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Multiple capsid-stabilizing interactions revealed
in a high-resolution structure of an emerging
picornavirus causing neonatal sepsis
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Abraham J. Koster3, Arjen Q. Bakker5, Tim Beaumont5, Katja C. Wolthers2 & Sarah J. Butcher1

The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with

no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å

resolution in complex with human monoclonal antibody Fabs demonstrates the expected

picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA

genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and

interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N

terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on

expulsion as VP4, it forms an RNA translocation channel. Last, VP1’s hydrophobic pocket,

the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate

for antiviral development. Together, these results suggest a direction for development of

neutralizing antibodies, antiviral drugs based on targeting the RNA–protein interactions and

dissection of virus assembly on the basis of RNA nucleation.
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T
he Picornaviridae is a family of small, icosahedrally-
symmetric, positive-sense, single-stranded RNA viruses.
Parechovirus A is a species within this family with 16

genotypes and it is mainly associated with mild infections in
humans especially children. However, an emerging pathogen,
human parechovirus 3 (HPeV3) can cause severe central nervous
system infections such as meningitis1, and is a leading cause of
neonatal sepsis2. There are no antivirals or vaccines available to
combat HPeV infection. Unlike many other picornaviruses,
HPeV are characterized poorly both in terms of structure and
function, except for HPeV1 where the receptor is known3. The
great differences in tropism shown by HPeV3 compared to the
other HPeV, makes it essential to investigate HPeV3 structural
properties for a better understanding of its pathogenesis and
potential receptor binding.

We utilized cryo-electron microscopy and image reconstruc-
tion to analyse the structure of HPeV3 on its own and in complex
with a human monoclonal antibody Fab. The virion structure
shows that VP1 pocket-binding drugs, such as pleconaril, are
unlikely to bind to HPeV; that VP0 is an important protein
for stabilizing the inner surface of the capsid, and finally, that
the assembly of HPeV is most likely controlled by multiple
interactions of the genome with the capsid, through conserved
amino acids in VP1 and VP3 and stem-loop structures in the
RNA. We isolated and characterized an HPeV3-specific human
monoclonal antibody, which could be very useful for advancing
virus diagnostics and studying virus–host interactions.

Results and Discussion
HPeV3 structure. The HPeV3 virus preparations were free of
empty capsids as we have observed previously for HPeV1 (ref. 3).
We determined a 4.3 Å resolution HPeV3 structure using
electron cryo-microscopy and single particle analysis (Fig. 1a;
Supplementary Table 1; Supplementary Fig. 1). Homology models
of capsid proteins VP0, VP1 and VP3 were used as starting
models to generate an atomic model of HPeV3 constrained by the
density from the reconstruction (Fig. 1b–d and Supplementary
Movie 1). The HPeV3 capsid is composed of 60 copies of three
b-jellyroll proteins, VP0, VP1 and VP3 in a T¼ 1, pseudo T¼ 3
arrangement (Fig. 1c and Supplementary Movie 1). Unusually for
a picornavirus, we showed by polyacrylamide gel electrophoresis
protein analysis and from the structure, that VP0 does not
undergo autocatalytic cleavage into VP4 (N-terminal) and VP2
(C-terminal) in the virion (Fig. 1 and Supplementary Fig. 2).
Similar to many picornaviruses4, HPeV3 possesses an open
channel at each fivefold vertex5 (Supplementary Fig. 3) and a
canyon for potential receptor and antibody binding, however, it is
wide and shallow (Fig. 1a). Five VP3 N termini come together to
form an annulus at the base of the channel, giving intra-pentamer
stability (Supplementary Fig. 3). Picornaviral capsid channels
have been implicated in RNA genome release that is initiated by
receptor binding, and the exposure of VP4 and the VP1 N
terminus through conformational change5,6. RNA uncoating in
parechoviruses may exploit a different mechanism. In contrast to
VP4 from enteroviruses, the equivalent VP0 N terminus does not
surround the annulus ready for release4,7. Instead the VP0 N
terminus straddles an adjacent threefold on the inner surface of
the capsid, forming a loop that stabilises the twofold-related
VP0 from another pentamer (Fig. 1d, pentamers 1 and 3),
a conformation that has not been previously observed to our
knowledge (Fig. 1e). This sets HPeV apart from other
picornaviruses and from the otherwise closely related Ljungan
virus (Parechovirus B) infecting voles8. This interaction of the
symmetry-related VP0 N termini at the twofold across
neighbouring pentamers lies beneath two interacting VP0 hA1

a-helices. During RNA uncoating in many picornaviruses,
these hA1 helices move apart9, resulting in extrusion of the
amphipathic helix-carrying VP1 N terminus, which lodges itself
into the cell membrane and the expulsion of VP4 to form a
channel for RNA release. In HPeV, the VP0 N terminus may be
the one which is first extruded out of the capsid.

Ordered-structure of HPeV3 RNA. Unusually, about 25% of the
genomic RNA is highly ordered, and at high occupancy in the
reconstruction. Finger-like RNA densities come into close contact
with capsid proteins VP1 and VP3 around the vertices (Fig. 2a)
that could accommodate about 30 nucleotides. The sequence of
the RNA was not evident even though the RNA density was at the
same resolution as the protein density (Supplementary Fig. 1c).
This suggested repetition of a structural rather than a long
sequential RNA motif, and indeed we did not find 60 identical, 30
residue-long repeating sequences in the genome. However, the
30-end of the genome has previously been predicted to be
highly structured10,11. We modelled an RNA stem-loop model
containing residues 7,181–7,210 from the 30-end of the genome
(Genbank ID GQ183026) into the density with a cross-correlation
value of 0.86. To further confirm that all the 60 symmetry-related
sites have high RNA occupancy, we performed an asymmetric
reconstruction of the large data set of HPeV3 (41,845 particles).
We were still able to identify the ordered RNA at all 60 sites albeit
at variable signal intensity. The RNA model fitted into all the 60
sites with cross-correlations ranging from 0.86 to 0.88 (Fig. 2b,d,
Supplementary Fig. 1d and Supplementary Movie 1). Moreover,
we identified the conserved regions in the N terminus of VP3
(T20-R26, T47-T65), hZ helix and the bIC terminus regions of
VP1 (R202-N205) as the structured RNA interaction sites
(Fig. 2c,e; Fig. 3). We mapped the distribution of charge on the
inner surface of the capsid, and noticed that although the surface
is not highly positively charged, unlike in Ljungan virus8, there
are a few conserved basic residues in these regions from all
Parechovirus A, notably, K21, K23, R58 and R64 in VP3, VP1,
R74 and R202, respectively (Figs 2f and 3). As the VP3 N
terminus forms the annulus, it also interacts with two RNA stem-
loops (Fig. 2e). Taken together, these results indicate that the
co-assembly of the HPeV capsid proteins with the viral genome
may be dictated both by electrostatic interactions, and by a
cooperative effect between repeated elements of secondary
structure (packaging sequences) throughout the genome,
recognized by the capsid proteins. In practice, the RNA genome
could nucleate capsid assembly at multiple sites. Each VP3
molecule thus incorporated, may help to condense the genome as
it can bring together two stem-loops from disparate regions of the
genome (Fig. 2c,e). This hypothesis is inspired by the work on
the single-stranded RNA bacteriophage, MS2, where multiple
packaging sequences have been identified that promote co-
assembly with the capsid protein, providing a competitive
advantage for viral RNA packaging over host RNA during the
initial stages of assembly12. These RNA–protein associations
could be exploited for designing specific antivirals against HPeV3
to interfere with the association.

VP1 hydrophobic pocket. The antiviral drug, pleconaril and its
derivatives usually block enteroviruses infections such as EV-D68
(ref. 4). These drugs expel the lipid (‘pocket factor’) present in the
hydrophobic pocket of the VP1 b-barrel and block RNA
uncoating by stabilizing the capsid4. The channel to the
hydrophobic pocket in HPeV3 VP1 is blocked by three large,
conserved side chains Y133, F163 and Y164 (Figs 1f and 3)
compared to EV-D68 (ref. 4). Thus, we can explain observations
that pleconaril does not work in the clinic2, and predict that such
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Figure 1 | HPeV3 structure. (a) Radially coloured isosurface representation down a twofold axis of symmetry of HPeV3 at 4.3 Å resolution shown at 3s
above the mean threshold. The arrow indicates the canyon. Colour key shows the radial colouring from the centre of the virus in nm. (b) Representative fit

of VP0 atomic model to electron density (mesh). (c) A zoomed-in view of the capsid model showing the positions of VP0 (yellow), VP1 (red) and VP3

(green) in a T¼ 1 (pseudo T¼ 3) arrangement. The symmetry axes are marked in blue (fivefold pentagon, threefold triangle, twofold ellipse). The capsid is

made from 12 pentamers of VP0, VP1 and VP3. Some of the proteins in neighbouring pentamers are marked (VP0, C1-C16; VP1, A1-A16; VP3, B1-B16).

(d) A stabilizing network of VP0 N-terminal arms traverses the inner side of the capsid. The path of one N terminus is highlighted in yellow (C1) from

pentamer 1 (pink) travelling via VP3 (gold) of pentamer 2 (gold) to interact with the N terminus of C16 from pentamer 3. These VP0 N termini obstruct the

pore at the twofold symmetry axis between pentamer 2 and pentamer 4. (e) Unusual position of HPeV3 VP0 N terminus compared to other picornavirus is

shown by superposition of VP0 from HPeV3 (yellow), with poliovirus (1pov; orange), EV71 (3vbu, magenta) and HAV (4qpg, blue). In addition, the

locations of VP4 (cyan) and VP2 (white) of EV71 (3vbf) in comparison to HPeV3 VP0 are also shown. N termini for all the superimposed proteins are

marked with asterisks in e). (f) HPeV3 VP1 b-barrel region is shown superimposed on a pocket factor containing EV-D68 VP1 (4wm7; VP1, blue; pocket

factor, grey). The HPeV3 hydrophobic pocket is blocked by residues Y133, F163 and Y164.
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pocket-factor mimics will not work against any of the HPeV so
far sequenced.

HPeV3–Fab complex structure. We isolated an HPeV3-specific
human monoclonal antibody, AT12-015 that bound to HPeV3
isolates 152037, A308/99 and two clinical isolates in infected cells.

It did not neutralize 152037 in a Vero cell-line-based assay. We
solved the structure of HPeV3 isolate 152037 in complex with
Fab AT12-015 (Supplementary Table 1; Fig. 4a; Supplementary
Fig. 1). The Fab molecules recognize a conformational epitope on
the rim of the canyon (Fig. 4a). Contributions come from regions
in both VP3 (hZbB, bChA, bEbF and bGbH loops) and VP1
(bBbC, bCbD and bEbF loops, C terminus) mainly conserved in
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Figure 2 | Ordered RNA–protein interactions. (a) Central cross-section of the unfiltered HPeV3 icosahedrally-symmetric reconstruction with three

symmetry axes marked. The red circle in (a) and (c) indicates one of the regions where the capsid proteins interact with finger-like RNA densities.

(b) Central cross-section of the unfiltered HPeV3 asymmetric reconstruction. (c) Enlargement of the VP3 (green) and VP1 (red) atomic model in intimate

contact with an RNA model (magenta, R1) within its asymmetric unit. The VP3N terminus also interacts with a neighbouring RNA molecule within the

pentamer. The fit of one of the RNA models in the RNA EM density (transparent isosurface) is shown. The RNA interacting regions in VP1 and VP3 are

coloured black. (d) The icosahedrally-symmetric copies of the fitted-RNA model from c shown in the HPeV3 asymmetric reconstruction’s RNA density

(yellow transparent surface shown at 2s above the mean threshold). (e) VP1 and VP3 interaction with the RNA is shown in the context of the inner surface

of a pentamer. The N terminus of VP3 (B1) and regions of VP1 (A1) interact with the RNA (R1) within its asymmetric unit and also with an RNA (R3) from

the next-but-one asymmetric unit within a pentamer. The proteins are marked as in Fig. 1c. The RNA models are marked R1-R5 for their respective

asymmetric units as in Fig. 1c). (f) The inner surface of a pentamer of the HPeV3 model shown as an electrostatic potential surface with the conserved RNA

motif (magenta) shown in ribbon. The scale for the charge distribution is also shown. The RNA interaction with the capsid protein does not appear to be

driven by electrostatics as the interacting region on the capsid proteins appear to be a mix of positive (blue), negative (red) and neutral charges (white).
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HPeV3 explaining the antibody’s specificity to this genotype
(Fig. 3). The Fab footprint encompasses the VP1 C terminus
where many other HPeV contain an RGD-motif to bind their
integrin receptors (Figs 3 and 4b)3. As AT12-015 is specific for
HPeV3 and did not bind to any of the other HPeV genotypes
tested it could be very useful for advancing virus diagnostics
and studying virus–host interactions. Further comparison with
epitopes from neutralizing patient sera could help us understand
the mechanism of neutralization in patients13.

Overall, this work shows multiple, stabilizing RNA–capsid
interactions as a novel target for anti-parechovirus drugs.
We revealed the unusual stability of these capsids at the intra-
pentamer level by VP3 interactions and at the inter-pentamer
by VP0, and propose that the uncoating mechanism of the
HPeV genome will be significantly different to that of other
picornaviruses.

Methods
Virus purification and inactivation. The HPeV3 isolate 152037 was grown on an
African green monkey (Vero) cell line maintained in Dulbecos Modified Eagles
Medium supplemented with glutamax (1� ), non-essential amino acids (1� ),
streptomycin (0.1 mg ml� 1), penicillin (0.1 mg ml� 1) and 10% heat-inactivated
foetal bovine serum (FBS). Confluent cell layers (90%) were inoculated with HPeV3
isolate 152037 at a 0.01 multiplicity of infection in medium containing 2% FBS. At

100% infection of the cell monolayer evident by the cytopathic effect (CPE),
the cells and spent media were collected, freeze-thawed three times and clarified
by low speed centrifugation14. The supernatant was filtered and concentrated by
ultrafiltration in Centricon 100 kDa devices (Millipore). The resulting preparation
was purified by differential ultracentrifugation on a CsCl step gradient where the
top density was 1.2502 g cm� 3 and the bottom 1.481 g cm� 3 CsCl (32,000g,
Beckmann SW41 Ti rotor, 18 h at 4 �C). The virus band was buffer-exchanged with
10 mM Tris–HCl, pH 7.5, 150 mM NaCl, 1 mM MgCl2 (1� TNM buffer) using
ultrafiltration in Centricon 100 kDa devices (Millipore) to remove CsCl. The
ultracentrifugation and buffer exchange was repeated a second time. The purified
HPeV3 isolate 152037 was inactivated by adding 0.1 mg ml� 1 formaldehyde and
keeping at 37 �C for 72 h. Inactivation was confirmed by infecting Vero cells with
inactivated virus. No CPE was seen up to 7 days.

HPeV1-Harris and HPeV2-2008 were provided by the Dutch National Institute
for Public Health and Environment, Bilthoven, the Netherlands. HPeV4-251176,
HPeV5-552322, HPeV6-550389, and two HPeV3 clinical isolates were obtained
from the Laboratory of Clinical Virology, Academic Medical Center, Amsterdam,
the Netherlands. For virus stocks HPeV1, HPeV2, HPeV3 A308/99 (kind gift from
Hiroyuki Shimizu and Miyabe Ito) and HPeV4-6 were grown on a HT29 cell line
in Eagle’s minimum essential medium with L-glutamic acid (0.2� ), non-essential
amino acids (1� ), streptomycin (0.1 mg ml� 1), penicillin (0.1 mg ml� 1) and
2% heat-inactivated FBS (HT29 cells were maintained in medium containing
8% heat-inactivated FBS). These strains were used in antibody AT12-015 binding
and neutralization assays.

Generation of antibodies and preparation of Fab fragments. The human
monoclonal antibody AT12-015 against HPeV3 isolate 152037 was prepared from
human blood15. Briefly, human memory CD27þ IgGþ B cells were cultured using
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Figure 3 | Structure-based sequence alignment of human parechoviruses. Multiple sequence alignment of HPeV1-8 amino acid sequences of capsid

proteins VP0, VP3 and VP1 using protein BLAST45 is shown. The secondary structure elements from the atomic model of HPeV3 152037 are shown above

the alignment as a-helices (spirals), b-sheets (arrows), disordered regions (dashed lines). Sequence annotations on the left correspond to the virus

genotype/GenBank IDs. Sequence identity among all the aligned human parechoviruses (blue highlight), RNA binding sites (black boxes) and

conformational epitope for mAb AT12-015 (red lines) are indicated on the HPeV3 isolate 152037 protein sequences. Disordered regions of the structural

proteins were truncated from the atomic HPeV3 model. The disordered VP1 C terminus is exposed on the outside of the capsid and was identified in the

footprint of Fab AT12-015 by comparison to other picornavirus structures. The footprint incorporates four amino acid differences between HPeV3 152037

and A308/99 in the variable surface loop VP3 bChA and the C terminus of VP1. The amino acid sequence identity of 19 P1 polyproteins from all HPeV3

isolates available in GenBank is 99%.
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the AIMSelect method from healthy donors who had recovered from a confirmed
HPeV3 isolate 152037 infection 1 year earlier15. Single cells were subcloned from B
cell cultures where the supernatant showed binding to HPeV3-infected cells by
immunofluorescence. RNA was isolated from the monoclonal B cells to retrieve the
antibody heavy and light chain sequences. Unique sequences were used to generate
recombinant protein in 293 T cells. IgG1 antibodies were subsequently purified
using HiTrap Protein A columns on an ÄKTA instrument (GE). Fab fragments
from AT12-015 were produced using a Pierce Fab micro preparation kit according
to the manufacturer’s instructions to achieve full digestion of the antibody. The
resulting Fab fragments were mixed with HPeV3 capsids at a molar ratio of 60 to 1
and incubated for 30 min at 37 �C in 1� TNM to allow virus–Fab complex
formation, prior to vitrification.

HPeV neutralization assay. Neutralization of HPeV3 isolate 152037 by AT12-015
was tested by infecting Vero cells with pre-incubated virus (100 TCID50 units)
with varying amounts of the antibody (0.03–7.5 mg ml� 1) at 37 �C for 1 h. Infected
cells were monitored for the appearance of CPE every 24 h for 7 days. At day 7,
RNA was extracted from the supernatant using a total nucleic acid isolation kit
with the MagnaPure LC instrument (Roche Diagnostics), reverse transcribed and
cDNA (complementary DNA) was used to estimate viral copy number by real time
PCR using an LC480 instrument (Roche Diagnostics)16. The capacity of AT12-015
to neutralize HPeV3 isolate 152037 was also tested on BGM (buffalo green monkey
kidney), A549 (human colon adenocarcinoma) and Caco2 (human colon

adenocarcinoma) cell monolayers. Furthermore, the cross-neutralization by
AT12-015 against HPeV1, HPeV2, HPeV4, HPeV5 and HPeV6 was also tested in
Vero cells. Immunofluorescence of HPeV1-6 infected cells using AT12-015 was
also checked.

Electron cryo-microscopy and image processing. The formaldehyde-inactivated
purified HPeV3 was vitrified by applying 3 ml of the sample on Quantifoil R3.5/1
grids, blotting for 2 s at a relative humidity of 92% and plunging into liquid ethane
using a Leica EM GP. The grids were examined in a Cs-corrected FEI Titan Krios
transmission electron microscope at 300 keV. The images were recorded on a
Falcon II detector under low dose conditions at a nominal magnification of
59,000� with a sampling size of 1.14 Å per pixel. Seven frames per image were
collected in counting mode using FEI EPU automated single particle acquisition
software. The movie frames were initially aligned with each other using motioncorr
software17 before further processing.

The contrast transfer function of each micrograph was estimated using
CTFFIND3 (ref. 18) and aligned averaged images containing drift or astigmatism
were discarded. Particles were picked from the averaged image of all the seven
aligned frames of the movie using the programme ETHAN19 with a box size of
401 pixels and inspected by eye in the programme suite EMAN20. A random model
generated from 150 particles was used as a starting model to initiate full orientation
and origin determinations of the full set of particles using AUTO3DEM 4.04
(ref. 21). The final model from AUTO3DEM was used as an initial reference model
filtered to 60 Å for processing 41,849 particles in Relion 1.3 (ref. 22). These particles
were classified into 100 classes by two-dimensional classification and the best
class of 41,845 particles was selected, resulting in a 5.9 Å resolution icosahedrally
symmetric model. They were further classified into four classes by three-
dimensional classification with icosahedral symmetry imposed, and the two best
classes containing 8,889 particles were selected for further refinement. Individual
particle movies were realigned in Relion with a running average window of 5 and
standard deviation of 1 on translation. Each particle from all the aligned movie
frames was B-factor weight-averaged using the particle polishing step in Relion to
compensate for the radiation damage resulting in an increased signal to noise ratio.
The running average window used was 5, with a standard deviation of 100 on
particle distance. The final refinement between two independent datasets gave
a resolution of 4.56 Å on the basis of the 0.143 criterion FSC. After masking,
the final resolution was 4.3 Å. A B-factor correction of –164.4 Å2 was automatically
estimated and applied23. A local resolution was also estimated for the
reconstruction using ResMap24.

For the asymmetric reconstruction, the orientations of the best 41,845 particles
were refined for a further 16 rounds using the three-dimensional auto-refine
option in Relion without imposing any symmetry. The final refinement between
two independent datasets gave a resolution of 10.36 Å on the basis of the 0.143
criterion FSC.

Aliquots of HPeV3–Fab AT12-015 complexes were vitrified on glow-discharged
ultrathin carbon film containing holey carbon copper grids (TED PELLA) using a
home-built guillotine. The grids were examined in a FEI Tecnai F20 transmission
electron microscope at 200 keV using a Gatan 626 cryostage. The images were
recorded on Kodak SO-163 films under low dose conditions at a nominal
magnification of 50,000� . Films were digitized on a Zeiss scanner (Photoscan) at a
step size of 7 mm giving a pixel size of 1.4 Å per pixel. The contrast transfer function
of each micrograph was estimated as described above. Particles were picked on 4�
binned micrographs using the programme RobEM21 with a box size of 101 pixel.
A random starting model was generated from 150 particles using AUTO3DEM v
4.05.1 (ref. 21). The full data set was divided into two and the orientations and
origins were determined from independent reconstructions generated by each set.
The final resolution of 15 Å from 564 particles was achieved on the basis of the
0.143 FSC criterion.

Model building. The structures of the three HPeV3 capsid proteins were predicted
by multiple-template comparative modelling using the I-TASSER server25. The
template structures for VP0 included a user-defined template containing a fused
structure of human enterovirus VP4 (PDB ID: 3vbf) N terminal to empty human
enterovirus VP2 (PDB ID: 3vbo)26, as well as the automatically selected foot and
mouth disease virus (PDB ID: 1qqp)27, poliovirus 1 (PDB ID: 1pov)28, bovine
enterovirus (PDB ID: 1bev)29, echovirus 1 (PDB ID: 1ev1) (ref. 30) and hepatitis A
virus (PDB ID: 4qpg)31. The C-score for the best model was –1.03.

For VP3, a user-provided template of empty human enterovirus (PDB ID:
3vbo)26 was used in addition to the following templates selected by the programme:
coxsackievirus A9 (PDB ID: 1d4m)32, echovirus 1 (PDB ID: 1ev1) (ref. 30), human
enterovirus (PDB ID: 3vbf)26, human enterovirus (PDB ID: 3vbh)26, human
coxsackievirus A16 (PDB ID: 4jgy)7. The C-score for the best model was –0.61.

For VP1, empty human enterovirus (PDB ID: 3vbo)26 was provided as an
external template in addition to the following templates selected by the
programme: human enterovirus 71 (PDB ID: 3vbh)26, human enterovirus 71
(PDB ID: 3zfe)33, human coxsackievirus A16 (PDB ID: 4jgy)7, human enterovirus
71 (PDB ID: 4cdq)34, coxsackievirus A 9 (PDB ID: 1d4m)32, human rhinovirus
14 (PDB ID: 1ncq)35. The C-score for the best model was –0.75.

The homology models were rigidly-fitted into the HPeV3 map using the
‘fit-in-map’ feature in UCSF-Chimera36. Using the ‘zoning’ feature in
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Figure 4 | HPeV3–Fab structure. (a) Radially coloured isosurface

representation of HPeV3–Fab AT12-015 complex at 15 Å resolution shown

at 1.5s above the mean threshold. The Fab molecules (red) bind around the

canyon region. (b) HPeV3 roadmap. The Fab footprint (red contour) is
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UCSF-Chimera36, the HPeV3 capsid map was zoned to an asymmetric unit with a
radius of 6 Å using the VP0-VP3-VP1 rigidly-fitted model. The VP0-VP3-VP1
model was flexibly fitted into the asymmetric unit using comparison of the results
from two different flexible fitting programs iMODfit37 and FlexEM38 in order to
arrive at a consensus fit39. Both these flexible fitting programs were used with the
default settings. The models were then refined manually in Coot40 by truncating
the models where no density was evident, improving the fits of main-chain and
fitting the heavy side chains of the residues phenylalanine, tyrosine, tryptophan and
arginine where visible. The models were further refined by real space refinement in
Phenix41. All the visualization were carried out in UCSF-Chimera36.

A single copy of the RNA structured region was extracted using ‘Volume eraser’
in UCSF-Chimera36. The extracted volume could accommodate about
30 nucleotides. A 30-nucleotide region (7181-7210) in the 30-untranslated end of
the HPeV3 isolate 152037 genome (GenBank ID: GQ183026) was folded on the
RNAfold web server42 and the fold was modelled in RNAComposer43. This
RNA model was fitted into the extracted volume using the ‘Fit-in-map’ option in
UCSF-Chimera36.

The footprint of AT12-015 was estimated by superimposing the HPeV3 atomic
model into the HPeV3–Fab AT12-015 complex reconstruction and generating the
roadmap for the atomic model with the fab footprint shown as contour lines in
RIVEM44. All the amino acids residues which were surface-exposed within this
footprint were taken as the epitopes for the Fab.
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