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A B S T R A C T   

To effectively classify tree species within datasets characterized by limited samples, we intro-
duced a novel approach named DenseNetBL, founded upon the fusion of the DenseNet archi-
tecture and a pivotal bottleneck layer. This bottleneck layer, encompassing a compact 
convolutional component, played a central role in our methodology. The evaluation of Dense-
NetBL was conducted under varying conditions, encompassing small-sample tree species data, 
extensive remote sensing datasets, and state-of-the-art classifiers. Furthermore, a quantitative 
assessment was executed to extract tree species areas. This was achieved by quantifying pixel 
areas within manually delineated tree species maps and classifier-generated counterparts. The 
findings of our study indicated that, in scenarios devoid of pre-trained weights, DenseNetBL 
consistently outperformed its DenseNet counterpart with equivalent layer numbers. In the realm 
of small-sample situations, both the Swin Transformer and Vision Transformer exhibited inferior 
performance when juxtaposed with DenseNet and DenseNetBL. Remarkably, among the shallow 
architectures, DenseNet33BL showcased superior aptitude for small-sample tree species classifi-
cation, culminating in the most commendable results (Overall Accuracy (OA) = 0.901, Kappa =
0.892). Conversely, the Vision Transformer yielded the least favorable classification outcomes 
(OA = 0.767, Kappa = 0.708). The amalgamation of DenseNet33BL and simple linear iterative 
clustering emerged as the optimal strategy for attaining robust tree species area extraction results 
across two prototypical forests. In contrast, DenseNet121 exhibited suboptimal performance in 
the same forests, attaining the least satisfactory tree species area extraction results. These 
comprehensive findings underscore the efficacy of our DenseNetBL approach in addressing the 
challenges associated with small-sample tree species classification and accurate tree species area 
extraction.   

1. Introduction 

Forests are an important component of the Earth’s ecological environment, with significant roles in carbon sequestration, oxygen 
release, water conservation, and maintenance of biodiversity [1]. Trees are one of the important components of forests, and different 
tree species play different roles in the aforementioned functions. Therefore, it is necessary to understand the spatial distribution of tree 
species in forests. Generally, the spatial distribution of tree species in forests can be understood by drawing a map of their distribution, 
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and accurate classification of tree species is the first prerequisite for drawing high-precision maps. Traditional manual classification 
and mapping of tree species are difficult to balance accuracy, labor, and finances, and may lead to incorrect map information even 
under conditions of high labor and massive funds [2]. With the development of remote sensing technology, more and more forestry 
personnel are using remote sensing technology to classify tree species more efficiently and draw higher-precision maps [3]. Among 
them, low-cost drones can provide high spatial resolution remote sensing images. When combined with machine learning(ML) 
technology, relevant personnel can more effectively classify and map tree species in an area [4]. 

At present, tree species classification methods based on remote sensing technology can be roughly divided into two categories [5, 
6]. The first category is traditional classifiers in ML. By building traditional classifiers such as support vector machines(SVM), decision 
trees(DT), and random forests(RF), tree species are manually selected and inputted based on their features [7]. For example, Zhang 
et al. conducted research on the identification of tree species in urban natural forests using longitudinal profiles of different tree species 
and DT based on knowledge-based and gain ratio criteria with very high resolution [8]. Sun et al. used RF to classify tree species in 
urban natural forests based on high-resolution aerial images [9]. Compared with the manual classification of tree species, this method 
eliminates the problem of low efficiency, improves the level of automation in tree species classification, but still relies on the manual 
selection of different features of tree species for classification, and the quality of the classification results is highly correlated with the 
quality of the manually selected features [10]. 

The second type is deep learning(DL), which uses classifiers that can automatically extract image features in DL to finely classify 
tree species [11]. For example, Schiefer et al. conducted segmentation research on tree species in high-resolution drone images using 
U-net [12]. Cao et al. classified tree species using the Res-Unet network, which combines the feature extraction architecture of ResNet 
and U-net [13]. This method overcomes the disadvantage of traditional classifiers requiring manual selection of features and further 
improves the level of automation, and has become the mainstream method for tree species classification [14]. 

The content shown above demonstrates that standard ML approaches have enhanced the automation level of classifying tree 
species, making it more practical than manually mapping out tree species. This method does involve more people, however, the ac-
curacy of classifying a tree’s species is closely tied to the manually chosen traits. In addition to becoming a popular research area, DL 
approaches have significantly increased the automation degree of tree species classification based on conventional ML methods. But 
unlike other classification domains, tree species classification research frequently employs a manual method to produce tree species 
datasets, making it challenging to produce huge datasets with a constrained picture quantity and scope. Deep, complicated, and 
advanced classifiers may exhibit underfitting on small sample datasets due to the complex structure and multiple hyperparameters, 
making them unable to identify unlabeled samples. Currently, there is minimal study on small sample tree species classification [15]. 

The methods for drawing tree species distribution maps can be broadly divided into two categories [16]. The first method is to use a 
classifier to classify the whole image by pixel to draw a tree species map (semantic segmentation). This method is relatively easy to 
implement, but it is prone to salt-and-pepper noise under extremely special conditions, and it is often used in large study areas [17]. 
The second category is to use a classifier to recognize the objects generated by segmentation algorithms to draw a distribution map 
[18]. Compared with semantic segmentation, this method increases the complexity of the drawing process but greatly reduces 
salt-and-pepper noise. It can build more accurate tree species distribution maps in small areas and is currently a popular method for 
drawing tree species maps. 

DenseNet is composed of more dense connection mechanisms, which can build a deeper network compared to traditional DL 
classifiers. It can achieve more complex nonlinear feature extraction and has excellent classification results in large sample classifi-
cation. However, there are complex and numerous dense connections in its dense blocks, which can achieve deep level feature 
extraction, but also make DenseNet parameters redundant and may not be suitable for small sample tree species classification fields 
[19]. To improve the accuracy of small sample tree species classification in small study areas and draw more accurate tree species 
distribution maps, this study proposes a new small sample tree species identification algorithm (DenseNetBL), which is based on 
DenseNet and inserts small convolutional layers as bottleneck layers between Dense Blocks to form Dense Block_BL. The bottleneck 
layer reduces the output parameters while maintaining the input feature map dimensions, allowing for the fusion of multi-dimensional 
feature information in a deep network architecture, further increasing the network’s nonlinear expression. Four Dense Block_BLs are 
combined to form a new feature extraction architecture, followed by different optimizers and Softmax to build DenseNetBL. Two 
advanced and complex classifiers, Swin Transformer and Vision Transformer were also constructed, and the effects of different 
network depths on small sample classification ability and large sample image classification ability were quantitatively analyzed using 
small, medium, and large sample datasets. AdamW and SGD optimizers were also constructed, and the effects of batch size and learning 
rates on small sample tree species classification were tested. Additionally, we combined the best classifier with Simple Linear Iterative 
Clustering (SLIC) to draw a spatial distribution map of forest tree species, used manual drawing to draw a reference map, and 
quantitatively evaluated the effectiveness of the above classifier by calculating the difference in tree species area extracted by the two. 
This study can be used for small sample tree species classification, providing information support for obtaining region-al ecological 
information, improving urban environmental services, and promoting sustainable development of forestry. 

2. Materials and methods 

2.1. Study area and typical forest 

Geographically, the research area is situated between 118◦17′40″E and 118◦18′00″E and 32◦16′10″N and 32◦16′30″N in Chuzhou 
City, Anhui Province, China’s Langya Mountain, a 4 A-level scenic area (Fig. 1 (a)). The altitude ranges from 100 m to 320 m. It has an 
average annual temperature of 15.2 ◦C, an average annual precipitation of roughly 1050 mm, and a frost-free period of 217 days 
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throughout the year. It is part of the humid and semi-humid monsoon climate of the transition from the northern subtropical zone to 
the warm temperate zone. 

Two typical forests (Fig. 1 (b,c)) were chosen as the experimental location because the original image included elements such as 
structures, lakes, roads, and grasslands that were not taken into account for the tree species categorization experiment. The typical 
woodland A, which is in the center of the image, is surrounded by trails, consists of planted forests, and is approximately 100 m × 100 
m in size. Different tree species, such as Ligustrum lucidum Ait, Photinia beauverdiana, and Osmanthus fragrans, are distributed 
regularly and neatly throughout the woodland. The lower right corner of the photograph has typical woodland B, which measures 100 
m by 100 m and has a winding road through it. There is a small amount of natural forest surrounding the planted forests, with clusters 
of tree species, primarily Photinia beauverdiana and Osmanthus fragrans, and the majority of the area is planted forest with a neat 
distribution of tree species, primarily including Cupressus, Ligustrum lucidum Ait, and Cinnamomum camphora. The remaining 
species make up roughly 10% of the total population and are evenly distributed. 

2.2. High-resolution remote sensing image acquisition and preprocessing 

The UAV high-resolution photos from Dajiang UAV (spirit p4r), with horizontal and vertical resolutions of 96 dpi, are employed in 
this investigation. The high-resolution image has a range of 680 m–1447 m with a spatial resolution of 0.05 m. On clear, sunny days, 
data were collected. With a greater solar altitude angle and steady illumination, the high spatial resolution image was captured be-
tween 9:00 and 12:00. Red, green, and blue bands make up the three bands that make up the imagery. 

The noise that is produced during the storage and conversion of images is eliminated using Gaussian filtering. The basic concept is 
to create a Gaussian template using the two-dimensional Gaussian distribution function, and then utilize the template’s weighted 
average of the domain’s pixels as the pixel value of the template’s center point in the new image. 

2.3. Collection dataset and field surveying 

Through SLIC, the fundamental unlabeled tree species data sets were obtained in two typical forests. 90 photos of bare land (Fig. 2 
(f)) were also collected, bringing the total number of tree species data collected to 759. The Cinnamomum camphora (Fig. 2 (a)), 
Ligustrum lucidum Ait(Fig. 2 (b)), Photinia beauverdiana(Fig. 2 (c)), Cupressus(Fig. 2 (d)), and Osmanthus fragrans (Fig. 2 (e)) are 
among the five species of trees. 

Field surveying refers to identifying the unlabeled samples obtained from SLIC segmentation in a typical sample [20]. Fieldwork 
was surveyed in July and August of 2021. Field surveying could only be done at the Langya forestry site if it was accessible due to its 
geographic location. Unconfirmed images are discarded, and visually interpreted images are reconfirmed by on-site measurements. 
The main causes for deleting photographs were the lake at the forestry site and the complicated geography. 52 photos in total were 
eliminated, leaving 759 photographs of tree species with identified categories. 

2.4. Data enhancement and splitting 

Training of a CNN is based on epochs, which is defined as when all tree species data sets are trained once in CNN [21]. The tree 
species data set must be separated into a training set and a verification set to assess whether a CNN is overfitted or under fitted 
throughout the whole training cycle. The model was trained using the training set, and a tree species classifier was built as a result. The 
accuracy of the classifier used to identify common forest tree species was examined using the verification set. 60% of the data is 
randomly chosen as classifier training data before classifier training. A further 40% of the data is used to verify the accuracy of the 

Fig. 1. The location of the study area in Langya Mountain, Chuzhou City in northern China.  
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classifier (Table 1). 
Due to the limitations of sensors, weather, and UAV power, obtaining images in various states as a training dataset is unreliable 

[22]. DL requires a large number of data distributions of different states to fit the distribution of tree species features of different objects 
in real scenes to increase the generalization ability and robustness of the classifier. Therefore, Random cropping, random up and down, 
and horizontal flipping were used to enhance the original tree species’ spatial and geometric features [23]. In addition, the gamma 
transform is used to enhance the geometric and textural features of the original tree species, and the principle is shown in Eq. (1), 
where C is the pixel value of the original tree species and γ denotes the scaling factor, which is less than 1, the image grayscale is 
compressed and the image is brighter and greater than 1, the opposite [24]. Additionally, a new data enhancement method is proposed 
in this study. The idea is to convert the original three-band standard image into a hue, Saturation, and value standard image, and 
modify tree species’ spatial and texture features by adaptive thresholding. 

S= 255 ×

(

C /255.0

)γ

(1)  

Fig. 2. Detailed overview of the occurring tree species and classes.  

Table 1 
Training and verification sample details.  

Tree species Number of training samples Number of Validation samples Number of class 

Ligustrum lucidum Ait 173 43 0 
Photinia beauverdiana 104 25 1 
Cupressus 132 33 2 
Osmanthus fragrans 32 7 3 
Cinnamomum camphora 96 24 4 
Bare land 72 18 5 
Total number 609 150   
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2.5. Methods 

Four steps make up the study’s main method, as depicted in Fig. 3. The first step was to execute image preprocessing, which 
included cropping and enhancing. Second, a dataset of differentiating tree species was made. Third, maps of the spatial distribution of 
typical tree species in the study region were created after tree species classification. Finally, the results’ correctness was assessed. 

2.5.1. CNN-based tree species classification 
Inspired by the skip connection in ResNet, DenseNet implements dense connections between different blocks, which alleviates the 

problem of gradient vanishing and enables deeper networks to have higher feature extraction capability (i.e., higher overall accuracy 
(OA) [25]. The skip connection is shown in Eq. (2), and it represents that the output of the (n+1)-th layer is obtained by concatenating 
the output of the n-th layer and a portion of the feature map from the other layer. 

Xn+1 =Xn + F(xn +Wn) (2) 

A dense connection, as shown in Eq. (3), indicates that the input of the n-th layer comes from all the outputs of the previous n-1 
layers. This method of directly connecting all layers ensures maximum information transmission [26]. 

Xn+1 =Xn([X0,X1,X2,…Xn]) (3) 

Using Dense connection can construct deeper DenseNet, which can better fit the differences between different categories in a large 
annotated dataset, and achieve deeper semantic feature extraction of tree species [27]. However, building a large-scale dataset of tree 
species manually is challenging, and deep DenseNet is prone to underfitting on small datasets, leading to relatively poor performance 
in classifying tree species. 

The bottleneck layer refers to a small convolution layer with a size of 1*1, which can increase the network’s nonlinearity by adding 
an activation function, and better express the nonlinear features of tree species(Fig. 4) [28]. Adding bottleneck layers with a low 
number of channels after various structures can reduce the dimensionality of the classifier and reduce computational parameters [29]. 
The bottleneck layer also allows for the integration of channel information across multiple channels to achieve tree-species feature 
interaction [30]. In addition, the bottleneck layer is essentially a 1*1 small convolution layer, which can further achieve deep tree 
species feature extraction in the network. 

2.5.2. DenseNetBL 
This study implements Dense BlockBL based on the combination of bottleneck layer and Dense Block to further construct a small- 

sample tree species classifier, taking into account the capabilities of bottleneck layer dimensionality reduction, increased network 
nonlinearity expression, and further feature extraction. As seen in Fig. 5, the Dense BlockBL structure is made up of four bottleneck 
layers, four residual blocks, and a Relu activation function. The dotted line in Fig. 5 shows the usage of dense connections between the 
structures. Each layer structure is densely coupled to every layer structure that came before it, making maximum use of all feature 
information. 

The Residual Block consists of two pathways, as shown in the schematic part of Fig. 5, specifically represented as the input x 
undergoing convolutional processing to obtain the output f(x). Additionally, the direct mapping of x added to the output after con-
volutional processing results in the final output f(x) + x [31]. 

Before introducing the bottleneck layer, a feature map of size x0*y0*z0 is forwarded to produce a feature map of size x0*y0*z0 and 
x1*y1*z1. 

The computational complexity is given by Eq. (4). 

A=X × Y × Z × 3 × 3 × Z /2 (4) 

Fig. 3. The flowchart of tree species classification and mapping.  
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Fig. 4. A bottleneck layer structure.  

Fig. 5. A simple Dense BlockBL structure.  

Fig. 6. A simple DenseNetBL structure.  
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The number of parameters is given by Eq. (5). 

A=Z × 3 × 3 × Z /2 (5) 

After adding a bottleneck layer, the incoming feature map is first reduced in dimension by the bottleneck layer, with computational 
complexity shown in Eq. (6) and parameter count shown in Eq. (7). 

B=X × Y × Z × 1 × 1 × Z/4 + X × Y × Z/4 × 3 × 3 × Z/2 (6)  

B=Z × 1 × 1 × Z /4 + Z /4 × 3 × 3 × Z (7) 

After adding the bottleneck layer, both the parameter and calculation amounts are smaller than those without the bottleneck layer, 
indicating that the bottleneck layer effectively reduces the dimensionality of the feature map. Moreover, the activation function is 
integrated into the bottleneck layer, incorporating multiple-channel feature information and enhancing the nonlinear expression 
capability of the deep network. A new feature extraction architecture is formed by combining four Dense BlockBLs, which are sub-
sequently connected to the AdamW optimizer and Softmax, and a fully connected layer classification tree with 6 connection nodes. 
Constructing DenseNetBL (Fig. 6) with different layers based on the stacking times of Residual Blocks in Dense BlockBL. 

2.5.3. Gradient-weighted class activation map 
This study designed the Gradient-Weighted Class Activation Map (Grad CAM) after the Feature extraction, which calculates the 

region of interest in the image predicted by the classifier in prediction mode through backpropagation to increase the interpretability 
of the classifier [32]. The principle of Grad CAM is shown in Equation (8), and the basic idea is to calculate the weight of each feature 
map in the last convolutional layer on the image category and calculate the weighted sum of the feature map to map it to the original 
image [33]. 

Lc
Grad− CAM =RELU

(
∑

k
ac

kAk

)

(8) 

Eq. (8), A represents a certain feature layer, K is the first channel, and C is the prediction category. Ak represents the K channel in 
the feature map A. αc

k is for the weight of Ak. 

ac
k =

1
/Z
∑

i

∑

j
∂yc
/

∂Ak
ij (9) 

The calculation method for αc
k is shown in Eq. (9), where yc represents the unprocessed score predicted by the network for the 

category, Ak
ij represents the data at ij in the K channel of the A feature map, and Z represents the width * height of the feature layer. 

2.5.4. Tree crowns segmentation 
Iteratively clustering and segmenting images based on color similarity and spatial distance correlations is what the SLIC superpixel 

segmentation algorithm does. Compact-like cells make up the tree crown objects that are formed, and the domain properties are clearly 
expressed [34]. The initial parameter setup for SLIC determines the size of the tree crown it produces, although the hyperparameter 
setting is straightforward, the algorithm runs quickly and differently than the watershed technique, and it can immediately achieve 
end-to-end multi-band image segmentation [35]. This study utilized SLIC to pre-segment individual tree crowns on images. 

2.5.5. Experimental design 
The fixed epoch is set to 30, and all classifier training and validation operations do not load pre-training weights, regardless of 

whether the succeeding classifiers converge or not. Build DenseNet based on whether to include bottleneck layers and use DenseNetBL 
to investigate how bottleneck layers affect the classification of a small sample of tree species. Based on the varying stacking durations 
of Residual Blocks in Dense Block and Dense BlockBL, DenseNet33, DenseNet33BL, DenseNet68, DenseNet68BL, DenseNet117, 
DenseNet117BL, DenseNet121, DenseNet121BL, DenseNet169, and DenseNet169BL were built. Comparative studies were done to 
examine how different classifier layers affected the classification of a small sample of tree species. Table 2 displays the stacking timings 
for Residual Blocks in DenseNet and DenseNetBL with various layers. 

Swin transformer and Vision transformer are currently popular classifiers that can extract multi-region features from images. They 
have been proven to be suitable for most image classification fields, but there is currently no research on tree species classification [36, 
37]. As additional comparison classifiers, this study also builds Swin small (Fig. 7) in the Swin transformer, ResNet16 in ResNet, and 

Table 2 
Construction parameters of different DenseNet and DenseNetBL.   

DenseNet33/33BL DenseNet68/68BL DenseNet117/117BL DenseNet121/121BL DenseNet169/169BL 

Dense Block/BL(1) 3 6 6 6 6 
Dense Block/BL(2) 4 6 6 12 12 
Dense Block/BL(3) 4 6 12 24 32 
Dense Block/BL(4) 3 16 32 16 32  
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Vision transformer base16 (Fig. 8) in the Vision transformer. Through the use of two sizable sample datasets in the field of remote 
sensing, the performance of the aforementioned classifier was quantitatively assessed. 

Additionally, this study constructed two optimizers (SGD and AdamW) and tested their performance in the aforementioned 
classifiers through detailed batch size and learning rates experiments. 

2.5.6. Accuracy assessment 
The class accuracy (CA), Kappa coefficient, and OA of the trained classifier on the validation set are used as evaluation indicators 

[38,39]. The classifier’s performance in terms of convergence is evaluated using the trend of loss values throughout the training phase. 
by manually drawing the canopy boundary to create a reference tree species distribution map, using the highest classifier in OA to 
predict the superpixels created by SLIC and assign labels, and combining the tree species map produced by the classifier to qualitatively 
analyze the accuracy of the tree species spatial distribution map [40]. Finally, based on the variance in tree area statistics based on the 
coverage area of pixel values, the classifier’s effectiveness in extracting tree area is quantitatively assessed. 

3. Results 

3.1. Model training 

Different classifiers’ training and validation losses and OA were noted for each epoch, and the epoch-training loss and epoch- 
validation OA curves were shown. To smooth the training loss and validation OA curves, 100 fitting values of loss and OA were 
added between neighboring epochs using Gaussian interpolation (Fig. 9). The Vision transformer did not converge after 30 epochs, as 
shown in Fig. 9(a) and (b), which also exhibit a declining trend in loss and an uneven OA. The loss curves of the additional classifiers 
tended to settle after 25 epochs, and all classifiers converged. After 25 epochs, the other classifiers’ OA on the validation set steadied, 
showing that the classifiers’ performance was at its peak. 

Moreover, as shown in Fig. 9(a), ResNet16 performs similarly to DenseNet, but its classification ability was not as good as that of 
DenseNet and DenseNetBL. Both DenseNet and DenseNetBL had better convergence and classification abilities. Notably, the shallow 
DenseNet33BL can converge in fewer epochs and achieve higher accuracy than the deep DenseNet33BL at 30 epochs, while the deep 
DenseNet121 and DenseNet121BL were not as good as DenseNet33BL. 

3.2. Model results 

Various classifiers were used with different hyperparameters, and accuracy metrics were calculated based on the confusion matrix 
of the validation set. Each set of hyperparameters was associated with a specific set of accuracy metrics. The optimal metric was shown 
in Table 3, while the other metrics associated with the other hyperparameters were discussed in the Discussion section. From Tables 3 
and it was observed that both Swin Transformer and Vision Transformer had lower overall accuracy (OA) compared to other classifiers, 
with Vision Transformer performing the worst (OA = 0.767, Kappa = 0.708). DenseNet33BL had the best classification results (OA =
0.901, Kappa = 0.892) among the classifiers. It was also noted that the performance of different layers of DenseNetBL was superior to 
that of the original DenseNet, which indicated that the bottleneck layer had effectively improved the classifier’s ability to recognize 
tree species using small samples. Furthermore, Table 3 indicates that shallow classifiers are better suited for classifying tree species in 
smaller sample sizes. 

3.3. Class activation mapping 

This research involved the calculation of class activation mapping using Eq. (8) and Eq. (9) to identify the specific areas that the 

Fig. 7. Swin transformer structure.  
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Fig. 8. Vision trasnformer structure.  

Fig. 9. (a)Training loss and (b) validation OA during model training. Curves were smoothed for better visualization.  
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Table 3 
All accuracy metrics on the validation set.  
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Bare land 0.805 0.774 0.889 0.903 0.871 0.832 0.856 0.926 0.854 0.862 0.853 0.879 0.868 
Cinnamomum camphora 0.866 0.843 0.963 0.954 0.958 0.963 0.871 0.972 0.985 0.975 0.949 0.981 0.925 
Ligustrum lucidum Ait 0.972 0.851 0.982 0.979 0.949 0.961 0.897 0.985 0.981 0.956 0.987 0.978 0.984 
Photinia beauverdiana 0.815 0.668 0.845 0.862 0.836 0.888 0.798 0.897 0.886 0.895 0.892 0.885 0.835 
Cupressus 0.879 0.848 0.896 0.861 0.879 0.848 0.859 0.933 0.928 0.924 0.865 0.931 0 

.889 
Osmanthus fragrans 0.143 0.043 0.029 0.039 0.049 0.029 0.015 0.057 0.082 0.079 0.079 0.071 0.056 
OA 0.845 0.767 0.877 0.870 0.864 0.872 0.859 0.901 0.892 0.891 0.895 0.892 0.865 
Kappa 0.805 0.708 0.845 0.821 0.819 0.825 0.792 0.892 0.835 0.831 0.886 0.829 0.813  
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classifier focused on when predicting tree species. The darker regions in the mapping indicate where the classifier paid more attention, 
and these regions can be interpreted as the features used by the classifier to distinguish between classes. Fig. 10 displays the class 
activation mapping of DenseNet33 and DenseNet33BL (with the best OA) for tree species classification. As shown in Fig. 10, as the 
classifier’s depth increases, it becomes more focused on the tree canopy. Due to the increased non-linear feature extraction in the 
bottleneck layer, DenseNetBL pays more attention to the regions (as highlighted by the red boxes in Fig. 10(a, b, a1, b1)). The blue 
boxes (Fig. 10(c, c1)) in the upper left corner of DenseNet33(− 1) and DenseNet33BL(-1) in Fig. 10 indicate that DenseNet33BL focuses 
more on the tree canopy during the final feature extraction, while DenseNet33 emphasizes the bare land more. 

3.4. Typical forests tree species spatial distribution mapping 

In Fig. 11, the segmentation boundaries of typical forests generated by SLIC are displayed. SLIC uses initial clustering parameters to 
create segmentation boundaries of similar sizes. The results in Fig. 11 (a) demonstrate that SLIC is successful in segmenting individual 
tree crowns in typical forest A, where the tree crown ranges for different species are consistent. However, in typical forest B (Fig. 11 
(b)), SLIC struggles to segment regions with uneven tree crown sizes, such as the Cinnamomum camphora. 

Spatial distribution maps of tree species were drawn using the DenseNet33, DenseNet33BL, DenseNet121, and DenseNet121BL 
models with the highest OA values as predicted by SLIC segmentation results. A reference map for forest tree species was also generated 
by manually delineating the tree crown boundaries and assigning categories. Fig. 12 (a,b,c,d) shows the map with uneven tree crown 
sizes reflected by different tree species in typical forest B. The segmentation effect of tree crowns was greatly affected, resulting in low 
accuracy of the tree species map. In contrast, typical forest A had a more regular distribution of tree species and consistent tree crown 
sizes, making the mapping effect better. Fig. 12 (a,b,c,d) also showed that the mapping effect of DenseNetBL was superior to that of the 
original DenseNet, given the same segmentation effect, because DenseNetBL had a higher OA. Moreover, the mapping effect of shallow 
networks DenseNet33 and DenseNet33BL was better than that of corresponding DenseNet121 and DenseNet121BL, as the OA of 
shallow classifiers was higher than that of deep classifiers. 

Specifically, we selected and enlarged the drawing results of the same area in all tree species maps, and compared them with the 
manually drawn reference map. Specifically, we selected and enlarged the drawing results of the same area in all tree species maps, and 
compared them with the manually drawn reference map. The results showed that DenseNet33BL identified tree species in the selected 

Fig. 10. Class activation mapping of DenseNet and DenseNetBL (-i denotes the inverse i-th extracted feature map).  

N. Wang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e20467

12

area in both typical forest areas in all enlarged images, while DenseNet did not recognize them. In addition, the tree species identified 
by shallow DenseNet are significantly superior to deep DenseNet (Fig. 12 (d, e)). The above results show that the classification ability of 
shallow DenseNet is significantly stronger than that of deep DenseNet, while the ability of DenseNetBL inserted into the bottleneck 
layer to identify tree species has been further improved. 

Fig. 11. Individual tree crown segmentation of typical forests.  

Fig. 12. Maps of typical forests tree species and enlarged detail drew by different classifiers and manual method.  
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We utilized spatial distribution maps to calculate the area of tree species in two study areas and compiled the results in Tables 4 and 
5, with the area unit being ha. The "Difference" column represents the variation between the area extracted via manual and classifier 
methods, while the "Total" column shows the sum of the differences. In Area A, DenseNet33BL exhibited the smallest difference with 
manual extraction at 0.08ha, while DenseNet121 had the largest difference at 0.18ha. Similarly, in Area B, DenseNet33BL showed the 
smallest difference with manual extraction at 0.17ha, while DenseNet121 had the largest difference at 0.22ha. Notably, due to the 
more complex forest environment in Area B, the performance of SLIC segmentation was inferior, leading to a larger variation between 
the area of tree species extracted by the classifier and manual methods than in Area A. 

4. Discussion 

Creating a tree species dataset through manual combination with field surveying is challenging due to limited images and range. 
Different classifiers struggle to fit the tree species feature distribution and identify unlabeled tree species in small samples. Current 
research on tree species classification focuses on developing new, complex, and advanced classifiers to improve performance. 
Advanced classifiers rely on effective feature extraction methods like Swin transformer’s multi-region feature extraction to achieve 
higher accuracy compared to outdated and simple classifiers when trained with large samples and sufficient epochs. However, few 
studies have explored their ability to classify small sample tree species without using transfer learning and under small epochs. 
Previous research mainly focused on the final tree species classification accuracy without considering the impact of different opti-
mizers and hyperparameters on classification. 

In this study, we analyzed the performance of classifiers using two different optimizers and their respective hyperparameters (batch 
size and learning rates). We also tested the classification abilities of various layers from DenseNet, DenseNetBL, Vision transformer, 
and Swin transformer on two large datasets without pre-training weights. Moreover, we explored how classifier layers affect classi-
fication results. 

4.1. Different hyperparameter 

4.1.1. Different optimizer and learning rates 
We conducted experiments by changing the batch size and learning rates of two optimizers, AdamW and SGD, and recorded the 

corresponding OA on the validation set. Firstly, we fixed the batch size of all adopted classifiers to 16 and divided the learning rates 
into {0.01, 0.001, 0.0001} to test the impact of these three learning rates on the performance of the two optimizers. 

Fig. 13 (a, b) displays the OA variation curves for distinct learning rates and batch sizes. As observed in Fig. 13 (a), the optimization 
performance of AdamW in shallow networks is minimally impacted by various learning rates. On the other hand, Fig. 13 (b) reveals 
that the optimization effect of SGD is significantly influenced by the learning rate size. Fig. 13 (a, b) illustrates that the OA of deep 
classifiers (DenseNet169) and complex networks (Vision transformer and Swin transformer) is greatly affected by learning rates. 
Specifically, at a learning rate of 0.0001, the OA is remarkably lower compared to learning rates of 0.01 and 0.001 due to having more 
parameters to optimize. With smaller learning rates, the parameters update at a slower pace in small epochs, resulting in slower 
convergence of the classifiers. In section 4.2, different hyperparameters are explored. 

4.1.2. Different batch sizes and the influence number of network layers 
This study tested the effect of batch size on small sample tree species classification under fixed epochs using the optimal learning 

rates under 4.1.1, as shown in Fig. 14. In this study, we examined the impact of different batch sizes (2, 4, 8, 6, 32) on the accuracy of 
classifying small sample tree species. Our findings, as depicted in Fig. 14 (a, b), indicate that the accuracy improves as batch size 
increases and reaches its maximum at a batch size of 32 when learning rates and batch size are fixed. 

On the other hand, Figs. 13 (a) and Fig. 14 (a) show that increasing the number of layers in DenseNet and Dense-NetBL leads to a 
decrease in accuracy. While deeper networks can extract high-level tree species features, they struggle to recognize basic-level features 
and even high-level features cannot be detected. Furthermore, CNNs can be seen as a complex nonlinear fitting function, and in small 
datasets, deeper networks may overfit, causing a decrease in accuracy. Shallow networks, on the other hand, can better demonstrate 
the performance of classifiers on large datasets and achieve higher accuracy. 

Table 4 
Planting Area (ha) of tree species in Area B extracted by different methods.  

Tree species Manual DenseNe- 
t121BL 

Difference Dense- 
Net121 

Difference DenseN- 
et33BL 

Difference Dense- 
Net33 

Difference 

Photinia beauverdiana 34.64 34.69 0.05 34.57 0.06 34.63 0.00 34.65 0.02 
Cupressus 36.84 36.87 0.03 36.78 0.06 36.86 0.02 36.88 0.04 
Ligustrum lucidum Ait 0.92 0.90 0.02 0.98 0.06 0.90 0.02 0.90 0.02 
Cinnamomum 

camphora 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Osmanthus fragrans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Total   0.11  0.18  0.05  0.08  
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Table 5 
Planting Area (ha) of tree species in Area B extracted by different methods.  

Tree species Manual DenseNet121BL Difference DenseNet121 Difference DenseNet33BL Difference DenseNet33 Difference 

Photinia beauverdiana 1.07 1.17 0.10 1.16 0.09 0.99 0.08 0.97 0.10 
Cupressus 18.09 18.05 0.04 18.06 0.03 18.07 0.02 18.05 0.04 
Ligustrum lucidum Ait 13.54 13.55 0.02 13.59 0.05 13.51 0.03 13.52 0.02 
Cinnamomum camphora 6.85 6.92 0.07 6.79 0.06 6.89 0.04 6.82 0.03 
Osmanthus fragrans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Total   0.22  0.24  0.17  0.19  
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4.2. Large sample comparison experiment 

There are two benchmark datasets for remote sensing scene classification: NWPU-RESISC45 and AID. The AID dataset, released in 
2017 by Huazhong University of Science and Technology and Wuhan University, consists of 10,000 scene images across 30 categories. 

Fig. 13. OA curves corresponding to the different optimizers, learning rates, and number of networks layers.  

Fig. 14. OA curves of DenseNet, DenseNetBL, Vision transformer, and Swintrasns-former corresponding to different batch sizes of 
different optimizers. 

Table 6 
Ablation experiment.  

Classifiers AID NWPU 

DenseNet33 0.856 0.876 
DenseNet33BL 0.889 0.914 
Densenet68 0.878 0.892 
Densenet68BL 0.896 0.917 
Densenet117 0.876 0.898 
Densenet117BL 0.886 0.906 
Densenet121 0.89 0.91 
DenseNet121BL 0.897 0.915 
Densenet169 0.912 0.928 
Densenet169BL 0.938 0.946 
Swin transformer 0.785 0.764 
Vision transformer 0.433 0.368 
ResNet16 0.845 0.839  
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Each category contains approximately 220–420 images, and each image has a pixel size of about 600*600 [41]. The NWPU-RESISC45 
dataset was released in 2017 by Northwestern Polytechnical University. It comprises 31,500 scene images divided into 45 categories, 
with roughly 700 images per category. Each pixel in the images is approximately 256*256 in size [42]. This study tested the classi-
fication abilities of DenseNetBL, DenseNet, Resnet, Vision transformer, and Swin transformer on two large-scale datasets. The clas-
sifiers were trained and validated using the best learning rate and batch size obtained, without pre-trained weights. Table 6 shows the 
obtained overall accuracy (OA). It also reveals that the bottleneck layer enhances the OA of large-scale classification due to two 
reasons. Firstly, the activation function added after the bottleneck layer improves the non-linear expression of the classifier network, 
allowing it to express more complex features. Secondly, the bottleneck layer acts as a convolutional layer that integrates 
multi-dimensional feature information and reduces the dimensionality of the feature map, enabling higher-level feature extraction. 

According to Table 6, classifiers with more complex network architectures tend to perform better when applied to large datasets. 
This is because larger datasets contain a greater number of images and diverse image categories, which makes it harder for shallow 
classifiers to accurately determine categories. In contrast, deep classifiers can extract intricate high-level features from the extensive 
layers within their network architectures, allowing them to more accurately discern image categories. This is because deep classifiers 
can extract more nuanced representations, which results in more precise classification outcomes when dealing with the complex 
variations presented by diverse image categories within extensive datasets. 

5. Conclusion 

This study presents the development of a DenseNetBL classifier tailored for the classification of tree species with limited samples. 
This approach leverages bottleneck layers and the DenseNet architecture. A comprehensive evaluation was conducted to compare the 
classification performance between models trained on small and large datasets. The effectiveness of DenseNet, Swin Transformer, and 
Vision Transformer was examined in generating forest tree species maps. This investigation encompassed two optimization techniques: 
AdamW and SGD. The outcomes of this study revealed that, among all classifiers, DenseNet33BL exhibited the most promising results 
for small sample tree species classification (OA = 0.901, Kappa = 0.892) in instances where no pre-trained weights were employed. 
Notably, the shallower classifier demonstrated a notably superior capacity to classify tree species with limited samples compared to its 
deeper counterpart. Furthermore, a preference for AdamW emerged over SGD in the context of small sample classification, given its 
propensity to yield reduced variations in accuracy across diverse learning rates. In terms of larger datasets, both Vision Transformer 
and Swin Transformer exhibited significantly lower OA in comparison to DenseNet and DenseNetBL. Moreover, shallow variants of 
DenseNet and DenseNetBL yielded OA lower than those achieved by their deeper counterparts. Incorporating DenseNet33BL in 
conjunction with SLIC led to the extraction of tree species areas that closely approximated manually delineated regions. Remarkably, 
the disparity in Area A amounted to a mere 0.08 ha. 

Looking ahead, our future research endeavors encompass the design of a semi-supervised algorithm featuring multiple classifiers. 
This will be complemented by the utilization of multi-temporal high spatial resolution images to enhance the accuracy of small sample 
tree species classification. Additionally, object-based methodologies will be harnessed to generate more expansive spatial distribution 
maps of forest tree species. These maps will serve as vital references for resource surveys, statistical analyses, and comprehensive 
management strategies related to forest tree species. 
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