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ABSTRACT: This study reports on the application of an extreme
learning machine (ELM) in near-real-time kidney monitoring via urine
neutrophil gelatinase-associated lipocalin (NGAL) detection with a 3D
graphene electrode. This integration marks the first instance of
combining a graphene-based electrode with machine learning to
enhance the NGAL detection accuracy, building on our group’s 2020
research. The methodology involves two key components: a graphene
electrode functionalized with a lipocalin-2 antibody for NGAL
detection and the ELM application for improved prediction accuracy
by using urine analysis data. The results show a significant 15%
increase in the area under the curve (AUC) for NGAL determination,
with error reduction from ±6 to 0.54 ng/mL within a linear range of
2.7−140 ng/mL. The ELM also lowered the detection limit from 14.8
to 0.89 ng/mL and increased accuracy, precision, sensitivity, specificity, and F1 score for AKI prediction by 8.89, 30.69, 6.78, 9.94,
and 19.07%, respectively. These findings underscore the efficacy of simple neural networks in enhancing graphene-based
electrochemical sensors for AKI biomarkers. ELM was chosen for its optimal performance-resource balance, with a comparative
analysis of ELM, support vector machines, multilayer perceptron, and random forest algorithms also included. This research suggests
the potential for miniaturizing AI-enhanced sensors for practical applications.

1. INTRODUCTION
Acute kidney injury (AKI) stands as a critical global health
concern, which may arise without notice if no specific sensors
are applied. Unfortunately, despite over 50 years, the
comorbidity rates of AKI have shown no improvement. The
presence of AKI significantly elevates the risk of heart failure
by 58%, myocardial infarction by 40%, and stroke by 15%.1

Particularly prevalent in hospitals in high-income countries
(HICs), AKI predominantly affects elderly patients with
underlying conditions and those undergoing procedures like
renal dialysis, often induced by iatrogenic factors such as
surgical interventions and healthcare-associated infections.
Conversely, in low-to-middle-income nations (LMICs), AKI
occurs more frequently outside hospitals and is linked to
various factors, including infections, dehydration, electrolyte
imbalances, toxic ingestion, and pregnancy-related complica-
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Figure 1. Response time of AKI biomarkers: monitored after surgery:
creatinine, Kim-1, cystatin C, and NGAL. During and after surgery
before AKI occurred, these biomarkers were plotted over time. NGAL
showed the fastest response time, rising to the peak within 2 h.
Reprinted with permission from The Journal of the American Society
of Anesthesiologists, 2010 Apr 1;112(4):998−1004. Copyright 2010,
Wolters Kluwer Health, Inc.8
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tions. Notably, AKI in LMICs tends to impact a younger
demographic compared to HICs. AKI manifests as a condition
marked by a sudden decline in glomerular filtration rate
(GFR), impacting toxin removal capability and attributing to
several morbidity factors.1 Neutrophil gelatinase-associated
lipocalin (NGAL) biomarker arises as one of the most rapid
responses addressing the occurrence of AKI.2−4

The Kidney Disease Improving Global Outcome (KDIGO)
criteria for diagnosing acute kidney injury (AKI), established in
2012, relies on increased serum creatinine (SCr) levels and
altered urine output.3 However, SCr’s delayed responsiveness,
often taking up to 72 h to reflect acute renal injury, limits its
practicality for real-time monitoring. Consequently, alternative
biomarkers such as kidney injury molecule-1 (Kim-1), cystatin
C, and NGAL have gained prominence. Notably, NGAL
emerges as a promising candidate for early diagnosis, exhibiting
rapid responsiveness within 2 h to renal injury. A comparison
of the response times of different biomarkers upon kidney
injury is illustrated in Figure 1. We selected NGAL as the AKI
biomarker for its fastest response time (within 2−24 h). Kim-1,
cystatin C, and creatinine response to AKI were 6 h, 34 h, and
48 h, respectively.5−9

Originating from the bone marrow during myeloid
leukocytosis and stored in neutrophils, NGAL is predom-
inantly released by the loop of Henle and associated tubules in
cases of renal tubular epithelial cell damage, positioning it as an
early predictive biomarker for kidney dysfunction. The 25 kDa
NGAL is secreted and elevated in serum and urine, correlating
with acute renal failure and offering the potential for timely
assessment of damage severity. This stresses NGAL’s
significance in advancing both the diagnosis and prognosis of
chronic kidney disease (CKD) and facilitating the evaluation of
treatment efficacy.6

Various methodologies, such as plasma-based fluorescence
immunoassay,2 urine sample immunoblotting,10 enzyme-linked
immunosorbent assay (ELISA), and chemiluminescent mag-
netic immunoassay (CMIA) with healthy urine,11 have been
employed for quantifying NGAL. However, these methods
involve high costs and lengthy processing times. Electro-
chemical methods, especially with downscaled working
electrodes, are widely used for label-free and portable
biosensing devices. Despite the advantages, downsizing the
working electrode may compromise the sensor surface area and

sensitivity to be reduced compared to that of a large-electrode
device. Utilizing graphene-based electrodes could greatly
enlarge the reactive surface of a miniaturized electrode.
Graphene offers an extraordinarily high surface area per
mass, thereby enhancing the sensitivity and resolving the
mentioned issues. Among graphene electrodes, 3D-folded
graphene or graphene foam (GF) possesses a greater reactive
surface per unit volume compared to flat graphene.
In the literature, modifications to the working electrode were

proposed to enhance the sensitivity and specificity of
electrochemical sensors. Various electrode morphologies have
been proposed for specifically detecting NGAL. For instance,
an ITO/TiO2/CoPc/CS/SA/BSA/BiNb/NGAL sensor, uti-
lizing a photoelectron-chemical transduction technique, was
employed for serum NGAL detection.12 Additionally, an
electrochemical aptasensor using GSPE/P(ATT)-GO/
AuNPs/Apt1/LCN2/Apt2 electrodes was developed for
NGAL detection in fetal bovine serum through DPV signal
analysis.13 Carbon/enzyme-based configurations are utilized
for serum sample analysis employing cyclic voltammetry
(CV).14 Among various alterations of potential or current in
electrochemical measurements, CV is particularly crucial as it
can determine the reduction and oxidation potentials, along
with the redox current correlated to the analyte concentration.
Following the determination of redox potentials by CV,
chronoamperometry is applied for fast detection and to enable
a miniaturized detection device for the analyte.
Graphene, a single-atom-thick carbon material, exhibits

exceptionally high electron mobility, with the electron velocity
in graphene reaching 1/300 compared to the velocity of light.
With an extraordinarily high reactive surface area of 2.1 × 107
cm2/g, graphene stands out as a distinctive candidate for
sensing materials. The 3D folding of graphene on a
microporous scaffold further amplifies the surface area per
unit volume compared to that of a single flat graphene sheet.
This ongoing research in NGAL detection builds upon our
previous work,15 involving the collection and testing of real
human urine samples, along with the incorporation of neural
networks for performance enhancement, as reported in this
article.
Xiao et al. (2022) reviewed the artificial intelligence (AI)

applications focused on AKI, highlighting various approaches
for predicting AKI prognosis.16 While numerous AI methods

Figure 2. Overall picture from nanomaterials based on microporous graphene, electrode functioning, and embedding a machine learning model
(ELM) for performance improvement.
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exist for this purpose, limited attention has been given to AI-
powered AKI biomarker determinations. This study aims to
demonstrate the efficacy of the simplest neural network or
extreme learning machine (ELM) in enhancing electro-
chemical determination. Before selecting ELM for further
investigation, a comparative analysis is conducted with other
machine learning models, including support vector machines
(SVMs), multilayer perceptrons (MLPs), and random forest
(RF) algorithms. The work contributes by reporting the first
application of ELM in the electrochemical prediction of NGAL
with a graphene-based electrode. Performances of pure GF/
Ni/Anti-LCN2 and the electrode with ELM were compared in
terms of AUC and error improvement for AKI discrimination.
Incorporating machine learning into NGAL prediction serves

to eliminate nonzero interference factors present in human
urine, such as electrolytes and albumin. The comprehensive
overview of this research is illustrated in Figure 2.

2. MATERIALS AND METHODS
This section will start with electrode material fabrication,
beginning with details on the electrochemical setup and
measurements and electrode fabrication. The second part
contains performance improvement using ELM. Overall
methods can be illustrated in Figures 2 and 4. Characterization
equipment included a field-emission scanning electron micro-
scope (FE-SEM: Hitachi, SU-8030), a high-resolution
tunneling electron microscope (HR-TEM: JEOL, JEM-
2010), bright-field tunneling electron microscope (BR-TEM:

Figure 3. GF characterization via (a) visible-light image, (b) FE-SEM, (c) HR-TEM, and (d) BF-TEM. HR-TEM and BF-TEM display the
existence of graphene layers in GF. (e) Raman spectra with and without antibody conjugation (noise filtering applied). (f) XRD pattern of the GF.
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JEOL, JEM-2010), and X-ray diffraction (XRD: Rigaku,
TTRAXIII) using Cu Kα radiation (30 kV, 15 mA) at a
detection speed of 3°/min, and a confocal Raman
spectrometer (Horiba XploRA PLUS, Horiba Jobin Yvon,
Northampton, U.K.) with a 50× objective lens (LMPLFL50X,
Olympus, St. Joseph, MI). The characterizations are shown in
Figure 3. The diagram of the extreme learning machine for
accuracy improvement of NGAL prediction is shown in Figure
4.
2.1. Electrode Fabrication. An active electrode in this

study was composed of 3D microporous graphene with
lipocalin-2 (LCN2) antibody functionalized on its surface.
GF was fabricated using chemical vapor deposition (CVD)
with Ni foam as the catalyst. Ni foam was placed inside a (1
Torr) vacuum furnace tube aligned horizontally. The tube was
heated up to 900 °C with C2H2 flowing into the tube. After
heating, the tube underwent rapid cooling (15 °C/min). This
yields carbon atoms deposited as a graphene surface on the

foam scaffold. After the cooling process, nickel was partially
etched by a 3 M HCl solution at 60 °C for 30 min. FE-SEM,
HR-TEM, BF-TEM, Raman, and XRD of the GF are shown in
Figure 3. The X-ray diffraction (XRD) spectra of the
synthesized graphene foam are provided in Figure 3f. Note
that the observation of possible carbon particles in Figure 3b is
the result of Ni etching, where part of the graphene layer was
affected by a little defect. Therefore, we confirm the presence
of graphene by XRD, TEM, and Raman.
2.2. Electrochemical Preparation and Measurements.

Electrochemical experiments employed a three-electrode cell
featuring a platinum-wire counter electrode, Ag/AgCl (with 3
M KCl inner solution) as the reference electrode, and NGAL
antibodies immobilized on a GF/Ni working electrode (Figure
2). The cyclic voltammetry (CV) was conducted under a 50
mV/s scan rate in the presence of ferri/ferrocyanide redox in
0.1 M KCl with the potential ranging from 0.0 to 0.8 V in
NGAL solutions with various concentrations of 2.7−140 ng/
mL with pH 7.2 phosphate buffer solution (PBS). Palmsens 2
potentiostat was used as an electrochemical analyzer with
PSTrace 1.4 software. After oxidation potential was found from
CV, the potential was further picked up for amperometry. For
quantitative measurements, 0.2 mL of a human urine sample
with known NGAL concentration was sequentially added to
identify the potential at which oxidation peaks occurred. In
chronoamperometry, we recorded current responses following
consecutive NGAL additions to the electrochemical system,
starting at an onset potential of 0.4 V. These results were
compared to conventional ELISA measurements .
The electrochemical determination is based on cyclic

voltammetry (CV) and chronoamperometry using our
developed enzymatic microporous graphene electrode. CV
was carried out with a 50 mV/s scan rate in buffer solutions
(PBS; pH = 7.2). We conducted CV to determine the
oxidation potential, which was then picked up and used in
amperometry. Once the oxidation potential was determined,
we picked up the potential to be fixed for chronoamperometry.
In amperometry, we subsequently dropped urine with specific
NGAL concentrations and waited for a steady current before
the next drop. Results and correlation between concentrations
and currents are reported in the next section.
2.3. Chemicals, Materials, and Instrumentation. The

process used to fabricate the graphene/nickel foam was similar
to the method described in the previous study.15 The NGAL
antibody (Anti-LCN2) and lipocalin-2 were obtained from
Sigma-Aldrich (Missouri) and SinoBiological (Beijing, China),
respectively. The human lipocalin-2/NGAL ELISA kit was
purchased from Sigma-Aldrich (Missouri), and the analytical-
grade deionized water (DI) and phosphate-buffered solution
(PBS) were prepared by the Department of Biochemistry at
Khon Kaen University. Graphene/Ni foam functionalized with
the NGAL antibody was used as the transducer electrode.
2.4. NGAL Antibody Addition. GF prepared from CVD

will be functionalized with NGAL antibody (Anti-LCN2) via
carboxyl group functionalization. In the oxidation process, we
applied sulfuric acid (1 M H2SO4) as the oxidizing agent to GF
at 35 °C. For the postoxidation process, we diluted and washed
the mixture with deionized water to remove excess acids and
byproducts, followed by centrifugation to separate the oxidized
graphene and then drying in a vacuum oven. NGAL antibodies
were conjugated to the carboxyl groups using 4 μg/L EDC (1-
ethyl-3-(3-(dimethylamino)propyl)carbodiimide) and 6 μg/L
NHS (N-hydroxysuccinimide), creating stable amide bonds.

Figure 4. ELM is used for performance improvement after pure
electrochemical measures.

Table 1. Distribution of the Data Set Used to Train ELM for
NGAL Predictionsa

N minimum maximum mean SD

creatinine (mg/dL) 135 26.2 114 55.2 34.9
protein (mg/dL) 135 91.0 785 351 294
albumin (mg/dL) 135 620 2268 1193 699
Na+ (mmol/L) 135 10.0 49.0 30.8 13.9
K+ (mmol/L) 135 5.00 21.2 10.8 6.25
Cl− (mmol/L) 135 9.00 33.0 20.4 8.76
valid N (listwise) 135

aResults were obtained from urine analysis of the 135 samples.

Table 2. Patient Characteristics and Clinical Outcomes

parameter case

total 135
male:female 60:75
requiring kidney replacement therapy (KRT) 36
nephrotic syndrome 24
chronic kidney disease 19
diabetes mellitus 13
hypertension disease 10
dyslipidemia 6
others 27
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Raman spectroscopy was collected for GF before and after the
addition of carboxyl groups and Anti-LCN2 to verify the
carboxyl group functionalization. There were characteristic
peaks of carboxyl groups and antibodies added to ordinary
graphene peaks (Figure 3e).
2.5. Machine Learning Models. Since the electrolytes

and proteins were found to partially interfere with the NGAL
detection, we introduce machine learning models to exclude
the contribution of interference and improve detection
accuracy. Machine learning models for regression in this
study include support vector machines (SVMs), multilayer
perceptrons (MLPs), random forests (RFs), and extreme
learning machines (ELMs). SVM identifies a hyperplane for
linear or nonlinear relationships with a balance between
complexity and performance. MLP can capture complex
relationships with an adaptable architecture. RF combines
decision trees for robust predictions and feature importance
assessment. ELM merits AUC performance and model
simplicity due to computational efficiency, shallow architec-
ture, and regularization options. Performance comparison will
be reported and discussed in the next section.

2.6. Extreme Learning Machine. Extreme learning
machine (ELM) has gained much attention due to its
simplicity compared to attainable performance as well as
several advantages: (i) exceptional computational efficiency,
making it ideal for large data sets and time-sensitive
applications; (ii) simplicity and ease of implementation,
which allows for straightforward model setup and reduced
expertise requirements; (iii) a shallow architecture with a
single hidden layer that mitigates overfitting concerns,
improving AUC performance by reducing complexity; (iv)
strong generalization capabilities that enable ELM to capture
complex, nonlinear data relationships, enhancing AUC scores;
and (v) ability to incorporate regularization techniques like
ridge regression, further fine-tuning the model’s performance
and balancing complexity with AUC performance. These
characteristics make ELM a powerful and accessible option for
regression tasks.
In an ELM algorithm, a training set γ is defined by Huang et

al.17

= { | = }R Rx t x t i N( , ) , , 1, 2, 3, ...,i i i
n

i

The prediction value yi is given by

Figure 5. (a) Results of studying the electrical potential using cyclic voltammetry on NGAL within 0.2 M PBS (pH = 7.2) solution with 50 mVs−1
scan rate and five cycles of running were averaged for each concentration. (a) CV over various concentrations of NGAL from 0, 10, 20, 30, ···, 140
ng/mL. (b) Linear plot of CV current vs NGAL concentrations. (c) Chronoamperometry comparing GF/Ni (orange), GF/Ni/Anti-LCN2 (blue)
working electrode, and flat graphene electrode (gray).
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= · +
=

y g w x b( )ii
j

M

j j j
1

where xi is the ith sample data or xi = [xi1, xi2, ···, xiN]T ∈ Rn,
target ti is a target scalar of the weight wj = [wi1, wi2, ···, wiN]T; j
= 1, 2, ···, M, n is the feature dimension, in our study n = 5
(Figure 4), and activation function g(x) is defined by sigmoid
function or = +g x( ) 1

1 e x . M is the number of hidden nodes
and N is the number of samples. The ELM algorithm can be
divided into the following steps:
Step 1: Randomize weight wj and bias bj, where j = 1,2,3, ···,

M.
Step 2: Compute the hidden layer matrix H.
H is an N × M matrix defined by its elements as17

= · +g w x bH ( )ij j i j

Step 3: Calculate the output weight β by

= †H T

where H† is the Moore−Penrose generalized inverse of H,i.e.,

=†H H H H( )T T1

Note that T = [t1, t2, ..., tN]T is the target vector carrying
reference NGAL values of N samples.
The overall result is the predicted outcome y representing

the model’s output or predicted NGAL based on the input
(amperometric current, electrolytes, and albumin). Results
show that ELM (Figure 4) yields the greatest performance in
terms of AUC (Figure 7).
2.7. Subjects and Specimens. The study was approved

by the Center for Ethics in Human Research at Khon Kaen
University Ethics Committee for Human Research (HE
641098). Informed consent was obtained from all subjects
and their legal guardian(s). All experiments were performed in
accordance with the relevant guidelines and regulations
approved by the committee. The specimens involved 135
urine samples (Tables 1 and 2), initially frozen at −20 °C and
later thawed at 4 °C for examination.

3. RESULTS
3.1. Electrochemical Sensing Characteristics. 3.1.1. Cy-

clic Voltammogram. We carried out CV over the PBS

solution with varying NGAL concentrations from 0 up to 140
ng/mL and determined the oxidation potential where the
current yields the greatest response to the NGAL concen-
trations. Using a 50 mV/s scan rate, the oxidation potential

Figure 6. Bland−Altman plot of the pure electrochemical method (orange) and hybrid extreme learning machine (ELM) with an electrochemical
measure (green).

Figure 7. Confusion matrices of AKI prediction for (a) pure GF/Ni/
Anti-LCN2 electrochemical determination. (b) ELM + electro-
chemical sensing. AKI cutoff was set at 100 ng/mL in this evaluation.

Figure 8. ROC curves of (i) pure electrochemical measurement
(orange) and with augmented ELM to the electrochemical measure
(dark blue) show an AUC improvement from 0.79 (without AI) to
0.81 (PCA + LDA) 0.88 (MLP), 0.90 (SVM), 0.91 (RF), and 0.94
(ELM).
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was found to be 0.4 V (Figure 5a). This potential will be
picked up and fixed in later chronoamperometry. The buffer
solutions, pH, and other configurations were kept constant to
ensure that the oxidation potential level did not differ in the
following amperometry.
3.1.2. Amperometry. In chronoamperometry, we compared

GF/Ni and GF/Ni/Anti-LCN2 antibody working electrodes at
an oxidation peak potential of 0.4 V. We observed the current
response according to increasing NGAL concentrations in a
buffered solution of 5 mL. We dropped 0.2 mL of urine
containing 0.5 μg/mL NGAL, which yielded 20 ng/mL NGAL
in 5 mL of the PBS (pH = 7.2) solution. Each drop, which was
attributed to 20 ng/mL NGAL within the solution, led to
current increments of 26.4 ± 7.34 μA per step, with a rapid
response within 20 s. The standard deviation of the measured
current was 3.67 μA. SD and errors (2SD) will be improved
after introducing ELM (next subsections). Throughout all four
steps, GF/Ni/Anti-LCN2 samples consistently showed higher
current values than GF/Ni, except for the final step, where the
current response declined due to antigen depletion in GF/Ni/
Anti-LCN2 samples. Statistical analysis, including Kolmogor-
ov−Smirnov and t tests, confirmed a normal distribution and
significant differentiation between samples (t stat > t critical, p-
value <0.05). The electrochemical sensor incorporating ELM

displayed markedly improved precision, reducing SD,
compared to bare GF/Ni/Anti-LCN2.
3.1.3. Calibration Curve. A calibration curve showed the

relationship between the amperometric method’s current and
the NGAL levels measured by ELISA. The LR of 2.7−140 ng/
mL was calculated using a correlation coefficient of 0.942
without AI and 0.986 with ELM (Figure 6a). With ELM
incorporated with the GF/Ni/Anti-LCN2 electrode, the limit
of detection (LOD) for NGAL was calculated as 0.89 ng/mL
(with ELM) (14.8 ng/mL without ELM). The limits of
quantitation (LOQ) were 2.7 (with ELM) and 44.8 ng/mL
(without ELM). Note that LOD = ·3.3 SD

slope
and LOQ = ·10 SD

slope

where SD (with ELM) = 0.27 ng/mL = 0.33 μA, SD (without
ELM) = 3 ng/mL = 3.67 μA, and slope = 1/1.224 (μA × mL/
ng).
3.1.4. Statistics. Statistical testing with the Bland−Altman

plot revealed that the relationship and difference between the
measurement and actual data were in good agreement. It was
found that, at 95% confidence, the error is between ±0.54 ng/
mL (for AI-empowered methods) and ±6 ng/mL (without AI
methods), where the cutoff for AKI is approximately 100 ng/
mL depending on patients’ conditions (Figure 6). These
experiments were collected with amperometric determination
mode, for it will be further developed as a fixed-potential small
sensing device.
To determine the AKI prediction performance in terms of

precision, accuracy, and specificity, we have to fix the NGAL
cutoff value for AKI; 100 ng/mL was used in this case. The
confusion matrices of AKI diagnosis using pure electro-
chemical and ELM empowering prediction are shown below.
According to Figure 7a, pure electrochemical AKI prediction

yields 82.96% accuracy, 68.97% precision, 91.09% specificity,
and 63.43% F1 score. Meanwhile, in Figure 7b, the ELM-
empowered electrochemical method showed 91.85% accuracy,
89.66% precision, 97.03% specificity, and 82.54% F1 score.
These showed significant improvement after adding ELM to
the AKI prediction, where accuracy, precision, sensitivity,
specificity, and F1 score all significantly increased by 8.89,
30.69, 6.78, 9.94, and 19.07%, respectively.

Table 3. Comparison of Performances of Different
Chemometricsa

methods accuracy precision sensitivity specificity F1 score

without AI 0.83 0.59 0.69 0.87 0.63
PCA + LDA 0.85 0.63 0.76 0.88 0.69
MLP 0.87 0.70 0.77 0.90 0.73
SVM 0.89 0.73 0.80 0.91 0.76
RF 0.90 0.74 0.83 0.91 0.78
ELM 0.92 0.90 0.76 0.97 0.82

aELM achieved a performance of 92% accuracy, 90% precision, 76%
sensitivity, 97% specificity, and 82% F1 score. Without a machine
learning model, the performance achieved was 83% accuracy, 59%
precision, 69% sensitivity, 87% specificity, and 63% F1 score.

Table 4. Electrochemical Immunosensor Reported for the Determination of NGALa,b

electrode
transduction
technique L.R. (ng/mL)

LOD
(ng/mL) sample ref

ITO/TiO2/CoPc/CS/SA/BSA/BiNb/NGAL
photoelectron-chemical sensor

PEC 1.0−500.0 pg/mL 0.6 pg/mL serum Li et al.12

GSPE/P(ATT)-GO/AuNPs/Apt1/LCN2/Apt2 DPV 1.0−1,000.0 0.3 fetal bovine
serum

Tığ et al.13

carbon/enzyme-based sandwiches CV 0.15−2 97 pg/mL urine Neves et al.14

GF/AuNPs/SAM/immunosensor CV and
amperometric

0.05−210.0 0.042 urine Danvirutai et
al.15

aniline functionalized G/PANI nanodroplet-modified electrode CV and DPV 50.0−500.0 21.1 urine Yukird et al.18

LA2/AuNPs/PAMAM modified gold electrode CV and
amperometric

50.0−250.0 1.0 serum and urine Kannan et al.19

affinity peptide-incorporated CV and EIS 1.0−100.0 1.74 serum Cho et al.20

BCN/immunosensor CV and EIS 0.001−10 0.37 pg/mL serum Chen et al.21

GF/Ni/Anti-LCN2 + ELM CV and
amperometric

2.7−140 0.89 urine this work

aCV: cyclic voltammograms; DPV: differential pulse voltammetry; G: graphene; PANI: polyaniline; LA2: rabbit polygonal lipocalin-2 antibody;
AuNPs: gold nanoparticles; PAMAM: generation-1 polyamidoamine; NGAL: neutrophil gelatinase-associated lipocalin; P(ATT)-GO: poly-3-
amino-1,2,4-triazole-5-thiol/graphene oxide composite; GSPE: graphite screen-printed electrode; LCN2: lipocalin-2; APT 1: thiol-tethered DNA
aptamer; APT2: biotinylated secondary aptamer; SAM: self-assembled-monolayer; ITO: indium tin oxide, TIO2: titanium dioxide; COPC:
streptavidin-coated cobalt 2,9,16,23-tetraaminophthalocyanine; CS: chitosan; SA: streptavidin; BSA: bovine serum albumin; PEC: photo-
electrochemical; EIS: electrochemical impedance spectroscopy. bAdapted from Sittihakote et al.22
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3.1.5. Chemometrics for AKI Prediction: Performance
Comparison between Pure Electrochemical vs Machine
Learning Assisted. To estimate the performance of AKI
prediction, the cutoff urine NGAL level was assumed to be
fixed at 100 ng/mL. In this work, using the pure electro-
chemical method for AKI diagnosis, we achieve an AUC of
0.79. After embedding ELM for further accuracy improve-
ments, the AUC increased to 0.94, as shown in the ROC curve
in Figure 8. Introducing ELM, a minimal machine learning
algorithm, to the model could improve the performance by
about 15%. The result found that ELM yielded the greatest
performance compared to other machine learning algorithms
(Figure 8). Since principal component analysis (PCA) and
linear discriminant analysis (LDA) suit the linear model, which
is not the case of multiple interferences, the PCA + LDA
performance lies below those of other ML methods. The
performance in terms of accuracy, precision, sensitivity,
specificity, and F1 score is compared in Table 3, with the
AKI cutoff level set at 100 ng/mL.
3.1.6. Comparison with Previous Studies. The study

compared it to prior research on measuring the NGAL
concentration using an electric current in an electrode. Most of
the prior research focused on modifications to increase the
detection efficiency and various transduction techniques based
on the electrochemical immunosensor’s concepts (Table 4).
The linear range and LOD were used to determine that the
previous study necessitated complex preparation steps and a
long analytical period. Neves et al. (2019) used carbon/
enzyme-based sandwiches electrode for ultralow LOD (97 pg/
mL); however, it spans a very narrow linear range (0.15−2 ng/
mL), which does not cover the AKI cutoff value and would
involve steps of urine dilutions and back calculations. In our
work, the linear range covers the AKI cutoff decision around
100 ng/mL with acceptable LOD. In contrast to a number of
literature using synthetic urine, which does not involve
unknown interference sources in human urine, our work
measures the actual human urine samples. The numerous
electrolytes, proteins, and substances in real urine do
contribute to the specificity and performance of the sensor
to a certain level that limits the performance of pure
electrochemical sensing. To resolve interferences from various
chemical species in urine, machine learning via ELM was
introduced in this work, and the performance was reported.
Machine-learning-contributed AKI diagnosis studies are
summarized in Tables 3 and 5 and Figure 8.
In Table 5, the literature mainly focuses on the prediction of

AKI directly from large parameters of serum, which is
considered to be expensive. Another approach attempted to
predict serum creatinine (SCr) from multiple urine parameters.
SCr represents the kidney injury status of 72 h in the past, not
real time. Machine learning’s assistance to the electrochemical
determination of NGAL is still missing in the literature, which
will be filled up in this work.
3.2. AKI Prediction Performance Using Extreme

Learning Machine. Human urine contains several electro-
lytes that could affect the conductivity and, thus, the intensity
of the amperometric current readout. The electrolytes included
sodium (Na+), potassium (K+), and chloride (Cl-). We stress
that the interference of these electrolytes could be significantly
removed by applying an extreme learning machine (ELM) to
the regression model. The combined ELM and current readout
could improve the overall performance (AUC, accuracy,
precision, specificity, and F1 score). Assuming the AKI cutoffT
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at 100 ng/mL, ELM could improve the performance in terms
of AUC by 15%. ROC curves of different machine learning
models were compared, and ELM yielded the best. In addition,
the Bland−Altman plots showed an improvement in errors
from 6 to 0.54 ng/mL using ELM.
Figure 2 illustrates the step of training the ELM and contains

the data records of urine including current (μA), Cl−, Na+, K+,
protein, and microalbumin. These might be interferences with
electrochemical sensing. On the other hand, it can be used as
additional information to train neural networks for further
accuracy improvement. In our ELM implementation, single
dense layers with 50 nodes were used. Sigmoid functions were
used in the hidden layer. Rectified linear unit (ReLU) was used
as the last activation function to numerically predict the NGAL
level. Results showed that AUC increased by 15% after
introducing ELM to the amperometry.24

4. DISCUSSION
A three-electrode system was set up, where GF/Ni/Anti-LCN2
was put as the active electrode. Cyclic voltammetry (CV) was
conducted to determine the oxidation potential. Under the
fixed applied potential found from CV, chronoamperometry
was carried out to take correlation statistics between the
amperometric response and the NGAL concentration. This
research reveals the viability of a 3D GF/Ni enzymatic
electrochemical sensor for the detection of NGAL in actual
human urine using ELM for enhancing AKI prediction
performance. The integration of ELM into the AKI prediction
method markedly enhanced the performance metrics, resulting
in substantial increases of 8.89% in accuracy, 30.69% in
precision, 6.78% in sensitivity, 9.94% specificity, and 19.07% in
the F1 score.
Figure 9 illustrates the mechanism of the current response to

each NGAL adsorption. The current from NGAL flowed
through the [Fe(CN6)]3-/[Fe(CN6)]4- mediator and en-
hanced the reactive signal via dipole−dipole enhancement
(Zhang, 2018). The GF/Ni/Anti-LCN2 electrode with ELM
displayed the ability to detect NGAL concentrations, with a
linear range of 2.7−140 ng/mL, a limit of detection of 0.89 ng/
mL, and a limit of quantitation of 2.67 ng/mL. The study on
specificity found that between creatinine (Cr), protein, urine
microalbumin, sodium (Na), potassium (K), and chlorine
(Cl), none of the tested substances interfered with NGAL
detection and that NGAL can be measured in human urine
with good % recoveries (85.69−111.67%) and precision or
reproducibility (%RSD = 8.54%). Importantly, NGAL levels in
urine samples from AKI patients measured by this system are
in good agreement with the outcomes of a standard ELISA

method, while our system has simpler fabrication processes, is
rapid (1−2 min total time assay), is user-friendly (hands-on
time <10 min), requires fewer samples (0.2 mL), and
especially has a lower operating cost. This biosensor can be
viewed as a significant development toward noninvasive early-
stage AKI diagnosis by analyzing urine samples because it is
affordable, specific, and extremely sensitive. To improve
selectivity and lower the LOD, previous research suggested
using antibody immobilization on the working electrode with
enzymes for improved stability. Adding neural networks to the
amperometric detection can improve the performance by a
15% AUC increment over the non-AI method. According to
the Bland−Altman plots, the error was improved from ±6 ng/
mL (without ELM) down to 0.54 ng/mL (with ELM). For
comparison of the contributions of different ML models to
AKI prediction performance, the cutoff level of urine NGAL
was fixed at 100 ng/mL. ELM was compared with MLP, SVM,
and RF. ELM showed the best AUC, precision, and accuracy
performances. Although the NGAL cutoff level for AKI can
vary depending on the age, cause of kidney injury, and timing
of sample collection relative to the suspected injury, it is
assumed to be constant for comparison of NGAL determi-
nation and AKI prediction using different ML models. For a
clinical decision, nephrologists need to determine the NGAL
level with the overall patient’s condition. A limitation of this
approach is the necessity for supplementary urine data to train
the ELM. If available urine parameters are fewer than those
used in this study, the ELM is still capable of making accurate
predictions with reduced features, potentially augmenting the
efficacy of pure electric current determination. This work
reports the first use of a graphene-based electrode integrated
with the ELM network to enhance the electrochemical
determination of urine NGAL for AKI diagnosis.

5. CONCLUSIONS
This study demonstrates the incorporation of a 3D graphene
microporous immunoassay (GF/Ni/Anti-LCN2) electrode
with an extreme learning machine (ELM) to improve the
detection of gelatinase-associated lipocalin (NGAL) in urine,
which is an early indicator of acute kidney injury (AKI). The
combination of GF/Ni/Anti-LCN2 and ELM increased the
area under the curve (AUC) by 15%, reduced mean absolute
errors by 5.44 ng/mL (from 6 to 0.54 ng/mL), and reduced
the limit of detection to 0.89 ng/mL (from 44.8 ng/mL). The
addition of ELM for AKI prediction significantly improved
performance metrics, increasing accuracy from 82.96 to
91.85%, precision from 58.97 to 89.66%, sensitivity from
69.42 to 76.20%, specificity from 87.09 to 97.03%, and F1

Figure 9.Mechanism of action: redox occurs via ferrous/ferrocyanide mediators exchanging electrons and yielding current at the electrode. NGAL
antibody (anti-LCN2) was functionalized at the surface to selectively bind with NGAL protein. Graphene−nickel dipole−dipole enhancement
improves the electrode’s sensitivity.
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score from 63.43 to 82.50%, enhancements of 8.89, 30.69,
6.78, 9.94, and 19.07%, respectively. For a fixed threshold of
AKI using the NGAL biomarker, the prediction performance
showed significant improvement in terms of accuracy,
precision, and specificity. The work could be a candidate
tool for clinical diagnostics of AKI that is simple, cheap, and
highly accurate compared to the other work. Future work
should extend the results from the laboratory scale to clinical
implementations of the device.
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