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Neutrophils are implicated in almost every stage of oncogenesis and paradoxically

display anti- and pro-tumor properties. Accumulating evidence indicates that neutrophils

display diversity in their phenotype resulting from functional plasticity and/or changes

to granulopoiesis. In cancer, neutrophils at a range of maturation stages can be

identified in the blood and tissues (i.e., outside of their developmental niche). The

functional capacity of neutrophils at different states of maturation is poorly understood

resulting from challenges in their isolation, identification, and investigation. Thus, the

impact of neutrophil maturity on cancer progression and therapy remains enigmatic.

In this review, we discuss the identification, prevalence, and function of immature and

mature neutrophils in cancer and the potential impact of this on tumor progression and

cancer therapy.
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INTRODUCTION

Neutrophils in cancer have received very little attention until recently, despite contributing 50–70%
and 10–25% of circulating leukocytes in humans and laboratory mice, respectively (1). However,
recent progress has renewed interest in these cells. In experimental cancer models, neutrophils have
been implicated in nearly every stage of the oncogenic process and their role has been reviewed in
detail (2–4). Neutrophils are able to mediate a broad range of anti- and pro-tumor activities from
direct cancer cell killing to tumor cell proliferation, angiogenesis, metastasis, and orchestrating
other immune responses. These recent studies have highlighted the complexity of neutrophils
in cancer progression, with novel information on their previously unappreciated plasticity and
heterogeneity. While neutrophil plasticity can be directly affected by the local microenvironment,
neutrophil heterogeneity is also influenced by their maturation (5), age (6), suppressive properties
(7), function [e.g., phagocytosis (8)], and reverse transendothelial migration (rTEM) (9). An
underexplored aspect of this is the appearance of immature neutrophils in cancer. Differences
in the phenotype and functional capacities of immature and mature neutrophil populations are
being identified, and their impact on cancer progression is emerging (10). However, the influence
of neutrophil maturity on their anti- or pro-tumor properties remains understudied. In this
review, we focus on the functional properties and relevance of immature neutrophils in cancer.
We discuss methods used to identify neutrophils of different maturation states and explore their
limitations. Finally, we postulate the impact that neutrophil maturity may have on the efficacy of
cancer therapies.

GRANULOPOIESIS

After birth, neutrophil production occurs primarily in the bone marrow (BM) where they
are derived from hematopoietic stem cells (HSCs). During neutrophil differentiation in mice
and humans the nucleus progresses from a banded to segmented morphology, allowing the
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identification of neutrophils at distinct stages of maturity (11).
Stages of neutrophil differentiation are also characterized by their
unique expression of the transcription factors PU.1 and CCAAT
enhancer binding protein (C/EBP)-α (12), C/EBPβ (13), and
C/EBPε (14). Mature neutrophils are mitotically inactive with cell
cycle arrest occurring during the myelocyte to metamyelocyte
transition (15). The post-mitotic BM transit of neutrophils and
release into the circulation takes between 5 and 8 days in humans
(16) and 1–2 days in mice during homeostasis (17). Neutrophil
granules, termed azurophillic (primary), specific (secondary),
and gelatinase (tertiary), in addition to secretory vesicles, are
formed at specific stages of neutrophil differentiation. Each
granule type is composed of distinct proteins synthesized at
the time of formation (18) and granules are released in reverse
sequential order following neutrophil activation (19). As such,
the proteome composition of immature and mature neutrophils
is greatly different. It is important to also acknowledge that
in disease, including cancer, granulopoiesis can occur outside
of the medullary spaces of the BM, termed extramedullary
hematopoiesis (EMH); however, little is known about the
mechanisms regulating EMH and its influence on neutrophil
development (20).

ISOLATION AND IDENTIFICATION OF
IMMATURE NEUTROPHILS

Despite the extensive data on neutrophils and their functions
in homeostasis and disease, they remain a challenging cell
population to study largely due to their short half-life [∼18.5 h
in the circulation of humans during homeostasis (16)] and
propensity for priming and activation. While neutrophil
life span can be increased following their activation and
extravasation, a small window of opportunity for in vitro
experimentation remains in comparison to other cell types.
Neutrophil properties derived from ex vivo experimentation
can be difficult to accurately interpret and apply to their
behavior in vivo. Developments of in vivo imaging techniques
and identification of neutrophils (e.g., via in vivo injection
of fluorescently conjugated anti-Ly6G antibody, clone 1A8 (9,
21, 22) and fluorescent reporter mice (23) have allowed their
investigation without possible ex vivo manipulation-induced
artifacts; however, these approaches still have their own caveats
for example the undetermined function for Ly6G (23–25).
Importantly, experimental analysis of immature neutrophil
populations is an even greater challenge.

Density Properties
Neutrophil density changes during development as a result
of their increased granularity and changes in cell size (26).
Therefore, density gradient purification is useful for enriching
neutrophil populations at certain stages of maturation and allows
for down-stream analysis. Immature neutrophils are typically
found in low density (LD) fractions, whereas mature neutrophils
are found in the normal/high density (N/HD) fractions (5)
(Tables 1, 2). Nevertheless, the neutrophil populations obtained
by density gradient purification are not pure as N/HDNs can

TABLE 1 | Methods for the identification of immature neutrophils in humans.

Immature population Feature/Cell surface

markers

References

Metamyelocyte

Myelocyte

Sysmex IG (27)

Myeloblast to mature Low density (28)

Immature CD10LowCD15High (29)

Myelocyte to band Low density

SSCHighCD66bPosCD125Neg

Pappenheim staining

(30)

Myeloblast

Promyelocyte

Blood smears

Celltac ES

hematology analyser

(31)

Band CD10DimCD16Dim (32)

Band CD10DimCD16Dim (33)

Metamyelocyte

Myelocyte

Promyelocyte

CD11bLowCD16Pos (34)

Immature BM resident

Nuclear Morphology

(35)

Metamyelocyte

Myelocyte

Promyelocyte

XE 2100, Sysmex

hematology analyser

(36)

Band CD16Dim (37)

Metamyelocyte CD35NegCD49dPos (38)

Metamyelocyte

Myelocyte

Promyelocyte

Coulter Actdiff 5 automated

hematology analyser

(39)

Immature Nuclear morphology

Number

of nucleoli Cytoplasmic

granularity

(40)

become LDNs following activation (55), making interpretation
of the functional properties of neutrophil maturity challenging
by this technique. For instance, LDNs isolated from the
peripheral blood of 4T1 tumor-bearing mice make up ∼40%
of morphologically mature neutrophils (5), LDNs obtained
from the peripheral blood of mice bearing breast cancer liver
metastasis were composed of 80% neutrophils with an immature
nuclear morphology (56), and the nuclear morphology of
LDNs from lung cancer patients represent both mature and
immature neutrophils (5). Overall, this technique can be useful
for enriching neutrophil populations; although, more specific
methods of identification of neutrophil maturity are required for
accurate interpretation of downstream functional analysis.

Morphology and Cell Surface Markers
Nuclear segmentation is considered accurate for immature
neutrophil identification in the peripheral blood of cancer
patients (57) and mouse models of cancer (58) (Tables 1, 2).
However, cells cannot be isolated by this method for downstream
experimentation. A major hindrance in neutrophil biology is
the lack of a specific and robust marker of neutrophil maturity.
Changes in cell surface receptor expression during maturation,
such as the CXCR4:CXCR2 axis (59, 60), can be used to separate
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TABLE 2 | Methods for the identification of immature neutrophils in mice.

Immature population Feature/Cell surface

markers

References

Myelocyte

Meta-myelocyte

Nuclear morphology (41)

Myeloblast Nuclear morphology (42)

Pro-myelocyte to band Nuclear morphology (43)

Band

Meta-myelocyte

Nuclear Morphology

Gr-1LowBrdU Dim
(17)

Mature

Myelocyte

Promyelocyte

Gr-1HiCD11bPos

Gr-1LowCD11b Pos
(44)

Band/mature Nuclear morphology (45)

Immature Reduced MPO

Reduced oxidative burst

(46)

Band CD11bPosGr-

1PosLy6GPosLy6CPosMDL-

1Pos

(47)

Band Ly6GInt (21)

Immature Ly6GLow/NegCD101Neg (48)

Immature

Myelocyte

Pro-myelocyte

Gr-1HighCD11bLow

Gr-1IntCD11b Int
(49)

Mature

Band

Myelocyte

Gr-1Hi

Gr-1 Low
(50)

Neutrophil Precursors Ly6GLowLy6BIntCD115Neg

CD11bPosCD133Pos
(51)

Mature

Band

Gr-1HiCD11bLow−Hi

Gr-1Low−HiCD11b Low−Hi
(52)

Mature

Band

Metamyelocyte

Myelocyte

Ly6GHiCD11bPos

Ly6GLowCD11b Pos
(53)

Mature

Band

Myeloblast

Pro-myelocyte

Myelocytes

Meta-myelocyte

LinNegCD34Low/Intc-

KIT/CD117NegLy6GHigh

LinNegCD34Low/Intc-

KIT/CD117HighLy6GNeg

LinNegCD34Low/Intc-

KIT/CD117IntLy6GNeg

LinNegCD34Low/Intc-

KIT/CD117IntLy6GLow

LinNegCD34Low/Intc-

KIT/CD117LowLy6G Int

(13)

Metamyelocyte

Myelocyte

Promyelocyte

Band

Metamyelocyte

Mature

Gr-1IntCD11bInt

Gr-1HiCD11bLow

Gr-1HiCD11b Hi

(54)

immature and mature neutrophils (48) (Table 2). However, these
surface receptors are prone to alteration following neutrophil
activation [e.g., CD11b:CD18 (61)], tissuemigration [e.g., CD62L
(6, 62, 63)], and aging [e.g., CXCR4 (6)], resulting in a major
challenge in the identification of efficient markers of maturity.
In mice, immature and mature neutrophils can accurately
be identified as Ly6GInt/LowCD11bPos and Ly6GHighCD11bPos

respectively (13, 21, 51) (Table 2). However, the limitations

of using Ly6G as a maturity marker include relatively small
differences in expression of this molecule between immature
and mature neutrophils, compounding the technical issues
associated with fluorescence intensity comparisons in some
readouts. Despite this, recently identified markers of neutrophil
maturity with larger differences in expression, for example
CD101 (48), could be useful candidates for development of
fluorescent reporter models and in vivo identification. Here,
CD101 expression can be used to identify CD101Neg (immature)
and CD101Pos (mature) neutrophils (48); however, this marker
requires further validation to ensure its accuracy in a wide range
of pathologies. Another example is c-KIT/CD117, the expression
of which has been shown to associate with neutrophil maturity
in naïve mice, mice undergoing candida-induced emergency
granulopoiesis (13), and a mouse model of breast cancer (64)
(Table 2). However, although in the K14-Cre;Cdh1F/F;Trp53F/F,
and 4T1 mouse mammary tumor models, neutrophil c-KIT
expression is enriched on immature neutrophils, it fails to
completely correlate with maturation status (58, 65). In humans,
immature and mature neutrophils are commonly identified
as CD16LowCD10Neg and CD16HighCD10Pos, respectively (66)
(Table 1). Expression of CD16 (FcγRIII) is initiated between
the metamyelocyte and band stages of neutrophil maturation
(67, 68). However, its expression can be reduced during
apoptosis (69) and can be up-regulated on the cell surface
following secretory granule cell membrane fusion (67). Distinct
differences in the hematopoietic environment, local and systemic
cytokine levels and the functional requirements for neutrophils
will exist between naïve, emergency granulopoiesis and the
more chronic “inflammation” present in cancer. Therefore,
as neutrophils can exhibit plasticity in response to their
environment, certain markers are likely to only be suitable
in particular models and require efficient validation in each.
Overall, the challenges associated with identifying and isolating
populations of neutrophil maturity have hindered their study and
our current understanding of their functional properties.

FUNCTIONAL PROPERTIES OF MATURE
AND IMMATURE NEUTROPHILS

Immature Neutrophils in Cancer
The existence of immature neutrophils in the circulation and
tissues is a consequence of cancer development in human
patients and mouse models. For example, immature neutrophils
are detectable in the circulation (and in some cases the primary
tumors) of both injectable and transgenic mouse models of colon
(70), skin (70), mammary (5, 58, 71, 72), lung cancer (5, 73), and
mesothelioma (AB12) (5, 73). In humans, immature neutrophils
have been described in patients with lung cancer (5, 74), breast
cancer (5), and ovarian cancer (65).

Drivers of Immature Neutrophil
Appearance Outside of the Hematopoietic
Niche
Premature release from the BM as observed in states of
emergency granulopoiesis, as reviewed by others (75), is
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considered the main reason for the presence of immature
neutrophils in the circulation. Emergency granulopoiesis
commonly results from increased levels of granulocyte colony-
stimulating factor (G-CSF; also known as CSF-3) (76) that
promotes the differentiation of hematopoietic precursors down
the neutrophil lineage and release of neutrophils into the
circulation (60, 71, 72, 77) (Figure 1A). Production of G-CSF
is controlled by interleukin (IL)-23 and IL-17 (58, 78, 79)
and can be increased in many cancer models and patients
(56, 58, 71, 72, 80). Enhanced levels of G-CSF drive excessive
production and release of neutrophils and their precursors
into the circulation, leading to neutrophilia (58, 71, 72, 81).
G-CSF is dispensable for emergency granulopoiesis and other
cytokines, including granulocyte/macrophage (GM)-CSF (also
known as CSF-2) (43, 75), can drive neutrophil production and
release. Furthermore, neutrophil precursors can seed distant
tissues and produce neutrophils in situ, as has been observed in
cancer patients (82) (Figure 1B). TGFβ is another cytokine that
favors the presence of immature neutrophils, since its inhibition
converts neutrophils to a mature phenotype in transplantable
models of mesothelioma (73). The N1/N2 nomenclature—which
mirrors the Th1/Th2 nomenclature of T helper cells—was
coined in this study based on the influence of TGFβ to modulate
neutrophil phenotype and function. Neutrophils were named
pro-tumor N2 cells or anti-tumor N1 cells after Th1/Th2
CD4T cells and M1/M2 macrophages. However, evidence that
neutrophils mediate type 1 or type 2 immunity is lacking, and
additionally, how these phenotypes relate to the neutrophils
found in patients is still under investigation [recently reviewed
in Shaul and Fridlender (83)]. Therefore, this nomenclature may
be confusing in the context of cancer at this time and future
work will determine its appropriateness. In contrast to TGFβ,
expression of Type 1 interferons (IFNα and IFNβ) in tumors
favors mature neutrophils over immature neutrophils (57).
Most likely, there are many other tumor-derived factors that
influence neutrophil maturity and their discovery could lead to
opportunities for therapeutic intervention.

Functional Properties of Immature
Neutrophils
The degree of functional difference between immature and
mature neutrophils remains an open question in the field.
Due to the importance of neutrophil differentiation in their
effector mechanisms, (e.g., production of granule proteins),
there is a strong argument for functional differences. Immature
neutrophils may in many cases fall under the myeloid-
derived suppressor cell (MDSC) umbrella, as these cells have
been reported to inhibit T cells. MDSCs encompass a wide
range of granulocytic and monocytic cell types at different
stages of differentiation. Polymorphonuclear (PMN)-MDSCs are
widely considered to be an immature neutrophil population,
but methods for their identification, including with anti-Gr-1
(clone RB6-8C5) antibody—which recognizes both Ly6C and
Ly6G epitopes—fail to accurately discriminate between mature
and immature cells (84, 85). Recently, the classification and
identification of MDSC subsets based on their phenotype and

morphology has been improved, but these are still identified as
CD11bPosLy6CLowLy6GPos (84). Nevertheless, we believe that the
suppressive functions of immature and mature neutrophils is a
pathological response to tumorigenesis rather than a completely
separate granulocytic population, as discussed by others (86–88).
Therefore, we refer to PMN-MDSCs as neutrophils in this article.
Ex vivo suppression assays are the most common technique for
identifying and analyzing suppressive neutrophils. Findings that
have used this technique are challenging to interpret as they can
be influenced by neutrophil survival, cytotoxicity, neutrophil:T
cell ratio, and protocols used [e.g., CD3/CD28 microbeads or
antibodies (89)]. Immature (90) and mature (91) neutrophils can
be suppressive; however, differences in the suppressive capacities
of these populations (66, 92) are likely influenced by disease,
model, and neutrophil isolation and identification protocols
used (Figure 1D). It should also be noted that not all tumor-
infiltrating immature neutrophils possess T cell-suppressive
abilities (93, 94).

Immunosuppression by neutrophils is not only important
for primary tumor progression, but this mechanism can also
promote metastasis formation. Neutrophils can be recruited
by CXCR2 ligands to dampen anti-tumor immunity in pre-
metastatic organs so that disseminated cancer cells can evade
immune destruction (58, 95, 96). In these cases, it is the immature
neutrophils that are thought to mediate immunosuppression
and subsequent metastasis; although, this has not been formally
shown. In addition, immature neutrophils and other myeloid
progenitors can aid in the formation of the pre-metastatic
niche via mechanisms other than T cell suppression (97–99).
Interestingly, in models where immature neutrophils are absent,
such as the MMTV-PyMT model of breast cancer, it is the
mature neutrophils that drive metastasis (100). Together, these
data indicate that neutrophil maturity may be irrelevant to their
pro-metastatic functions.

ROS production is important in several neutrophil effector
mechanisms including their microbicidal (101), phagocytic (102)
and suppressive capacity and contributes to neutrophil anti-
and pro-tumor functions [reviewed in Ohl and Tenbrock
(103)]. One such pro-tumor function of neutrophil ROS in
cancer is their promotion of tumor initiation at states of
inflammation by damaging proliferating epithelial cells (104).
In relation to neutrophil maturity the production of ROS can
be variable between immature and mature cells. For example,
immature neutrophils (Ly6GPosCD101Neg) display reduced ROS
production compared to mature (Ly6GPosCD101Pos) in a
mouse orthotopic pancreatic cancer model (48). Similarly, in
a range of other transplantable mouse cancer models, LDNs—
which are enriched in morphologically immature neutrophils—
have reduced ROS production (5). However, the amount of
ROS production may be context dependent and reliant on
metabolism. In tumor-free mice (Ly6GIntc-KitPos) and ovarian
cancer patients (CD10Int), immature neutrophils are dependent
on oxidative mitochondrial metabolism rather than glycolysis,
for ROS production (65). Recently, LDNs frommice bearing 4T1
mammary tumor livermetastasis have also been shown to have an
increased oxidative metabolism (56). This dependency may have
implications in the glucose-limited tumor microenvironment
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FIGURE 1 | Immature neutrophils are present in cancer and have an altered functional capacity compared to mature that may influence tumor progression. Immature

neutrophils can be present and significantly increased in the peripheral blood and tissues of cancer patients. This increase may result from: (A) promotion of their early

release from their bone marrow (BM) haematopoietic niche by increased systemic chemokines, such as granulocyte colony-stimulating (G-CSF), e.g., tumor produced

or as therapy. (B) release of neutrophil precursors from the BM and their extramedullary proliferation in the circulation or tissues. Immature neutrophils may have both

anti- and pro-tumor properties. These include (C) altered localization resulting from their differential cell surface marker expression influencing their chemotactic

capacity and/or less segmented nuclear morphology compared to mature neutrophils reducing their deformability and (D) different functional capacity compared to

mature neutrophils including their reduced phagocytic capacity, altered suppressive properties, reduced NETosis, and reduced granularity. (E) Together, these

differences in the properties and functions of immature neutrophils could lead to their negative influence when targeting neutrophils in cancer therapy. G-CSF, colony

stimulating factor-3; GMP, granulocyte monocyte progenitor; ROS, reactive oxygen species; NET, neutrophil extracellular trap; NK, natural killer cell.

and affect neutrophil function (65). Therefore, while immature
neutrophils can have reduced ROS production compared to

mature neutrophils, this appears to be dependent on stimulus,
their localization and the tissue microenvironment.
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Neutrophil extracellular traps (NETs) are extracellular fibers
composed of nuclear, mitochondrial, cytoplasmic and granule
contents that can be released by neutrophils following their
activation (105). NETs can capture circulating cancer cells in
the mouse lung promoting their extravasation and metastasis
formation (106, 107). Neutrophils can also aid in formation of the
omental pre-metastatic niche and capture of circulating ovarian
cancer cells, promoting their metastasis at this site (108). The
ability of immature human neutrophil populations to release
NETs is reduced following interferon priming (35) (Figure 1D).
In addition, when isolated from the peripheral blood of acute
myeloid leukemia (AML) patients, morphologically immature
neutrophils show decrease capacity for NET formation following
phorbol 12-myristate 13-acetate (PMA) stimulation (109). As
NETs have been proposed to arise from the inability of terminally
differentiated neutrophils to re-enter mitosis (110), it could
be inferred that the increased mitotic capacity of immature
populations contributes to these differences. ROS contribute to
NETosis by promoting granule release and rupture of the nuclear
envelope, as highlighted by the inability of neutrophils from
chronic granulomatous disease patients to undergo NETosis
(111, 112). Differences in ROS production with neutrophil
maturity may also influence NETosis (65). Differences in granule
composition of neutrophils at different maturity may also
influence the functional capacity of their NETs. The tertiary
granule component MMP-9 (113) has been implicated in NET-
induced dormant cancer cell reactivation (114) and its possible
reduced abundance in banded neutrophils and earlier neutrophil
precursors present in cancer could reduce their ability to promote
this reactivation.

Multiple studies have indicated a reduced migratory
capacity of immature compared to mature neutrophils
(5, 48) (Figure 1C). This may result from lower expression
of chemokine receptors, such as CXCR1 and CXCR2 (30), and
other genes involved in chemotaxis (48). In mice, proliferating
neutrophil precursors, identified as Ly6GLowCXCR2Negc-
KitPosCXCR4Pos, have reduced migration to laser-induced
damage (48). High CXCR2 expression by neutrophils has been
associated with poor outcome in human pancreatic ductal
adenocarcinoma (PDAC) patients (95). Inhibition of CXCR2
in a mouse model of PDAC reduces neutrophil migration and
delays tumor progression (95). Banded nuclear morphology, and
thus reduced deformability, may promote immature neutrophil
sequestration in capillaries and reduce their migratory capacity
(115); although, banded nuclear morphology in immature
human neutrophils does not affect transendothelial migration
(TEM) when compared to segmented neutrophils ex vivo (62)
(Figure 1C). It is therefore conceivable that their increased
sequestration in off target tissues and ability to undergo TEM
may result in unwanted immature neutrophil accumulation and
the promotion of inflammation and/or metastasis. Additionally,
neutrophil spontaneous migration is increased in the early
compared to late stages of cancer in a mouse orthotopic lung
cancer model (116). These changes in neutrophil function
with tumor progression are present in BM cells, suggesting
altered granulopoiesis over time (116). Therefore, while further
investigation is required, differential trafficking of immature

neutrophils could have the capacity to both antagonize and
promote tumor development dependent on their localization.

The phagocytic capacity of immature, compared to mature,
neutrophils is also reduced (5, 48) and could result from
their altered cell surface receptor expression and decreased
ROS production (Figure 1D). Fc receptors (FcRs) are important
in mediating phagocytosis (117) with decreased expression of
CD16 likely influencing their phagocytic capacity. Furthermore,
immature neutrophils (CD16Int) are unable to kill tumor cells
via FcγRI, but exhibit cytotoxicity via FcαRI (118). Activation
of FcRs, integrins and G-protein coupled receptors (GPCRs)
can trigger neutrophil ROS production and its extracellular
or intracellular release into the phagolysosome, as reviewed
in more detail by others (102, 119). Unsurprisingly, immature
neutrophils have also been shown to have an increased life
span and can mature ex vivo (120). It will be interesting to
determine if neutrophil maturation after their release from the
BM contributes to heterogeneity within the mature neutrophil
population. However, despite differences in the functional
capacity of immature and mature neutrophils, they are still
capable of mediating innate immune functions (120). Overall,
the effect of neutrophil maturity in cancer remains enigmatic
and further investigation, coupled with accurate identification,
is required.

NEUTROPHIL MATURITY IN
ANTI-CANCER THERAPY

Immunotherapy has shown great promise in cancer; however,
only a minority of patients respond to certain therapies
(121) and combinatorial therapies targeting a broad range
of immune populations may be more beneficial. Therapies
targeting neutrophils have received relatively little attention
(Figure 1E). While the direct effect of therapies on neutrophils at
different stages of maturation has not been investigated, we can
consider ways in which the properties of immature neutrophils
are relevant.

Neutrophils recruited to the tumor via CXCR2 can aid tumor
progression (122) and inhibition of CXCR1 and CXCR2 has
shown promise in mouse models (95) and human cancers (123).
As CXCR2 expression increases with neutrophil maturation
(48) inhibitors of CXCR2 may differentially influence immature
and mature neutrophils affecting their efficacy. Therapies
targeting immunosuppressive neutrophils enhance responses
to checkpoint blockade by promoting tumor infiltration by
T cells in mouse models (124–127). A greater understanding
of the maturity composition of these cells could better aid
targeting of this population. Furthermore, tyrosine kinase
inhibitors that target the hepatocyte growth factor (HGF)
receptor, cMET (e.g., Cabozantinib and Capmatinib) can
extend survival by influencing neutrophil behavior in mouse
melanoma and PTEN/p53-deficient prostate cancer models
(128, 129). As tyrosine kinases (e.g., Bruton’s tyrosine kinase;
BTK) are important in regulating neutrophil development
(49) and in neutrophil integrin signaling (130) it is possible
that their inhibitors have altered effects on neutrophils of
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different maturity. Similarly, monoclonal antibody (mAb) based
therapies, for example anti-gp75 (TA99) (131), anti-HER2
(Trastuzumab) (131), and anti-SIRPα (KWAR23) (132, 133),
promote neutrophil-mediated destruction of cancer cells. The
reduced phagocytic capacity (48) of immature neutrophils and
differences in their FcR expression (118) may reduce the efficacy
of these therapies. Furthermore, these properties may hamper
their ability to deliver therapeutics, such as in nanoparticles
(134), to the tumor (Figure 1E). Finally, adoptively transferred
neutrophils can aid in the killing of cancer cells (135) and
can be isolated from G-CSF-treated donors (136) (Figure 1E).
Here, the activation (137) and potential retention of transferred
immature neutrophils in off-target organs [e.g., the lung (138)]
needs to be considered. In addition, G-CSF-driven immature
neutrophil release, neutrophil accumulation, and alterations
to neutrophil function in cancer (66, 100, 139) need to be
further deliberated when treating neutropenic cancer patients
with G-CSF (140, 141).

CONCLUSIONS

To gain an accurate understanding of maturity on neutrophil
functional capacity, consensus protocols for identification of
neutrophil maturity are urgently required. However, as protocols
and markers may not be transferable between models, detailed
confirmation of maturity in each is essential (e.g., associated
nuclear morphology, transcriptomics, proteomics, and surface
protein expression data) allowing for proper comparison.
Functional investigation needs to be further driven by in

vivo investigation to remove concerns associated with ex

vivo manipulation. Of particular importance, investigating the
localization and suppressive capacity of immature neutrophils in
situ will aid in determining their influence on immunotherapy.
Furthermore, more research on immature neutrophils in cancer
patients should be carried out to determine where these
cells appear. Correlations between immature neutrophils and
mutational drivers need investigation to understand how these
cells occur outside the bone marrow and to identify additional
biomarkers of disease. Changes in neutrophil maturation
status before, during and after anti-cancer therapy may
provide insight into how these cells are regulated. Taken
together, the available evidence suggests immature neutrophils
in cancer inevitably influence tumor development and we
emphasize the importance of improving methodologies for
their study.
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