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Self-organization is a process by which interacting cells organize and arrange

themselves in higher order structures and patterns. To achieve this, cells

must have molecular mechanisms to sense their complex local environment

and interpret it to respond accordingly. A combination of cell-intrinsic and

cell-extrinsic cues are decoded by the single cells dictating their behaviour,

their differentiation and symmetry-breaking potential driving development,

tissue remodeling and regenerative processes. A unifying property of these

self-organized pattern-forming systems is the importance of fluctuations,

cell-to-cell variability, or noise. Cell-to-cell variability is an inherent and

emergent property of populations of cells that maximize the population per-

formance instead of the individual cell, providing tissues the flexibility to

develop and maintain homeostasis in diverse environments. In this review,

we will explore the role of self-organization and cell-to-cell variability as fun-

damental properties of multicellularity—and the requisite of single-cell reso-

lution for its understanding. Moreover, we will analyze how single cells

generate emergent multicellular dynamics observed at the tissue level ‘travel-

ling’ across different scales: spatial, temporal and functional.

Self-organization during tissue
formation, homeostasis and
regeneration

Multicellular organisms are composed of cells and tis-

sues with identical genomes but different properties

and functions. They all develop from one cell toward

multicellular structures of great complexity. On a series

of carefully organized steps in space and time, differ-

ent cell types, architectures, and functions are formed

during embryogenesis and development. In adult life,

maintaining tissue homeostasis, via periodical tissue

renewal and regenerative processes, also requires spa-

tio-temporal coordination of cells to ensure tissue

function and integrity. Moreover, the malfunction of

these coordinated behaviours during embryogenesis is

the cause of many congenital disorders and their

deregulation during adult life in actively proliferating

and regenerating tissues, such as the intestine, is the

basis of many cancers [1,2].

These spatio-temporally organized processes in mul-

ticellular organisms are known as collective beha-

viours. In the early steps of embryogenesis, cells in a

seemingly symmetric embryo reorganize themselves

collectively into a patterned arrangement giving rise to

primitive tissue specification [3,4]. Later into organo-

genesis, the majority of multipotent dividing cells com-

mits to differentiation and acquires specific

functionalities, while only a fraction retains stemness

[5]. Once development is complete, cells in a tissue

must be able to sense organ size and functionality to

stop proliferating, and yet, in some cases, retain a min-

imal level of stemness for homeostasis and a potential

to regenerate upon injury [4,6].
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Although the molecular machineries governing these

processes are determined genetically, thus making

them precise and reproducible, the genome alone

does not encode for the complex cellular interac-

tions required to keep them robust and contextual in

dynamic environments. To understand biological pro-

cesses such as development and regeneration, we must

understand how a group of individual cells organize

themselves into patterns and tissues [4,7,8]. In many

developing organisms, the patterns are driven and

maintained by concentration gradients of signals,

named morphogens, and each individual cell in the tis-

sue senses its position along the morphogen gradient

and responds accordingly [8]. Generally, morphogens

are released from a local, but dynamic source, and the

gradient shape is determined by the flux from the

source, the spreading of the morphogen (e.g., composi-

tion of the extracellular matrix and transcytosis) [9]

and its degradation in the target tissue. Interestingly,

morphogen gradients, downstream signaling, and the

activity of cell-intrinsic gene networks respond dynam-

ically to the local environment by sensing complex

extracellular cues [8]. This means that the precision

and robustness of pattern-forming systems requires

not only pre-existing morphogens but also spatio-tem-

porally coordinated self-organized processes (Fig. 1A).

Self-organization is a process in which interacting enti-

ties organize and order themselves in global and larger

scale patterns [10,11]. Order appears not because it has

been planned by a central controller but because local

interactions between individual cells generate complex

functional patterns such as tissues and organisms. At the

individual level, no cell knows the complexity of the over-

all structure. Self-organization is not restricted to devel-

opmental processes. In adult organisms, the regeneration

of tissues is also an emergent self-organized property of

cells. After an injury, local interactions between different

cells drive the healing and repair of the tissue without any

single cell knowing how the final tissue should look like

at the global scale. To achieve these coordinated and self-

organized process, each individual cell has molecular

mechanisms to sense its local environment and respond

correctly to injuries, recreating a healthy tissue [10].

In this review, we explore the role of self-organization

and cell-to-cell variability as fundamental properties of

multicellularity. We discuss cellular mechanisms by

which single cells sense their local environment in a mul-

ticellular system driving collective behaviours during
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Fig. 1. From a population of single cells to tissues. (A) Heterogeneous population of cells where each single cell senses a combination of

cell-intrinsic and cell-extrinsic cues, ultimately driving tissue patterning. (B) Spatio-temporal variability and symmetry breaking in intestinal

organoids. An intestinal stem cell develops into a symmetrical cyst and undergoes symmetry breaking with the appearance of Paneth cell.

This Paneth cell defines the position of the nascent crypt where the stem cell niche will reside. The intestinal organoid develops into a self-

organized structure containing different cell types distributed in a zonated manner recapitulating part of intestinal patterning.
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developmental and regenerative processes. Finally, we

provide an overview on current technologies that cross-

scales at the spatial, temporal, and functional level to

bridge the gap between single cells and organized tis-

sues.

Sensing mechanisms in a population
of interacting single cells

An important question during development is how

does a single cell in a tissue sense its complex environ-

mental cues and take individual cellular decisions gen-

erating robust and reproducible emergent properties at

the population and tissue level?

Number of cells and cell-packing effects

Eukaryotes evolved many different ways to sense the

number of individual cells in a population including

global and local mechanisms. One mechanism to gen-

erate a defined number of cells in a population is to

count the number of cell divisions, as described in Mid

Blastula transition in Xenopus laevis [12] and in mam-

malian hematopoietic stem cells [13]. Another way is

to rely on chemical information, such as a signal that

is secreted locally and sensed globally by other individ-

uals in the population. Morphogen gradient is a con-

served strategy in different animals: from the simple

counting peptide in Dictyostelium discoideum (secreting

a ‘cell-counting’ factor) [14], toward Dpp gradient in

wing tissue development in flies [15,16] and Wnt3a gra-

dient along the mouse intestinal stem cell niche [17]. In

addition, a classical environment sensing mechanism

that operates at local scale is contact inhibition.

MDCK cells, in vitro, have been shown to compute

local information on cell density, motility, and cell

division rates to trigger contact inhibition [18]. Many

other mechanisms have been identified in regulating

contact inhibition such as increased Clusterin secretion

[19] and E-cadherin-mediated control of cell prolifera-

tion via cell-cell contact [20].

Cells can also sense and transduce extrinsic physical

cues from the microenvironment such as cell-packing

effects. This mechanosensing capability relies on mem-

brane tension sensing pathways such as Yap1 [21,22],

Piezo [23,24] and Misshapen-Yorkie pathway [25].

Understanding how single cells perceive tissue size and

function is also essential for growth termination and for

successful completion of developmental and regenera-

tive processes. Tissue damage triggers activation of stem

cell division and differentiation to replenish lost cells,

but this activation must be timely repressed once tissue

integrity is restored to limit tissue hyperplasia [26,27].

Localized signals

Lumen formation is also an important mechanism that

cells use to measure their environment by locally

restricting and, thereby, coordinating communication

between selected groups of cells. In zebrafish lateral

line development, the formation of microlumens in a

population of migrating cells restricts and enhances

FGF signaling only in cells limiting the lumen [28].

This increased signaling halts migration and leads to

the formation of stable organ precursors [28].

The environmental sensing machineries exemplified

above are subjected to cell-intrinsic cellular states. For

example, some cells may present maximal responsive-

ness to extracellular signals depending on their cell cycle

position, rather than to an increased exposure to the

signals [29]. This regulates how the cell responds to

extrinsic cues determining individual cellular behaviours

such as secretion of molecules [30], apical constriction

[5], counting proliferation rounds [13], symmetric and

asymmetric cell divisions [31], adhesion [32], migration

[33], and differentiation[34]. The combination of intrin-

sic and extrinsic cues establishes positive and negative

feedback loops that move the entire population to a

new state generating complex architectures. For exam-

ple, neuronal development requires a period of exten-

sive proliferation of progenitor cells followed by a

switch to asymmetric division and differentiation when

the population of progenitors has reached the correct

size [31,35,36]. The balance between these two processes

in different regions of the nervous system and in differ-

ent organisms gives rise to differential growth, cellular

diversification, and diverse brain structures during evo-

lution [37]. Interestingly, in mammals, cell cycle length

[38] (particularly the length of G1 phase [39–41]), influ-
ences the decision to terminally differentiate. However,

it is still unclear if this could be a mechanism of sensing

the population size and how progenitor cells would reg-

ulate their cell cycle length. Also, during regeneration,

especially in Hydra and Planarians, a minimum tissue

size and a certain minimum cell number is shown to be

required for regeneration and patterning [42,43].

The mechanisms by which single cells sense their

local environments and implement it at the population

level are the driving forces of self-organization and col-

lective behaviours during development, tissue remodel-

ing and regenerative processes.

Symmetry breaking

A defining step during self-organization and pattern

formation is the first moment when initially identical

cells in a developing organism or tissue differentiate,
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and lineage segregation is established. For the mecha-

nistic understanding of this step, symmetry breaking is

a key concept. Precisely, the symmetry-breaking event

occurs when, despite all cells being exposed to a uni-

form growth-promoting environment, only a fraction

of cells becomes activated, differentiates and acquires

new functions. This process is called symmetry ‘break-

ing’ because the transitions usually bring the system

from a symmetric, but disordered and variable state,

into one or more defined, less variable and asymmetric

states (e.g. differentiated states) [44]. Symmetry break-

ing correlates with functional specialization [45] and

diversification across different scales: from molecular

assemblies, to cell type specification, tissue organiza-

tion and whole body axis formation.

At the single-cell level in a tissue, a multitude of

reactions and signaling pathways takes place continu-

ously. Each step (e.g., cell cycle progression, metabo-

lism, adhesion and migration), is decided based on an

integrated response of computed signals (Fig. 1A).

Once a given combinatorial threshold of cell-intrinsic

and cell-extrinsic signals is reached, a substantial

change in behaviour is observed. This change in

behaviour can be defined as a newly acquired func-

tionality: a cell which differentiates, starts secreting a

molecule or changes its shape, triggers a cascade of

effects which moves the entire population to a new

state.

Often, cell polarity is the initial building block deter-

mining asymmetries at the tissue and body levels. At

early stages of mouse embryogenesis, for example, it

was demonstrated that the trophectoderm fate is based

on differential inheritance of a cell’s apical domain

[46,47]. Also, the left-right axis in vertebrates is deter-

mined by the polarization and orientation of nodal

cilia and molecularly dictated by the chiral nature of

molecular motor [48]. The directionality of the cilia

rotation induces a specific flow of extracellular fluid

that, in turn, determines the left-right body axis prop-

erties such as the positioning of the heart [49], a con-

served feature of fish [50], frog [51], mouse [52] and

humans [53]. Similarly, an epithelial cell undergoing

apical constriction acts as a nucleator for a pattern of

negative straining at the tissue surface driving invagi-

nation in embryogenesis or development [5,54,55]. An

essential step during Drosophila development is the

ventral furrow formation. It results from apical con-

striction of a few cells along the ventral side of the

embryo leading to invagination and movement of

mesoderm into the embryo during gastrulation [3,56].

The initial polarity events occur at the molecular and

cellular level and trigger the upcoming patterns at the

whole tissue level.

Another example of symmetry breaking happens dur-

ing intestinal organoid formation, where a single intesti-

nal LGR5+ stem cell cultured in Matrigel in the

presence of Wnt3a, EGF, Noggin and R-spondin [57] is

able to generate a fully grown organoid (Fig. 1B). First,

a symmetrical cyst-like structure is formed. Then, the

first Paneth cell emerges showing hallmarks of active

Wnt signaling and determining the future crypt budding

sites [58]. The emergence of a Paneth cell is the first

symmetry-breaking event. After that, Wnt3a removal

from the medium generates local gradients of Wnt3a

around the activated Paneth cells within the cyst, induc-

ing the formation of the stem cell niche and, later on,

of the intestinal crypt that maintains itself due to posi-

tive feedback mechanisms. The paradoxical initial stage,

where all cells in the growing cyst are exposed to a uni-

form growth-promoting environment but only a frac-

tion becomes activated and differentiates into Paneth

cells is still poorly explored [59].

Defining which combination of signals determines

the behaviour and interactions of individual cells is

important to understand how self-organized patterns

emerge. To model and built theoretical frameworks of

such complex mechanisms we need to have access to

multivariate information of single cells, including cell

cycle phase, signaling pathways, metabolic status, and

mechanical properties. The complexity of such multidi-

mensional molecular and cellular interactions has

made it difficult to explain, which signals underlie sym-

metry breaking in a given cell and how complex beha-

viours emerge.

Cell-to-cell variability

Given the fundamental importance of self-organiza-

tion, symmetry breaking, and pattern formation in

multicellular systems [11,60], several experimental and

theoretical frameworks have been used such as Tur-

ing’s reaction-diffusion systems [61,62], Notch/Delta

lateral inhibition and agent-based models [63,64]. A

unifying property of these pattern-forming theories is

the importance of fluctuations, cell-to-cell variability

and feedback loops [65–69]. In all these systems, an

initial cell-to-cell variability in a population of cells is

then amplified and stabilized by positive and negative

feedback loops. The extent of the initial variability and

the boundary conditions can confer different steady-

state patterns and robustness to the system. In this

review, we will not discuss in length the different pat-

tern-forming theories, but we will explore the role of

the initial heterogeneity in the system.

Cell-to-cell variability is an inherent and emergent

property of populations of cells. It refers to the
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phenomenon that no two genetically identical cells

behave and look identical [70–72]. This difference may

arise from the inherently stochastic and discrete nature

of intracellular biochemical reactions, especially when

these reactions involve low numbers of molecules.

Generally though, robustness in molecular mechanisms

[73–76] can buffer the intrinsic stochasticity of molecu-

lar processes [77] while other factors, such as the cell

cycle and the microenvironment, can explain the cellu-

lar heterogeneity, especially in eukaryotes [78,79]. One

major extrinsic factor determining cell-to-cell variabil-

ity is the microenvironment of individual cells. Even in

environmentally controlled cell culture conditions, a

growing population of adherent cells will continuously

experience changing microenvironments as a conse-

quence of an increase in cell number combined with

cell adhesion and migration [79]. Another significant

source of cell-to-cell variability in an unsynchronized

population of cells is cell cycle phase [29]. In fact,

when considering cell cycle and microenvironment,

much of the unexplained variability in different molec-

ular readouts can be deconvoluted and correlated with

local population contexts such as cells being in same

cell cycle phases or whether a cell is in a more or less

crowded environment [79–82].
Extensive cell-to-cell variability has been shown for

key molecular components involved in embryogenesis in

the early mouse embryo [83] and in embryonic stem cells

[84]. For example, Nanog, a key transcription factor for

the maintenance of pluripotency, exhibits large variabil-

ity between cells in the early mouse embryo [85] and

populations of undifferentiated embryonic stem cells

[86]. This variability in Nanog expression has been

linked to cell cycle phase, reaching highest expression

during G1/S transition [87]. Another example is the

extensive heterogeneity in expression of Oct4 target

genes at the 4-cell embryonic stage [88,89]. This variabil-

ity might confer an initial metastable state to a subpop-

ulation of cells with a fluctuating transcriptome that

drives the reversible priming of pluripotent cells toward

different cell fate decisions. In fact, if populations of

pluripotent cells would be uniform in cellular activities,

we would expect an ‘all-or-none’ response in a homoge-

nous environment, with a single critical threshold below

which all cells remain undifferentiated and above which

all cells differentiate. A graded response is conceivable

only in the presence of initial cell-to-cell variability mak-

ing it possible to control the rate of differentiation at

low homogenous stimuli concentrations [67,90] (Fig. 2).

Cell-to-cell variability in key molecular components

confers to a small fraction of cells an increased probabil-

ity to break the symmetry and transition to an activated

or differentiated state, making stemness and

pluripotency not a property of a single cell but a global

and statistical property of a population of cells that are

able to self-renew and differentiate [91–93]. This is a

particularly important concept to understand the

dynamics of stem cell populations [94]. A heterogeneous

population of cells with different potencies to perform

as stem cell is clearly advantageous, as it provides flexi-

bility and easier adaptability to changing environmental

conditions. Variability helps to maximize the population

performance instead of that of the individual cell. And

finally, it is the control of the stemness potential of a

given population which provides tissues the flexibility to

maintain homeostasis [92].

Measuring single-cell behaviour beyond high abun-

dant genes in transcriptomics for whole cell popula-

tions in vivo is still challenging. Hence, comprehensive

understanding of the extent and sources of cell-to-cell

variability for different cellular processes and how

variability affects in vivo self-organization, patterning

and multicellular programming of cells is sparse

[39,95,96]. One important question is: what is the mini-

mal amount of information required at the single-cell

level to understand molecularly an emergent pattern at

the tissue level? It is probably not necessary to follow

every single molecular player of every cell over the

course of hours or days to describe emergent proper-

ties at a higher scale such as development or regenera-

tion processes. With sufficient single cell data of key

signaling pathways, gene regulatory networks and

positional information, we might be able to predict

interactions and infer causal relations between fluctuat-

ing cellular activities and the emergence of a pattern

over time [44,79–81,89,97–99]. Ultimately, understand-

ing self-organization and symmetry breaking in multi-

cellular systems is a problem across scales. To explain

with sufficient detail the multicellular dynamic interac-

tions that govern a self-organized process, the field is

moving into developing technologies across scales

which combine three essential elements: single cell res-

olution, temporal resolution, and tissue functionality.

Scale-crossing technologies

To quantitate and model the population-level proper-

ties of a large group of interacting cells, such as in

organogenesis and tissue regeneration, and understand

how such properties arise from single cells, we need an

experimental framework combining multivariate sin-

gle-cell techniques and traceability of spatio-temporally

dynamical problems. Therefore, to explain with suffi-

cient details the multicellular dynamic interactions that

govern a self-organized process, we need scale-crossing

technologies linking three essential elements: multiple
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simultaneous measurements at single-cell resolution,

temporal resolution accommodating short and long

responses, and distinctive quantifiable emergent tissue

functionalities (Fig. 3).

An all-inclusive tool capable of multiplexing single-

cell measurements on a spatio-temporally resolved

scale is still unavailable. We must rely on combina-

tions of advanced imaging, single-cell ‘omics’ and

functional assays as complementary approaches for

describing population dynamics at the cellular level. In

this final section, we present the available technologies

to gain quantitative understanding on the pursuit of

self-organization and emergent properties in multicel-

lular arrangements.

Spatial scale

Spatially, the scales that need to be bridged are from the

subcellular resolution (low micrometer range of orga-

nelles and cells) to the tissue organization (ranging from

millimeters to centimeters) combining multivariate mea-

surements at both scales. Ideally, we would need infor-

mation on the genome accessibility, mRNA and protein

abundance and localization, combined with the pheno-

typic state of each single cell (such as cell size and shape,

cell cycle, signaling, and metabolic state) with spatial

localization. At the tissue level, informative measure-

ments of morphological features (size, shape, and curva-

ture), mechanical forces (compactness, pressure,

tension, and traction) and functional readouts (mor-

phogen secretion in a niche, organ-like structures such

as hair-follicle or intestinal crypts) are required as a final

outcome of the self-organized process. Among the dif-

ferent available techniques to obtain spatial information

from a tissue at single-cell resolution, fluorescent light

microscopy is the most versatile. With optical sectioning

methods such as confocal and light sheet imaging [100]

cellular details and general architecture of complex

structures can be visualized across the spatial scale: from

differential expression of transcripts in neighboring cells
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Fig. 2. Cell-to-cell variability is an advantageous property of a population of stem cells. A population of stem cells which are uniform in their

cellular activities, respond to a stimuli in an ‘all-or-none’ manner, with a critical threshold below which all cells remain undifferentiated and

above which all cells differentiate (upper panel). A graded response is observed in the presence of cell-to-cell variability making it possible to

control the rate of differentiation according to stimuli concentrations (lower panel). Variability provides adaptability to selective pressure

(right side). In a homogeneous scenario, an environmental challenge results in poor population performance, while a heterogeneous

population is more robust to the selective pressure, allowing the survival of some individual cells.
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[101], toward proteins abundances and specification of

different cell types in different organs [102–104], up to

mechanics of tissue folding in development [3,105,106].

One of the major limitations in tissue and whole ani-

mal imaging is sample opacity. Several approaches

have been used to overcome it known as tissue clear-

ing methods (for an overview, see [107,108]) and recent

developments have enabled whole tissue and animal

imaging at the single cell resolution[104,109]. Visualiz-

ing specific subcellular structures and compartments

with fluorescence microscopy has been historically lim-

ited by the diffraction limit, the phototoxicity and the

number of different fluorophores that can be imaged

at once. Now advances on image analysis and anti-

body multiplexing have recently broadened the spec-

trum of detection. One of the possibilities is to

minimize fluorescence spectral overlap by integrating

high-resolution confocal microscopy with an imaging

analysis pipeline which separates up to six fluo-

rophores simultaneously [110]. This approach has been

applied to mapping dynamic inter-organelle

interactions in live cells with six different organelle-

specific fusion proteins, representing an important tool

for investigating organelle spatial organization during

different cellular processes. When applied to multicel-

lular 3D structures, it will be necessary to contextual-

ize multiple subcellular readouts with tissue

organization. Other alternatives to increase number of

readouts in imaging have been developed based on

cyclic rounds of antibody staining with chemical inac-

tivation of fluorescence [111,112] or more recently with

sequential antibody elution and stripping, a method

called iterative indirect immunofluorescence imaging

(4i) [113]. The latest allows multiplexing of up to 40

fluorescent molecular readouts inside every single cell

in fixed samples with complete sample preservation

and unprecedented high spatial resolution. With such

an approach, it is possible to monitor different molec-

ular activities on a 3D tissue at single cell level resolu-

tion combining, for example, cell cycle reporters, cell

type markers, signaling pathways and the cellular

microenvironment.
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Another method for phenotypic characterization

with spatial resolution is imaging mass cytometry

[114,115]. It is based on antibodies tagged with metal

isotopes allowing quantitation of dozens of proteins

simultaneously in individual cells in situ. Because of its

high parameterization, it identified heterogeneities at

single-cell level in subpopulations of cells in cancer

samples [114,116]. This method, however, relies on tis-

sue sectioning and laser ablation of the sample, and is

currently not compatible with a full 3D characteriza-

tion of the tissue sample.

Spatially resolved data can also be obtained for gene

transcript levels by fluorescence in situ hybridization

(FISH) and its multiplexed versions such as seqFISH

[117,118] and MERFISH [101]. They provide subcellu-

lar localization of thousands of RNA species in single

cells simultaneously while preserving spatial popula-

tion context [119]. These RNA imaging techniques

have identified transcriptionally distinct cells in situ

with important applications for characterizing the

expression signature of tissues. In the intestine, for

example, it has been used to map endogenous markers

of intestinal stem cells like Lgr5, Bmi1, and mTert

[120] and follow them under different physiological

conditions. And by combining spatial information of

selected transcripts with whole transcriptome measure-

ments of dissociated cells, it is possible to spatially

reconstruct the expression profiles of cells in a tissue

coinciding with metabolic cascades and functional

zonation as shown in liver [103] and intestine [102].

Besides gene and protein expression, an important

aspect to consider during multicellular organization is

the metabolic state of cells. Different metabolic identi-

ties are adopted during tissue development, homeosta-

sis or disease progression [121–124]. The transition of

embryonic stem cells from na€ıve to primed, for exam-

ple, is accompanied by a metabolic shift toward a pre-

dominantly glycolytic state, and as differentiation

progresses, toward a highly respiring mitochondrial

state [125]. Exploiting a shift in metabolic activities is

also observed during organogenesis, where a gradient

of glycolytic pattern in the presomitic mesoderm is

responsible for coordinating FGF and Wnt signaling

during body elongation [126]. Later in homeostasis,

this has been observed in the intestine, where neigh-

boring cells at the proliferative niche present metaboli-

cally distinct identities (yet, complementary functions)

with Paneth cells being more glycolytic and providing

lactate as a fuel for the oxidative stem cells [127]. The

relationship between metabolic transitions and mor-

phogenesis seems to hold true also during cancer

development, where a zonated glycolytic signature is

adopted upon low oxygen input, being a target for

therapies [124]. High coverage techniques to assess

metabolites, like lipidomics and metabolomics, share

the same limitations of transcriptomics and pro-

teomics: insufficient spatial resolution and endpoint

measurements. An exception being MALDI imaging,

where it is possible to identify multiple analytes,

including proteins, lipids, and small metabolites, while

keeping positional information. However, spatial reso-

lution of MALDI imaging is still limited at the

micrometer range [128]. Transitions in cellular metabo-

lism are emerging as determinants of cell differentia-

tion and tissue development [122,129–132], and

learning about the mechanisms driving the onset of

these transitions at the single-cell level certainly will

contribute to the understanding of symmetry breaking

and self-organization in multicellularity.

Temporal scale

As discussed before, imaging has the great advantage

of combining functional and structural information

simultaneously. Self-organized events leading to multi-

cellular patterns are long-term dynamic molecular pro-

cesses occurring over hours, and observing them in

living cells in situ requires a temporal layer of informa-

tion. Again, the different scales are important because

we need to record short-term events such as signaling

activation, protein translocations and cell cycle dynam-

ics with long-term patterning events at tissue scale

such as tissue invagination and crypt development

(ranging from milliseconds to days). This power to

observe dynamical processes over scales enables us to

infer causal relationships between molecular mecha-

nisms. Moreover, the ability to use light-induced

manipulation allows to challenge the system and to

test experimentally the inferred causal interactions.

High-resolution live cell imaging and optogenetics

tools are becoming fundamental in understanding the

dynamics of several biological processes and is the cur-

rent frontier of imaging development [133–135].
Despite number of readouts still being limited by

reporters, lasers and filters, the constant advances on

temporal and spatial resolution of live fluorescent

imaging represents a promising platform for the study

of self-organizing events [136,137].

Real time

In toto imaging techniques, such as light-sheet micro-

scopy, enable long-term live imaging of developing or

regenerating tissues and animals with single-cell resolu-

tion [133,136,138–141], opening an extraordinary win-

dow to the complexity of living systems. However,
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observing full development of embryos or having

access to complete tissues is not universally applicable

to all specimens. Human development, for example,

cannot be experimentally studied beyond pre-implanta-

tion stages in vivo [97,142–144], an alternative being

in vitro culturing in the absence of maternal tissues

[97], the study of foetuses [145] or explanted organs

[146]. Adult model systems, such as mouse, can be

fully genetically manipulated but cannot be immobi-

lized for imaging longer than a couple of hours. For

the moment, studying self-organization with in toto

imaging during development is performed on embry-

onic bodies [89,123], gastruloids [147], organoids [148]

or small-scale animals. Whole animals such as Hydra

[42,149] or C. elegans [150] can be imaged during their

entire development, while larger organisms such as

D. rerio [151] or D. melanogaster [152] provide funda-

mental insights into embryonic development. These

model systems are highly informative for studying evo-

lutionary conserved mechanisms, despite limitations in

their multicellular complexity and tissue functionality.

Another aspect to consider is that light sheet micro-

scopy, just as any other fluorescence imaging tech-

niques, suffers from effects of scattering and absorption,

which poses technical challenges in deep tissue imaging

[133].

Imaging whole animals thorough development is not

an absolute requirement for understanding self-organi-

zation in multicellular systems and much can be

learned about the molecular mechanisms behind tissue

growth and organization, for example, by monitoring

the dynamics of live tissue segments. Drosophila wing

disc formation and ventral furrow invagination are

great models for studying epithelial morphogenesis,

where mechanical factors determining cell shape, divi-

sion rates, and intercellular tension can be assessed

with high temporal resolution [3,16]. Similarly, oscilla-

tions in the mouse presomatic mesoderm (PSM) can

be visualized as wave-like patterns of signaling and

manipulated on the embryos’ tail bud [98,123,126,153]

or with PSM-like tissues [154].

With a high spatio-temporal resolution and fluores-

cent reporters, time-lapse microscopy is a powerful

technique to infer causal links between cellular events

leading to patterning. In a lineage tracing analysis of

stem cell dynamics during epidermal homeostasis

[155], a highly coordinated collective behaviour of

stem cells during hair-follicle formation has been

shown. Similarly, in intestinal crypts continuous

intravital imaging following short-term dynamics of

intestinal stem cells [156]confirmed that stemness is a

function of a heterogeneous cell population rather

than of a single stem cell [157,158]. On the mechanical

side, real-time imaging is an important tool to under-

stand how variability in physical properties of cells in

a tissue might drive multicellular patterning [159] and

how tissues which are normally robust in their archi-

tectures can also be remodelled during regeneration

[32,137].

One important aspect in understanding temporal

scales is the ability to manipulate the system in a spa-

tially and temporally controlled manner. Light-induced

manipulations have been largely improved in spatial

and temporal control with the advancements of optoge-

netics [54,160]. This allows, for example, to understand

the importance of timing in signaling pathways involved

in cell fate specification during tissue formation. Using a

light-induced regulation of phosphatidylinositol(4,5)P2

levels at the plasma membrane of Drosophila embryonic

cells, Guglielmi et al. [54] showed that local modulation

of cell contractility interferes with tissue contraction and

invagination. Also by manipulating the duration of

Nodal signaling during zebrafish embryogenesis using a

photoactivatable receptor, it has been shown that

extended Nodal signaling drives prechordal plate speci-

fication at the expense of endoderm differentiation [161]

in a process that depends on long-lasting cell-to-cell

contacts [162]. In tissue morphogenesis, temporal

manipulation of signaling pathways which promote cel-

lular contractility, such as RhoA [163], or phos-

phatidylinositol(4,5)P2 levels at the plasma membrane

[54], allows local modulation of mechanical forces at the

cellular level.

Pseudotime inference of molecular events

Time-lapse imaging is currently the main approach by

which spatial and temporal scales can be monitored.

However, number of samples that can simultaneously

be acquired is limited. Temporal information can also

be inferred with computational methods using thou-

sands of samples simultaneously. Resolving molecu-

lar and cellular processes pseudotemporally can be

achieved by reconstructing time-series of events based

on information from numerous fixed time points

[80,164–166]. With single cell transcriptomics, for

example, it is possible to resolve differentiation from

stem cells to functionally committed progenies [167–
169]. The temporal cascade of events can be inferred

computationally based on gradual differences within

the population capturing a pseudotemporal trajectory.

Recently, a whole embryo developmental landscape

has been reconstructed based on scRNAseq data

[170,171], describing cells transitioning from pluripo-

tency to different cell types during early zebrafish

embryogenesis. This is a useful way to explore high
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content expression information overcoming the current

technical limitations on temporal scale. While differen-

tiation trajectories from transcriptomics can provide a

high content molecular picture, imaging and mass

cytometry data from fixed samples can also be used to

reconstruct trajectories both spatially and temporally

[80,172].

Functional scale

Besides being able to follow single cells in space and

time, we require an adequate model system that con-

siders the functional 3D organization of cells in a tis-

sue and has the ability to replicate some of the in vivo

environment. Without easy accessibility into live tis-

sues or the possibility of following their long-term

development, scientists over the last decade mostly

exploited immortalized cell cultures [18,173–175],
embryos [4,5,97,98,144,176], explanted tissues [16,98],

cocultures [177], as well as whole animal model systems,

like Hydra [149], Axolotl [178] and planarians [43]. And

while much has been learned on fundamental processes,

it is clear that each of these systems has a trade-off

between physiological relevance and experimental

amenability.

A powerful model system assessing these limitations

are organoids. Organoids are 3D organ-like structures

derived in vitro from primary tissues and adult stem

cells, embryonic stem cells (ESCs) or induced pluripo-

tent stem cells (iPSCs) [179–187]. These complex multi-

cellular structures arrange through a self-organized

mechanism requiring no external guidance, only appro-

priate niche factors and, importantly, a 3D extracellular

scaffolding [55,188,189]. Organoids develop into multi-

cellular structures resembling key aspects of the native

organ with differentiated cell types and tissue-like archi-

tecture [190,191]. The cells self-organize into complex

structures from a range of organs such as optic cups

[33], neuro-rosettes [192,193], cerebral cortex layers

[181], intestinal crypts and villi [57], liver [194], lung

[195], and kidney [190,191,196–198]. Moreover, other

powerful systems starting from ES cells have been

developed that recapitulate embryo formation [5,44,199]

and gastrulation [200]. Clearly, organoids are simplified

models of the complexity of tissue architecture and

function. Intestinal organoids, for example, lack impor-

tant aspects of tissue structure such as stromal cells

[201,202], vascularization and enteric nervous system

[177]. Nonetheless, they deliver powerful means for ex-

vivo modeling of tissue morphogenesis and organogene-

sis and also represent an opportunity to understand

fundamental principles and molecular mechanisms of

self-organized processes.

Organoid cultures combine: (a) advantages of

in vitro culture (controlled growth conditions and mul-

ti-parallelized assays possible)[203], (b) amenability to

chemical and genetic manipulations, (c) single cell

accessibility with imaging and genomics techniques in

both live and fixed samples [17,32,37,179,204], (d) tem-

poral resolution, as organoid development can be fol-

lowed in real time for monitoring short and long-term

events [32,204–207], (e) tissue functionality, which ulti-

mately provides cellular information in physiologically

unique contexts (such as organ-specific development,

homeostasis, regeneration or disease progression)

[208,209] and finally, (f) organoid cultures are expand-

able offering the opportunity to reach sample sizes of

hundreds or thousands, which is not feasible with

explanted tissues.

Organoid cultures allow to question how single cells

exposed to a uniform growth-promoting environment

can generate asymmetric structures and how local inter-

actions between single cells give rise to self-organized

patterns visible at the organoid level. Using embryonic

kidney cells, for example, it has been shown that after

enzymatic dissociation and re-aggregation in vitro, cells

spontaneously recreate the morphological arrangement

between epithelial and mesenchymal cells, without prior

spatial information [179]. This re-aggregation relies

solely on movement of cells and differential cadherin-

based cell-cell adhesion providing molecular evidence

and evolutionary conservation of classical dissociation/

re-aggregation experiments in sponges and differential

adhesion hypothesis of Steinberg [210]. In an adult

intestinal epithelia, the patterning of intermingled pro-

genitors and differentiated cells in the stem cell niche is

driven by the higher propensity of elongated cells to

intersperse during interkinetic nuclear migration and

cell division [207], showing that mechanical properties

of cell division are driving forces in tissue patterning

[105].

Finally, a recent paper exalted the power of under-

standing tissue self-organization for clinical applica-

tions. Using hair-bearing skin organoids from new-born

mice, the authors not only showed successful transplan-

tation and further hair growth in adult nude mice [32],

but also dissected the molecular mechanisms and

morphological transitions during organoid formation.

By combining time-course transcriptome analysis

and immunostaining, they described spatio-temporally

zonated patterns of expression of adhesion molecules

and signaling pathways, which allowed experimental

manipulation and hair growth restoration. It is there-

fore clear that understanding self-organized processes

that initiate and propagate regenerative and pathologi-

cal conditions has also a therapeutic potential in
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medicine [196]. Sensing the tissue environment is essen-

tial for a healthy regenerating tissue. In the recent years,

the mechanosensors YAP and TAZ have been described

as primary sensors of a tissue’s physical context

[211,212] and master regulator of tissue regeneration.

Moreover, it has been shown previously that engraft-

ment of organoids into a damaged epithelium has a

potential regenerative application, such as in ulcerative

colitis [213]. Because organoids can be derived from

human samples, either healthy or diseased, it is now

possible to envision personalized strategies [214,215].

Outcome

Multicellular tissue self-organization events can now be

studied in a quantitative way at single cell resolution.

The mechanisms by which single cells sense their local

environments and implement it at the population level

are the driving forces of self-organization and collective

behaviours during development, tissue remodeling, and

regenerative processes. The rapid development of imag-

ing and genomics techniques combined with powerful

modeling tools, now, enables us to bridge scales of com-

plexity: spatially, temporally and functionally. With

subcellular resolution, we can better understand funda-

mental concepts of how symmetry-breaking events

occur, which roles cell-to-cell variability plays in a bio-

logical process and how cellular patterns emerge.

From that, we can then move forward to describe the

mechanisms behind complex collective behaviours in

development and tissue homeostasis, with immediate

application in development and regenerative medicine

[20,173].
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