuable (Drilon et al., 2018a; Redaelli et al., 2018). Specifically,
two tyrosine kinase inhibitors (TKI), the VEGFR2/EGFR
inhibitor vandetanib and VEGFR2/MET inhibitor cabozantinib,
are approved for treatment of advanced thyroid cancer, and
have been evaluated in clinical trials for RET-associated lung
adenocarcinoma (Wells et al., 2012; Drilon et al., 2016, 2018a;
Schlumberger et al., 2017; Yoh et al., 2017). Treatment with these
TKIs has yielded significant improvements in progression free
survival in MTC patients with activating RET mutations, leading
to stable disease or extended response duration (Wells et al., 2012;
Schlumberger et al., 2017). Notably, improved overall survival has
been reported for patients with MTC harboring the RET M918T
mutation, characteristic of the most aggressive form of MEN2,
but is not significantly increased for patients with other RET
mutations (Fox et al., 2013; Schlumberger et al., 2017). In NSCLC
with RET mutations, partial responses have been reported but
clinical benefit has been limited and these agents have not to
date significantly improved patient outcomes (Drilon et al., 2016;
Gautschi et al., 2017; Yoh et al., 2017; Ferrara et al., 2018).
Similarly, in breast cancer, RET-targeting TKIs have not shown
significant benefit, although previous studies have not specifically
focused on RET-positive tumors (Miller et al., 2005; Bronte et al.,
2017).

Further, these approved multikinase inhibitors are associated
with an array of significant off-target side effects, likely due to

inhibition of other kinase family members (Drilon et al., 2018a).
A number of other multikinase TKIs (e.g., ponatinib, alectinib,
sorafenib, lenvatinib, RXDX-105) are currently in clinical trials
or early preclinical testing for RET-associated cancers (Drilon
et al., 2018a; Redaelli et al., 2018). Like vandetanib and
cabozantinib, these are primarily ATP-competitive inhibitors that
bind conserved residues at the ATP-binding site of the kinase
(Roskoski and Sadeghi-Nejad, 2018). Interestingly some of the
amino acid substitution RET mutations found in MEN2 involve
these “gate-keeper” residues (e.g., V804M), which determine
inhibitor “fit” within the ATP-binding pocket, altering the
ability of some TKIs to bind and inhibit RET (e.g., vandetanib,
motesanib) (Carlomagno et al., 2004; Redaelli et al., 2018). Each
of the inhibitors currently being explored has distinct abilities
to inhibit RET kinase domain mutants (Liu et al., 2018). Thus,
not all TKIs perform equally well at inhibiting RET mutants
and patient genotype is an important determinant of optimal
therapy (Carlomagno et al., 2004; Redaelli et al., 2018). Further,
recent reports of acquired resistance, due to somatic mutations of
this same residue, in patients treated with TKIs (Subbiah et al.,
2018c), suggest that the development of novel, more selective
RET inhibitors has many advantages.

A new generation of kinase inhibitors with improved
selectivity for RET that also efficiently inhibit the activity of
wildtype and all of the known RET mutants, are now coming
to the fore. A number of promising RET-selective agents are
currently in preclinical evaluation and early clinical trials (Drilon
et al., 2018a; Redaelli et al., 2018). Two of the most exciting of
these, BLU-667 and LOXO-292, have more than 100-fold greater
selectivity for RET compared to other kinases (Subbiah et al.,
2018b,c) and are currently being evaluated in clinical trials for
RET-associated lung, thyroid, colon and other solid tumors1.
Early reports suggest these agents are better tolerated, with fewer
off-target effects than multikinase inhibitors (Drilon et al., 2018c;
Subbiah et al., 2018b,c). Preliminary results of a Phase I trial
of LOXO-292, report high response rates for patients with RET
fusion proteins (∼69%) and also suggest some effect on brain
metastases, a key challenge in managing NSCLC (Drilon et al.,
2018b,c; Subbiah et al., 2018c). These studies have led to FDA
designation of LOXO-292 as a breakthrough therapy for RET-
mutation positive thyroid carcinoma and NSCLC.

While RET-selective agents are improving targeting of RET-
associated cancers now, in the future, additional approaches
and combinations of therapies will further expand options.
Combination therapies, coupling RET inhibitors with other
therapeutic approaches may further enhance patient outcomes.
Several studies, combining inhibitors of RET and mTOR
signaling (e.g., everolimus) have shown increased or prolonged
benefit over single agents in thyroid and breast cancer models
(Plaza-Menacho et al., 2010; Gild et al., 2013; Subbiah et al.,
2015). Excitingly, early reports from a clinical trial in lung cancer
suggests that this combination may also improve delivery of RET
inhibitor across the blood-brain barrier, essential for treating
brain metastases (Plaza-Menacho et al., 2010; Gild et al., 2013;
Subbiah et al., 2015, 2018a).

1clinicaltrials.gov
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Alternative strategies to target the GFL-RET axis are also
under development. Antibody-drug conjugates targeted to RET
or GFRα1, have demonstrated effective and specific killing of
breast cancer cells in vitro and in vivo (Nguyen et al., 2015; Bhakta
et al., 2017; Bosco et al., 2018). Recent studies have capitalized on
adoptive T-cell immunotherapy approaches to develop GFRα4-
targeting chimeric antigen receptor (CAR)-modified T cells that
can promote cytotoxicity and limit growth of MTC cell lines
in animal models (Bhoj et al., 2016). Interestingly, GDNF also
upregulates the immune inhibitory factor Programmed Death
Ligand (PDL-1) in some tumors (Lin et al., 2017; Figure 2),
which when bound to its PD-1 receptor can mediate suppression
of local immune responses, leading to immune evasion by
tumor cells (Alsaab et al., 2017). Recent advances in cancer
immunotherapy targeting the PDL-1/PD-1 immune checkpoint
to release the blockade of immune responses, have shown
dramatic promise as an adjuvant to established chemo or radio
therapies in patients with deficiencies of DNA repair and high
mutational burden (Gong et al., 2018). However, preliminary data
in lung have shown low mutational burden and minimal response
to immunotherapies in tumors bearing RET rearrangements,
suggesting that this approach alone may not have significant
benefits in this subgroup of tumors and should be coupled to
other standard or targeted therapies (Sarfaty et al., 2017; Sabari
et al., 2018).

NON-TUMOR EFFECTS OF GFL-RET
TARGETED THERAPIES

Despite the promise of personalized therapy for RET-associated
cancers, the longer term effects of RET inhibition in mature
normal tissues will need to be carefully considered. GFL-
RET signaling is essential in development of nervous and
hematopoietic systems, but also has important roles in the
maintenance and survival of mature nerve lineages in the CNS
and PNS. Prolonged inhibition of these signals may compromise
nerve health and survival, particularly in aged neurons or in
response to stress or damage (Kramer et al., 2007; Meka et al.,
2015; Soba et al., 2015). Although many TKIs have limited
abilities to cross the blood-brain barrier, more recent TKI
and RET selective inhibitors (e.g., LOXO-292) have improved
penetration into the CNS, where GFL-RET signals are important
survival factors for dopaminergic neurons (Lin et al., 1993;
Drinkut et al., 2016). Thus, until the long-term effects of blocking
CNS GFL-signaling in the cancer setting are clear, optimal
treatment of intracranial metastasis and maintaining nerve health
may need to be carefully balanced.

GFL-RET signals are also important for hematopoietic stem
cell maintenance and expansion in adult animals, suggesting that
reduced levels as a result of treatment could impact the portfolio
of immune cells generated and responses to immune challenge
(Fonseca-Pereira et al., 2014). In animal models, RET ablation
impairs gut homeostasis and increases the risks of inflammation
or infection in the gut in response to irritants (Ibiza et al.,
2016), which could also impact patient ability to remain on RET
inhibitor treatment.

Finally, GFL-RET signaling has also been implicated in tumor
related pain, but this relationship appears complex. GFL and
RET expression are correlated with perineural invasion and
resultant increased pain levels in pancreatic cancer patients
(Wang et al., 2014; Amit et al., 2016). However, reports are
quite variable on whether GFLs increase or decrease cancer or
inflammation-related bone pain (Golden et al., 2010; Ding et al.,
2017; Nencini et al., 2018). It is likely that variations in the
underlying mechanisms causing pain, and potentially central
versus peripheral responses, may contribute to these differences.
Likewise, the effect of GFL-RET-targeted therapies on tumor pain
may vary with cancer type and degree or sites of dissemination.

FUTURE CONSIDERATIONS FOR
GFL-RET IN CANCER

While RET receptor mutations are well-characterized
mechanisms of carcinogenesis, the much broader implications
of GFL-mediated RET signaling in cancer are only beginning to
be recognized. State-of-the-art diagnostic approaches, such as
liquid biopsies coupled to Next Generation Sequencing, or high
through-put mutational screening panels to assess circulating
tumor cells or cell free tumor DNA (Hench et al., 2018; Vaughn
et al., 2018), are increasing our abilities to recognize RET-
targetable cancers or recurrent disease, without need for more
invasive tumor biopsies (Reckamp et al., 2018).

With more intensive scrutiny of cancer genomes, RET
mutations continue to be recognized, but many tumor types
are now also being found to respond to GFLs released in
the microenvironment by the tumor itself or neighboring
cells, expanding the range of pathologies that may benefit
from targeting this pathway. GFL-RET signaling both promotes
inflammation in the tumor microenvironment and enhances
tumor responses to it, which may provide an additional
mechanism increasing proliferation and dissemination of diverse
cancers. Interestingly, recent studies have also linked RET to
alterations in tumor metabolism, an emerging hallmark of cancer,
through a novel ligand complex involving Growth Differentiation
Factor 15 (GDF15) and the GDNF Family Receptor α-like
(GFRAL) (Emmerson et al., 2017; Hsu et al., 2017; Mullican
et al., 2017; Yang et al., 2017). GDF15-GFRAL-RET regulates
metabolic homeostasis, particularly under stress conditions,
but may also promote cancer associated anorexia or cachexia
(Johnen et al., 2007; Lerner et al., 2015), suggesting that
blocking RET signals may have added benefit in reducing weight
loss associated with other forms of therapy. Together, these
data highlight the complexity of GFL-RET signaling and the
potential benefits and challenges of new therapeutic strategies
for targeting this pathway that are rapidly transitioning to
the clinic, to change cancer management and improve patient
outcomes.
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