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Abstract: Detection of heavy meals in aqueous media challenges worldwide research in developing
particularly fast and affordable methods. Fluorescent sensors look to be an appropriate instrument
for such a task, as recently they have been found to have made large progress in the detection of
chemical analytes, primarily in the environment, along with biological fluids, which still suffer
from not enough selectivity. In this work, we propose a new fluorescent method to selectively
recognize heavy metals in an aqueous solution via employing an array of several fluorescent probes:
acridine yellow, eosin, and methylene blue, which were taken as examples, being sensitive to a
microsurrounding of the probe molecules. The exemplary sensor array generated six channels of
spectral information through the use of various combinations of excitation and detection wavelengths.
Following the known multisensor approach, we applied a linear discriminant analysis to selectively
distinguish the vector signals from the sensor array from salts of heavy metals—Cu, Pb, Zn, Cd,
and Cz—at the concentration ranges of 2.41 × 10−6–1.07 × 10−5 M, 2.8 × 10−5–5.87 × 10−4 M,
1.46 × 10−6–6.46 × 10−6 M, 1.17 × 10−8–5.2 × 10−8 M, and 2.11 × 10−6–9.33 × 10−6 M, respectively.
The suggested approach was found to be promising due to it employing only one cuvette containing
the test solution, simplifying a sample preparation when compared to preparing a variety of solutions
in tests with single fluorescence probes.

Keywords: fluorescence sensor; heavy metal; multisensor array; selectivity

1. Introduction

At present, human activity leads to an increase in environmental pollution by various
ecotoxicants including heavy metals. In this regard, the development and implementation
of new methods that could allow one to register their presence are rather urgent [1]. There
are three major types of environmental pollution, namely, in the atmosphere [2,3], in
water [4], and in soil [5,6], of which liquid media is possibly the most challenging. Indeed,
while some heavy metals have important biological functions in plants, animals, and
humans [7], their chemical structure and redox properties lead sometimes to the fact that
they can avoid mechanisms of their excretion from the body, such as homeostasis transport
by proteins and binding to the necessary components of the cell [8]. These metals bind
to regions of the protein, displacing the parent metals in their natural binding sites that
cause malfunctioning of cells and has a toxic effect. For instance, previous studies have
shown that an oxidative degradation of biological macromolecules appears primarily due
to the binding of heavy metals to DNA and nuclear proteins [9]. Therefore, heavy metals
are considered to be large toxicants that may damage multiple human organs even at low
exposure levels. They are also classified as carcinogens to humans, known or probable,
by the U.S. EPA and the International Agency for Research on Cancer [10]. Altogether, an
early detection of heavy metal ions is considered an important task in order to protect the
environment from pollution [11].

The conventional analytical methods capable of detecting metal ions primarily employ
atomic absorption or emission spectroscopy (AAS/AES) [12], inductively coupled plasma
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mass spectrometry (ICP-MS) [13], anodic voltammetry [14], and capillary electrophore-
sis [15], which normally require expensive equipment and/or rather complex sample
preparation, making it difficult to detect the ions in situ and under a real timescale. For
example, atomic absorption spectroscopy (AAS) is widely utilized for detecting traces
of heavy metal ions in all types of liquid samples such as food [16] and biological sam-
ples [17,18]. Ordinarily, it measures an individual chemical element in the course of a
single measurement [19]. Unlike AAS, inductively coupled plasma (ICP) spectrometry
is a multi-element analysis technique [20,21]. The major challenges while applying ICP
techniques are the difficulties in separating the target isotopes due to a noise in the detectors
to be accompanied by a relatively long time for the analysis. Further, laser spark emission
spectrometry (LSES or LIBS) yields a rapid analysis of heavy metals in water as well as
continuous monitoring of analytes via analyzing their spectral characteristics [22]. It makes
it possible to simultaneously perform multi-element analysis with a high sensitivity of up
to 2 ppm [23,24]. However, the formation of dissolved gases and bubbles by laser pulses
can often lead to defocusing of the laser beam, limiting LIBS application thus far [11]. The
most sensitive technique is based on neutron activation analysis (NAA), which employs
the material’s bombardment by neutrons in order to induce radioactive isotopes at a short
half-life [25,26]. This method provides options to simultaneously identify many chemical
elements without a chemical separation with a high sensitivity, up to 10ths of a nanogram
per liter [27]. However, still, the NAA technique is difficult to employ in practice because
the analysis requires radioactive substances that need special care. Finally, the potentio-
metric methods have attracted a considerable interest recently as an easier alternative with
many possibilities for machine processing [28]. In particular, the voltammetric methods
are widely employed in labs to register heavy metals [29,30]. However, in addition to
high sensitivity, the potentiometric sensor arrays require special electrodes to be constantly
monitored for their condition, which again limits their application.

Herein, we consider the technique that is matured from luminescent analysis to de-
liver information about the presence of heavy metals in a non-destructive manner, being
extremely important for the analysis of biological objects [31,32]. This method employs a
decreasing in the fluorescence intensity with the presence of heavy metals in the solution.
Such a quenching is thought to be a result of intersystem crossing to an excited triplet
state promoted by spin–orbit coupling of the excited (singlet) fluorophore and the halide
upon contact [33], which is very sensitive to heavy metals contained in a solution [34]. In
order for the selectivity of quantum yield of fluorescence to be advanced [35], there are
two approaches, namely, (i) the molecular design of selective fluorescent probes [36–39]
and (ii) applying new processing methods [40], which ensure the selective characteristics
of fluorescence to a particular metal [41]; in particular, there is a high interest in designing
multiband sensor array emission in a wide range of wavelengths [42]. The second direction
involves using pattern recognition algorithms to process the vector signals generated by
arrays of fluorescence sensors [43,44]. With such an option, it is possible to determine not
only the presence of heavy metal ions but also to selectively recognize their kind. This
method follows a general concept of the so-called “electronic tongue” [45,46], wherein
fluorescent probes or quantum dots are selected so that the array includes probes that are
sensitive to various metals. As a signal to process, the fluorescence intensities of the array
are extracted to be further treated as a vector by, for instance, linear discriminant analysis
(LDA) algorithm, one of the most powerful techniques for pattern recognition [47,48]. Simi-
lar LDA processing has been used when considering colorimetric methods to distinguish
heavy metal ions in solutions [49]. Still, it is worth noting that utilization of a variety
of solutions of the sample under study causes difficulties in the sample preparation and
imposes advanced requirements to the initial volume of the sample. Furthermore, there
is an effort to develop multisensors based on bacteria [50] in order to analyze the content
of heavy metal ions in aqueous media, wherein researchers have used the influence of
heavy metals on the growth of several selected cultures of bacteria. However, the noted
measurements take a rather long time of around two days. Another example has been
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reported in [51], where the authors employed a multi-sensor composed of a number of
synthesized fluorescence probes to selectively detect many compounds. Therefore, there is
still a call for developing a method for a fast but selective recognition of heavy metal ions
combined with a simple preparation of a sample.

In this work, we propose a sensor array based on three fluorescent probes to meet the
noted call accounting for our preliminary findings [52], following a general scheme of the
approach shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 13 
 

 

in order to analyze the content of heavy metal ions in aqueous media, wherein research-

ers have used the influence of heavy metals on the growth of several selected cultures of 

bacteria. However, the noted measurements take a rather long time of around two days. 

Another example has been reported in [51], where the authors employed a multi-sensor 

composed of a number of synthesized fluorescence probes to selectively detect many 

compounds. Therefore, there is still a call for developing a method for a fast but selective 

recognition of heavy metal ions combined with a simple preparation of a sample. 

In this work, we propose a sensor array based on three fluorescent probes to meet 

the noted call accounting for our preliminary findings [52], following a general scheme of 

the approach shown in Figure 1. 

 

Figure 1. General scheme of the methodological approach. 

As we show, the proposed multisensor array, a mixture of luminescent probes, 

yielded a multiple fluorescence response to heavy metal ions in a liquid in accordance 

with their concentration at the microenvironment of the dyes. The kind of the ions is se-

lectively distinguished by LDA processing of the vector signals taken from the array after 

the calibration of the array upon to the ion impact. 

2. Materials and Methods 

To show the feasibility of the method, we considered three fluorescent dye probes, 

namely, eosin yellow, acridine yellow, and methylene blue (Sigma-Aldrich Pty Ltd., 

Darmstadt, Germany). These dyes have long been used for fluorescence studies due to 

their high sensitivity to changes on their microenvironment. For instance, eosin Y, bound 

to ligands, has been frequently used to register Co, Ag, Zn, Cd, and Pb ions via making 

Figure 1. General scheme of the methodological approach.

As we show, the proposed multisensor array, a mixture of luminescent probes, yielded
a multiple fluorescence response to heavy metal ions in a liquid in accordance with their
concentration at the microenvironment of the dyes. The kind of the ions is selectively
distinguished by LDA processing of the vector signals taken from the array after the
calibration of the array upon to the ion impact.

2. Materials and Methods

To show the feasibility of the method, we considered three fluorescent dye probes,
namely, eosin yellow, acridine yellow, and methylene blue (Sigma-Aldrich Pty Ltd., Darm-
stadt, Germany). These dyes have long been used for fluorescence studies due to their
high sensitivity to changes on their microenvironment. For instance, eosin Y, bound to
ligands, has been frequently used to register Co, Ag, Zn, Cd, and Pb ions via making
triple complexes with these metals and ligands [53]. Moreover, eosin is widely employed
in electrochemistry to create electrodes sensitive to Cd [54]. The acridine dyes and their
derivatives are widely used as fluorescent and electrochemical sensors [55–57], as solar
photocatalysts for enhancing biodegradability of toxic compounds [58], and for develop-
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ment of new fluorescent pH sensors [59]. Methylene blue is widely used in medicine [60]
and as a near-infrared fluorescent probe [61,62]; its polarization is used as a quantitative
marker of cancer at the cellular level [63]. The Figure 2 depicts the structural formulas of
these compounds.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 13 
 

 

triple complexes with these metals and ligands [53]. Moreover, eosin is widely employed 

in electrochemistry to create electrodes sensitive to Cd [54]. The acridine dyes and their 

derivatives are widely used as fluorescent and electrochemical sensors [55–57], as solar 

photocatalysts for enhancing biodegradability of toxic compounds [58], and for devel-

opment of new fluorescent pH sensors [59]. Methylene blue is widely used in medicine 

[60] and as a near-infrared fluorescent probe [61,62]; its polarization is used as a quanti-

tative marker of cancer at the cellular level [63]. The Figure 2 depicts the structural for-

mulas of these compounds. 

 

 
 

(a) (b) (c) 

Figure 2. Structural formulas of dyes employed in the work to create the fluorescent probe array: 

(a) acridine yellow (ϕ = 0.47, λex = 445 nm, λem = 505 nm), (b) eosin (ϕ = 0.67, λex = 500 nm, λem = 545 

nm), and (c) methylene blue (ϕ = 0.52, λex = 660 nm, λem = 680). 

These substances are common luminescent probes with a high quantum yield of 

fluorescence, being ϕ = 0.47 for acridine yellow [64], ϕ = 0.67 for eosin [65], and ϕ = 0.52 

for methylene blue [66]. Moreover, these fluorophores yield various wavelengths of their 

fluorescence, which is a prerequisite for the successful and simple separation of signals to 

form a sensor array. When considering the concentration values of dyes, we accounted 

for following conditions: (i) exclusion of the influence of the internal filter, and (ii) the 

fluorescence maxima of the dyes upon excitation at a wavelength of 260 nm, which 

should appear approximately at the same level. The dye solutions were prepared by di-

luting the pristine dry matter in a distilled water with further final adjusting of these ini-

tial solutions with water. The photochemical activity of the dyes was reduced to a min-

imum by maintaining a constant temperature and pH. We controlled the process by 

measuring the absorption spectra and extracting the concentrations according to the 

Bouguer–Lambert–Beer law. Final concentrations of acridine yellow, eosin Y, and meth-

ylene blue were 1.13 × 10−7, 9.21 × 10−9, and 9.32 × 10−7, respectively. Final concentrations of 

Cu, Pb, Zn, Cd, and Cz were in the ranges of 2.41 × 10−6–1.07 × 10−5 M, 2.8 × 10−5–5.87 × 10−4 

M, 1.46 × 10−6–6.46 × 10−6 M, 1.17 × 10−8–5.2 × 10−8 M, and 2.11 × 10−6–9.33 × 10−6 M, respec-

tively. 

In the course study, we took several basic solutions of heavy metal salts, copper 

(Cu(NO3)2), lead (Pb(NO3)2), zinc (Zn(NO3)2), cadmium (Cd(NO3)2), and cesium (CsCl). 

These solutions have been prepared by diluting a required amount of dry matter (salts) in 

distilled water. To study the response of the fluorescent probes in the array to the pres-

ence of heavy metal ions, we added minor volumes of solutions, 0.1–0.5 mL, containing 

these salts into the liquid containing the sensor array, of 3 mL volume, with further re-

cording of the fluorescence spectra. These concentrations were chosen following a num-

ber of preliminary studies to be at the minimum level able to detect with the employed 

dyes. While performing the study, we tried to avoid photo-bleaching of the dyes by their 

proper conditioning: (i) the solutions were kept in a fridge in a light-isolated box; (ii) the 

time to prepare the probes and to measure the spectra of each sample was the same; (iii) 

the addition of salts of heavy metals to solutions of multi-probe array were prepared just 

before the experiment; and (iv) the time to record the spectra was chosen to exclude the 

spectra distortions. 

The dye fluorescence spectra were measured with a high-resolution spectrometer 

(Perkin Elmer LS-55, PerkinElmer, Inc., Waltham, MA, USA). Excitation and emission 

slits were set to 10 nm, and excitation wavelengths were varied in the range of 260–660 

Figure 2. Structural formulas of dyes employed in the work to create the fluorescent probe array:
(a) acridine yellow (φ = 0.47, λex = 445 nm, λem = 505 nm), (b) eosin (φ = 0.67, λex = 500 nm,
λem = 545 nm), and (c) methylene blue (φ = 0.52, λex = 660 nm, λem = 680).

These substances are common luminescent probes with a high quantum yield of
fluorescence, being φ = 0.47 for acridine yellow [64], φ = 0.67 for eosin [65], and φ = 0.52
for methylene blue [66]. Moreover, these fluorophores yield various wavelengths of their
fluorescence, which is a prerequisite for the successful and simple separation of signals to
form a sensor array. When considering the concentration values of dyes, we accounted for
following conditions: (i) exclusion of the influence of the internal filter, and (ii) the fluores-
cence maxima of the dyes upon excitation at a wavelength of 260 nm, which should appear
approximately at the same level. The dye solutions were prepared by diluting the pristine
dry matter in a distilled water with further final adjusting of these initial solutions with
water. The photochemical activity of the dyes was reduced to a minimum by maintaining a
constant temperature and pH. We controlled the process by measuring the absorption spec-
tra and extracting the concentrations according to the Bouguer–Lambert–Beer law. Final
concentrations of acridine yellow, eosin Y, and methylene blue were 1.13 × 10−7, 9.21 × 10−9,
and 9.32 × 10−7, respectively. Final concentrations of Cu, Pb, Zn, Cd, and Cz were in the
ranges of 2.41 × 10−6–1.07 × 10−5 M, 2.8 × 10−5–5.87 × 10−4 M, 1.46 × 10−6–6.46 × 10−6 M,
1.17 × 10−8–5.2 × 10−8 M, and 2.11 × 10−6–9.33 × 10−6 M, respectively.

In the course study, we took several basic solutions of heavy metal salts, copper
(Cu(NO3)2), lead (Pb(NO3)2), zinc (Zn(NO3)2), cadmium (Cd(NO3)2), and cesium (CsCl).
These solutions have been prepared by diluting a required amount of dry matter (salts) in
distilled water. To study the response of the fluorescent probes in the array to the presence
of heavy metal ions, we added minor volumes of solutions, 0.1–0.5 mL, containing these
salts into the liquid containing the sensor array, of 3 mL volume, with further recording
of the fluorescence spectra. These concentrations were chosen following a number of
preliminary studies to be at the minimum level able to detect with the employed dyes.
While performing the study, we tried to avoid photo-bleaching of the dyes by their proper
conditioning: (i) the solutions were kept in a fridge in a light-isolated box; (ii) the time
to prepare the probes and to measure the spectra of each sample was the same; (iii) the
addition of salts of heavy metals to solutions of multi-probe array were prepared just
before the experiment; and (iv) the time to record the spectra was chosen to exclude the
spectra distortions.

The dye fluorescence spectra were measured with a high-resolution spectrometer
(Perkin Elmer LS-55, PerkinElmer, Inc., Waltham, MA, USA). Excitation and emission slits
were set to 10 nm, and excitation wavelengths were varied in the range of 260–660 nm as
described below. At an excitation wavelength of 260 nm, we used an in-built emission filter
at 350 nm.

For the processing of vector signals generated by a fluorescent probe array, we used
the LDA algorithm taken in the standard Python libraries of the scikit-learn package [67].
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3. Results and Discussion

The major issue of concern in this work relates to advancing a selectivity of detecting
metal ions in aqueous media with multiple fluorescent probes. The fluorescence of each
luminescent probe taken to combine the array is a separate source of information on
changes in the dye microsurrounding. The addition of several probes together with the
solution makes possible to obtain more data in a single measurement. To yield the number
of features from the fluorescent probe array for the ion recognition, we performed a
fluorescence excitation at different wavelengths in the course of spectral measurements.

Figure 3 shows the fluorescence spectra of individual dye solutions and the fluo-
rescence spectrum of their resulting mixture, a multiple probe array, upon excitations at
260 nm, 445 nm, 500 nm, and 660 nm wavelengths.
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Figure 3. The fluorescence spectra of a fluorescent probe array under excitation at various wave-
lengths of 260 nm (black solid line), 445 nm (green line), 500 nm (red line), and 660 nm (blue line).
The dotted lines mark fluorescence spectra of acridine yellow (green dotted), eosin (red dotted), and
methylene blue (blue dotted), normalized to Irel = 20. The insert is an energy diagram illustrating the
photophysical processes taking place in the system.

These excitation wavelengths were chosen as follows: At a wavelength of 260 nm,
all dyes of the array had an absorption peak related to S0-S2 transfer. Upon excitation,
the electrons went to the S2 excited level, as drawn in Figure 3, to be a process 1 at the
energy diagram. Then, they dropped down to the S1 state as a result of internal conversion
(process 5) and further yielded a fluorescence (process 4), which was recorded by the
spectrophotometer. In this case, fluorescence bands of all the three dyes were observed in
the spectrum, and maxima of fluorescence intensities of the probe array were recorded at
wavelengths of 505 nm, 540 nm, and 685 nm. These intensity values were employed as three
primary features for the analyte recognition. When the fluorescent probe array was excited
at wavelengths of 445 nm, 500 nm, and 660 nm, the dyes went into the S1 excited state
(process 2) with subsequent appearing of fluorescence (process 4) again. These intensities
of the maxima of all three probes were recorded with a spectrophotometer as secondary
three features for an analyte recognition. Altogether, we had six features that could be
employed for a sensitive response to changes in the microsurrounding of the probes. From
a fundamental viewpoint, when ions of heavy metals in a liquid meet a dye molecule,
the spin of the valence electron of the dye flips and it goes to a triplet state (process 6).
As a result, the population of the S1 state and the number of fluorescence transitions (4)
reduced, and we observed a fluorescence quenching [33]. Thus, the influence of heavy
metal ions on the fluorescent probes manifested itself upon excitation of the system in
both S1 and S2. However, the quenching efficiency strongly depends on the nuclear charge
of a metal atom: as a first approximation, the larger charge results in greater efficiency,
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making a fundamental background for the ion selectivity by analyzing a vector signal of
the probe array.

Figure 4a displays spectra recorded under copper salt being added to the dye solution.
As we see, a fluorescence quenching occurred in all the dyes of the array. The presented
spectra showed that the quenching rate varied at different spectral fluorescence bands: for
excitation on 260 nm, acridine yellow peak decreased from 32 a.u. to 22 a.u., that is, by
30%; eosin peak decreased from 56 a.u. to 46 a.u. (18%); and methylene blue peak fell from
10 a.u. to 8 a.u. (20%). It can be seen from the figure that acridine yellow and methylene
blue fluorescence quenching went more rapidly than for eosin. For excitation at acridine
yellow, the absorption peak at around 445 nm of its fluorescence maximum went down
from 28 a.u. to 20 a.u., that is, by 28%. For excitation at eosin yellow, absorption peak at
around 500 nm of its fluorescence was reduced from 90 a.u. to 81 a.u. (28%). When the
excitation wavelength was set to 660 nm, which corresponded to methylene blue absorption
maximum, we observed quenching of its fluorescence from 64 a.u. to 53 a.u. (17%). This
shows the relevance of using multiple excitation wavelengths to increase the variability of
the fluorescent probe array.
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Figure 4. The spectra of the fluorescent probe array after adding heavy metal ions to a so-
lution, subject of excitation at various wavelengths, 260–660 nm. (a) Case of [Cu2+], wherein
the concentrations of the salt were CCu(NO3)2 = 0 M (black line), CCu(NO3)2 = 2.41 × 10−6 M
(red line), CCu(NO3)2 = 4.67 × 10−6 M (green line), CCu(NO3)2 = 6.8 × 10−6 M (blue line), and
CCu(NO3)2 = 1.07 × 10−5 M (purple line). (b) Case of [Pb2+], wherein the concentrations of the salt
are CPb(NO3)2 = 0 M (black line), CPb(NO3)2 = 2.8 × 10−5 M (red line), CPb(NO3)2 = 7.9 × 10−5 M
(green line), CPb(NO3)2 = 1.24 × 10−4 M (blue line), CPb(NO3)2 = 3.26 × 10−4 M (aquamarine line), and
CPb(NO3)2 = 5.87 × 10−4 M (purple one). The excitation wavelengths are shown in the figure.

The similar processes are observed when the lead salt has been added to the solution
of the fluorescent probe array. The corresponding spectra changes are drawn in Figure 4b.
We note a reduction in the fluorescence of eosin (from 91 a.u. to 56 a.u., that is, 39%) and
methylene blue (from 58 a.u. to 50 a.u., that is, 14%), while the fluorescence of acridine
yellow is first quenched (from 33 a.u. to 27 a.u., that is, 18%) and then enhanced (from 27 a.u.
to 37 a.u., that is, 37%), making a substantial difference to the Cu+ effect. Upon excitation
at wavelengths of 450 nm, corresponding to its absorption maximum at around 260 nm, we
observed an increase in its fluorescence upon addition of high lead concentrations from
3.26 × 10−4 M. This observed increase in fluorescence under high [Pb2+] concentrations
cannot be explained by the effect of a heavy atom. However, there are some literature data
showing that Pb can enhance fluorescence of probes under certain conditions [68–70].

When adding Cd2+, Zn2+, and Cs+ ions to the solution of the dye array, the array
response was also varied for each case. We summarize these findings in Figure 5. From
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adding Cd2+ ions, we found that fluorescence of all the three probes decreased: for acridine
yellow from 22 a.u. to 16 a.u. (27%), for eosin from 88 a.u. to 81 a.u. (8%), and for methylene
blue from 56 a.u. to 48 a.u. (14%). However, the rate of these quenchings was different. It
can be seen from Figure 5a that acridine yellow and methylene blue fluorescence reduced
more uniformly than with eosin. Contrastingly, the addition of Zn2+ ions (Figure 5b)
suppressed the eosin fluorescence in another way. For comparison, as drawn in Figure 5c,
the Cs+ ions essentially did not quench the eosin fluorescence when excitation was set
as 500 nm, but we observed a noticeable quenching (16%) of eosin fluorescence when
excitation was set to 260 nm. The acridine yellow and methylene blue peaks were quenched
by 30% and 14%, respectively.
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Figure 5. The spectra of the fluorescent probe array after adding heavy metal ions to a so-
lution, subject to excitation at various wavelengths from 260 to 660 nm. (a) In the case of
[Cd2+], the concentrations of the salt were CCd(NO3)2 = 0 M (black line), CCd(NO3)2 = 1.17 × 10−8 M
(red line), CCd(NO3)2 = 3.31 × 10−8 M (green line), and CCd(NO3)2 = 5.2 × 10−8 M (purple line).
(b) In the case of [Zn2+], the concentrations of the salt in the solutions were CZn(NO3)2 = 0 M
(black line), CZn(NO3)2 = 1.46 × 10−6 M (red line), CZn(NO3)2 = 2.83 × 10−6 M (green line),
CZn(NO3)2 = 4.11 × 10−6 M (blue line), and CZn(NO3)2 = 6.46 × 10−6 M (purple line). (c) In the case of
[Cs+], the concentrations of the salt were CCsCl = 2.11 × 10−6 M (black line), CCsCl = 2.11 × 10−6 M
(red line), CCsCl = 5.94 × 10−6 M (green line), and CCsCl = 9.33 × 10−6 M (purple line). (d) In the case
of various volumes of distilled water: 0 (black line), 1/30 of initial volume (red line), and 5/30 of
initial volume (purple line). The excitation wavelengths are shown in the figure.
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The distilled water was taken as a control sample for comparison to water not contam-
inated with heavy metal ions. The corresponding fluorescence spectra observed from the
dye array are given in Figure 5d. As one can see, the spectra were still changed during the
dilution but with different behavior when compared to metal salt solutions.

Overall, the results of spectral studies indicate that the nature of the reduction in the
fluorescence intensity of the probed varies for different quenchers and upon dilution in
pure water. Namely, the rates of quenching in dyes depended significantly on the type of
heavy metals that yielded an opportunity to selectively identify them via collecting a total
vector response of characteristic features observed for each dye in the array.

On the basis of the recorded spectra, we compiled tables of features corresponding to
the response of the dye array under interaction with different metals. Each data point was
normalized by the following formula:

I =
IAdd
IMS

, (1)

where IMS is a fluorescence intensity of the probe array without any addition, and Iadd is a
fluorescence intensity of probe array upon the addition of test solutions under investigation.

These data points are compiled in Figure 6 to allow us easier comparison regarding
their metal selective sensing capacity. The fluorescence intensities of the dyes were nor-
malized to unity for further use as features of the test sample to combine a vector signal
for pattern recognition processing via LDA algorithm. During the calibration of the algo-
rithm, we used the experimentally obtained data sets, from which we obtained patterns
corresponding to the following recognition classes: heavy metals of Cu, Pb, Cd, Zn, Cs, and
pure water.
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Figure 6. Normalized spectral responses (maxima of fluorescence intensities of three dyes upon
excitation at 260 nm and at the maximum absorption of each dye) of the fluorescent probe array to
various metal ions: (a) CuNO3 (CCu(NO3)2 = 2.41 × 10−6 M), (b) PbNO3 (CPb(NO3)2 = 2.8 × 10−5 M),
(c) CdNO3 (CCd(NO3)2 = 1.17 × 10−8 M), (d) ZnNO3 (CZn(NO3)2 = 1.46 × 10−6 M), (e) CsCl
(CCsCl = 2.11 × 10−6 M), (f) H2O. The pristine fluorescence intensities of the dyes in array are nor-
malized to 1.
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For each recognition class, 20 sets of initial data were used for training by introducing
random errors into the initial data. According to the idea of the LDA algorithm, the
projection is carried out in such a way as to ensure the maximum separation of classes
regarding a scatter of data within a single class [71].

As a result of the learning process of the algorithm, the vector data are grouped into
clusters corresponding to a particular type of analyte. By the distance between gravity
centers of the clusters, one can judge the reliability of the classification. The LDA diagram
that classifies the recorded data versus addition of 0.1 mL and 0.5 mL of each tested analyte
solution to 3 mL solution containing the fluorescent probe array is shown in Figure 7. Here,
we drew the 3D projection of the total 6D LDA coordinate system. It can be seen from
the figure that the points on the diagram are grouped into clearly distinguishable clusters
related to various analytes, which makes it possible to apply the methods of automatic
signal recognition for their analysis. Thus, the LDA results show that the proposed system
can be successfully used for selective recognition of heavy metal salts in water.
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Figure 7. The 3D projection of the first three LDA components of 6D LDA coordinate system built to
recognize vector signals of the fluorescent probe array versus seven test analytes added to 3 mL of
solution containing the fluorescent probe array: (a) 0.1 mL volume of each test analyte; (b) 0.5 mL
volume of each test analyte. The salt concentrations are drawn in the figure.

The experiments performed and the results of data processing allowed us to conclude
that the fluorescence intensity of the luminescent dyes composing the fluorescent probe
array was sensitive to the kind of various heavy metal ions to the solution. Due to the influ-
ence of various photophysical processes on the fluorescence process, changes in intensity
were specific for various ions of heavy metals. Therefore, after the recognition algorithm
was calibrated for the registration of predetermined substances, pattern recognition al-
gorithms for the selective recognition of these substances in solution could be applied.
Thus, this array can be employed for the selective determination of heavy metal salts in a
liquid media.

The proposed approach is rather simple when compared to other ones, making it
promising for practice. For instance, when using the above-noted methods [45,47,49], some
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difficulties are caused by the need to prepare a large number of solutions of the test sample
with fluorescent probes. This requires a large volume of the investigated medium, which is
not always possible to carry out, especially when determining heavy metals in a biological
media. Here, we have a significant simplification of sample preparation, since only one
solution of the sample under testing at a small volume, around 0.1 mL, was prepared,
which is enough for a selective recognition.

4. Conclusions

Thus, in this work, a fluorescent probe array, consisting of a mixture of three lumines-
cent dyes—eosin, methylene blue, and acridine yellow—was composed as an example of a
low-cost ion-selective system. The fluorescence spectra were recorded upon excitation at
different wavelengths, subject to change when adding heavy metal ions to the solution. It
was found that the efficiency of fluorescence quenching differed both for different probes
and for excitation wavelengths corresponding to S0–S2 and S0–S1 transfers of electrons in
the dye’s energy states. The observed differences in the changes of the spectra allowed us
to generate a multisensor vector signal for selective recognition of various heavy metal ions
employing the LDA algorithm.

This approach has promise because it allows one to use characteristics of complex
photophysical processes occurring in the dyes composing the array as features to advance
the selectivity of the ion detection. Still, further work is required to estimate the perfor-
mance of the probe array under various interferences, at a long-term scale, according to
specific practice applications. The mixes of various ions are also of special interest. With
this purpose, other fluorescence probes should also be considered in the composition of
the array.
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