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Abstract
Halogenated ligands are nowadays commonly designed in order to increase their potency against protein targets. Although
novel computational methods of evaluating the affinity of such halogenated inhibitors have emerged, they still lack the
sufficient accuracy, which is especially noticeable in the case of empirical scoring functions, being the method of choice
in the drug design process. Here, we evaluated a series of halogenated inhibitors of phosphodiesterase type 5 with ab initio
methods, revealing the physical nature of ligand binding and determining the components of interaction energy that are
essential for proper inhibitor ranking. In particular, a nonempirical scoring model combining long-range contributions to
the interaction energy provided a significant correlation with experimental binding potency, outperforming a number of
commonly used empirical scoring functions. Considering the low computational cost associated with remarkable predictive
abilities of the aforementioned model, it could be used for rapid assessment of the ligand affinity in the process of rational
design of novel halogenated compounds.
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Introduction

It has been recognized that halogen compounds (iodine,
bromine, chlorine or even, to some extent, fluorine) inter-
act with atoms possessing a lone electron pair (Lewis base,
e.g., O, N, S atoms or π -electron systems) through so called
halogen bonding, where the halogen atom acts as an accep-
tor (Lewis acid) [1–3]. Halogen bonding is related to the
anisotropy of the electron density and the emergence of
increased electrostatic potential, i.e., σ -holes [4, 5]. This
electrostatically driven, directional, intermolecular interac-
tion [6] has been successfully exploited in the drug devel-
opment process [7–10], and is often found in biomolecular
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complexes [2, 11, 12]. Since commonly used empirical
or knowledge-based docking and scoring approaches do
not always properly account for the anisotropy of elec-
tron charge distribution of halogen residues, the quantum
mechanical (QM) methods are usually required, when it
comes to the modeling of halogen bonded systems [12–
15]. Importantly, scoring of ligands bearing halogen atoms
with empirical scoring functions is often not reliable [14,
16], although a progress in this field has been achieved, and
novel empirical scoring functions dedicated to halogenated
compounds have appeared [17–19].

As the QM-based methods are too computationally
demanding to be applied in the drug design process [3,
17], reliable and fast scoring approaches are needed. Our
non-empirical E

(10)
EL,MT P + EDas function [20], already

validated with various protein-ligand complexes [21–23],
might appear useful. Taking advantage of the long-range
interaction energy terms including electrostatic atomic mul-
tipole expansion (E(10)

EL,MT P ) and approximate dispersion
function (EDas), it constitutes a low cost approach that
can be used in various biomolecular systems. The damped
dispersion expression, EDas , has already been proven to
successfully describe non-covalent interactions with atom-
atom potentials fitted to reproduce the results of high-level
quantum chemical calculations [24, 25]. Importantly, EDas

http://crossmark.crossref.org/dialog/?doi=10.1007/s00894-018-3897-z&domain=pdf
http://orcid.org/0000-0002-9154-5107
https://doi.org/10.1007/s00894-018-3897-z
mailto: Edyta.Dyguda@pwr.edu.pl


   29 Page 2 of 11 J Mol Model           (2019) 25:29 

function appears to be an alternative to the commonly
applied DFT-based damped dispersion corrections that
might not be able to recover dispersion energies properly
due to recently demonstrated unphysical damping occurring
at small intermonomer distances [26]. However, available
EDas parameters have not covered halogen atoms [24, 25],
restricting application of E

(10)
EL,MT P + EDas function to

nonhalogenated compounds.
Novel EDas parameters derived recently1 have enabled

application of the E
(10)
EL,MT P + EDas model to scor-

ing of halogen-substituted ligands. Preliminary tests of
E

(10)
EL,MT P + EDas function augmented by halogen param-

eters demonstrated its favourable performance for the
series of phosphodiesterase type 5 (PDE5) inhibitors.
PDE5 enzyme catalyzes hydrolysis of cyclic guanosine
monophosphate (cGMP), an intracellular second mes-
senger molecule involved in multiple signaling path-
ways. Decreased degradation of cGMP due to PDE5
inhibition enhances its effects, leading to, e.g., relax-
ation of vascular smooth muscle tissue. PDE5 inhibitors
(PDE5Is) are used in the treatment of pulmonary
hypertension or erectile dysfunction (ED) [27]. ED
therapy with PDE5 inhibitors, e.g., sildenafil (Viagra,
Pfizer Inc., first generation PDE5Is) or avanafil (Sten-
dra, Metuchen Pharmaceuticals, LLC., second generation
PDE5Is) is preferred as the first-line medication [28]. More-
over, the number of various PDE5Is in dietary supplements
has increased from 1 in 2003 to 69 in 2016 [28]. Recently,
PDE5Is have been proposed as medicines for heart fail-
ure [29]. PDE5 has also been linked to tumor development
regulation [30]. Due to clinical potential of PDE5 inhibi-
tion, development of higher affinity PDE5Is is of special
interest. Understanding of the molecular basis of PDE5Is
binding could significantly aid the rational design of novel
inhibitors.

E
(10)
EL,MT P +EDas function complemented by novel halo-

gen EDas parameters has been validated using the set of
PDE5 inhibitors, that involved monocyclic pyrimidinones
with halogen bonding introduced to strengthen the binding
affinity [31]. Here, we report nonempirical investigation of
these compounds, providing detailed analysis of the physi-
cal basis of their interactions with PDE5. Furthermore, our
E

(10)
EL,MT P + EDas approach is compared with a number of

empirical scoring functions, including those recommended
for halogen-bearing ligands (e.g., XBSF implemented in
AutoDock VinaXB program [14]). Thermodynamical basis
of binding of PDE5 inhibitors studied here have been
characterized experimentally by Ren et al. [32]. The exper-
imental results discussed therein were accompanied by
theoretical analysis covering only a limited representation of

1Unpublished results (2018)

the binding site, leaving a room for further and more com-
plete computational examination, which we have therefore
exploited. In particular, calculations for only 3 out of 5 com-
pounds were performed by Ren et al. [32], whereas herein
we report computational results for all inhibitors.

Our recent findings [23, 33] suggest that interaction
energy calculations should be accompanied by assessment
of the solvation effects, since the considerable differences in
the solvation free energy might affect the inhibitory activity
ranking produced by herein applied theoretical models. As
the latter account only for the enthalpic contribution to the
binding free energy, their applicability requires consistency
of free energy of solvation (�Gsolv) among the analyzed set
of inhibitors. It could be especially important in the case of
halogen-bearing ligands [34]. Accordingly, we complement
our analysis of halogenated PDE5 inhibitors by the report
on the related solvation effects.

Methods

Preparation of protein-inhibitor complexes

A set of 5 PDE5 inhibitors developed by Xu et al. [31] is exa-
mined with ab initio and empirical methods to analyze the
effect of the halogen substitution on the binding affinity. Crys-
tal structures of PDE5-inhibitor complexes are available via
the following PDB codes: 4OEX, 4OEW [32], 3SIE, 3SHY,
3SHZ [31] (resolutions of 2.14, 2.44, 1.93, 2.65, and 2.45 Å,
respectively). The inhibitor compounds share a common
pyrimidinone scaffold. The only difference between these
structures is the substitution at the 5-position of the
pyrimidinone ring with a halogen or hydrogen atom (Fig. 1).

Optimal hydrogen bonding was determined with
PROPKA [35–38], implemented in Maestro. Due to insuffi-
cient resolution of the most of the crystal structures (e.g.,
3SHY complex with 2.65Å resolution), all protein-inhibitor
structures were solvated with TIP3 water model [39] and
optimized in CHARMM program [40] (version c36b1). Both
CHARMM General Force Field v. 2b7 [41] and CHARMM22
All-Hydrogen Force Field [42–44] parameter files were
used. Missing parameters for inhibitor structures were gen-
erated with CGenFF interface at http://cgenff.paramchem.
org [41, 45–47] (interface version 1.0.0). All amino acid
residues further than 10 Å from each inhibitor were kept
frozen throughout 1000 steps of steepest descent followed
by conjugate gradient optimization until root mean square
gradient of 0.01 kcal · mol−1· Å was reached.

To investigate the influence of the substitution on the
activity of the inhibitors, the inhibitors were truncated, as
the common scaffold was positioned similarly in the case of
all complexes. Therefore, only the pyrimidinone substituted
at 5-position (marked in red in Fig. 1) was taken into

http://cgenff.paramchem.org
http://cgenff.paramchem.org


J Mol Model           (2019) 25:29 Page 3 of 11   29 

Fig. 1 The structures of PDE5 inhibitors. Binding energy calculations
were performed for the part of the structure marked in red

account during the calculations. All amino acid residues
within 5 Å of the substituent at pyrimidinone 5-position
were selected to serve as PDE5 binding site model. The
latter included 11 amino acid residues (Tyr612, Asp764,
Leu765, Ala767, Ile768, Gln775, Ile778, Ala779, Val782,
Gln817, Phe820; see Fig. 2). Dangling bonds resulting from
truncation of the inhibitor structures and cutting the amino
acid residues from the protein structure were filled with

Fig. 2 PDE5 binding site representation in complex with the model of
5-I inhibitor

hydrogen atoms minimized in Schrödinger Maestro [48]
program using OPLS 2005 force field [49].

Interaction energy calculations

Interaction energy between PDE5 binding site represen-
tation and each inhibitor was calculated within Hybrid
Variation-Perturbation Theory (HVPT) [50, 51] decom-
position scheme as the sum of binding energy values
obtained for amino acid residue-inhibitor dimers. Each
amino acid residue included in particular dimers was con-
sidered separately except for residues linked by a peptide
bond, i.e., Asp764 and Leu765, Ala767 and Ile768, as
well as Ile778 and Ala779 residues. Interaction energy cal-
culations were carried out with GAMESS program [52]
using polarized triple zeta valence basis set of Ahlrichs
et al. (def2TZVP) [53, 54] and the corresponding effec-
tive core potential (ECP) on iodine atoms. Counterpoise
correction was applied [55].

In HVPT, the Møller-Plesset second-order interaction
energy (EMP 2) is partitioned into the multipole electrostatic
(E(10)

EL,MT P ), penetration (E(10)
EL,PEN ), exchange (E(10)

EX ),

delocalization (E(R0)
DEL) and correlation (E(2)

CORR) terms:

EMP 2 =E
(10)
EL,MT P

︸ ︷︷ ︸

R−n

+ E
(10)
EL,PEN +E

(10)
EX + E

(R0)
DEL

︸ ︷︷ ︸

exp(−αR)

+ E
(2)
CORR

︸ ︷︷ ︸

R−n

.

Interaction energy components introduced above can
be grouped into long- and short-range energy terms
that vary with the intermolecular distance R as R−n

or exp(−aR), respectively. The electrostatic multipole
component of the binding energy, E

(10)
EL,MT P , was assessed

with the Cumulative Atomic Multipole Moment (CAMM)
expansion [56]. The latter is truncated at R−4 term and
computed using the correlated wave-function. The first-
order electrostatic energy, E

(10)
EL , is equal to the sum

of the penetration term, E
(10)
EL,PEN , and the E

(10)
EL,MT P

energy. Similarly, the first-order Heitler-London energy,
E(10), is obtained by adding the first-order electrostatic
energy to the exchange component, E

(10)
EX . Subsequently,

the higher order delocalization energy, E
(R0)
DEL, which

comprises classical induction and charge transfer terms,
is the difference between the counterpoise-corrected self-
consistent field variational energy, ESCF , and the first-order
Heitler-London energy, E(10). Finally, the correlation term,
E

(2)
CORR , accounting primarily for the dispersion, exchange-

dispersion, and intramolecular correlation contributions, is
obtained as the difference of the second-order Møller-
Plesset interaction energy, EMP 2, and converged SCF
energy, ESCF . The E

(10)
EL,MT P + EDas energy values were
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calculated with a novel revision of the dispersion function,
EDas .2

Empirical scoring was performed with several scoring
functions. GoldScore, ChemScore, ChemPLP, and Astex
Statistical Potential (ASP) functions, implemented in
GOLD 5.6.3 [57], were employed, with a spherical grid
comprising amino acid residues within 10 Å radius
from the point of origin, defined as the pyrimidinone 5-
position. Further, ChemPLP and PLP scoring functions
from PLANTS [58] docking program were used with
a 10 Å radius sphere centered on the ligand. Since
ChemPLP function is present in both GOLD and PLANTS,
it was assigned a subscript indicating its origin, namely
ChemPLPG (GOLD) and ChemPLPP (PLANTS). Despite
sharing the same name, both functions are defined
differently: ChemPLPG combines ChemScore hydrogen
bonding term with linear potentials for modeling the van
der Waals and repulsive terms [59], while ChemPLPP

is based on the piecewise linear potential (PLP) scoring
function [58]. Importantly, ChemPLPG score is given in
arbitrary units with higher score indicating more potent
inhibitor, whereas ChemPLPP yields the scoring results
in kcal · mol−1 units (lower score indicates more potent
inhibitor). GlideSP (standard precision) [60] and GlideXP
(extra precision) [61] scoring functions from Schrödinger
Glide program (revision 2018-1) [62] were also applied with
a 10 Å grid centered on the ligand. XBSF scoring function,
implemented in AutoDock VinaXB [14] and designed
especially for halogenated ligands, was also employed for
the comparison. Scoring was carried out with 10 Å cubic
grid centered on the inhibitor.

In all docking programs full structures of protein-
inhibitor complexes, optimized as described in Preparation
of protein-inhibitor complexes section, were used for
scoring of the existing poses of truncated inhibitor
structures. In particular, no docking was performed, as the
compounds re-docking would affect the results, precluding
the comparison of the performance of both empirical and
non-empirical scoring.

Assessment of solvation effects

The solvation free energy (�Gsolv) for each inhibitor
was calculated in Gaussian09 with Polarizable Continuum
Model (PCM) at the MP2/def2TZVP level of theory as
single-point calculations performed for the inhibitor struc-
tures used throughout the computational protocol of interac-
tion energy calculation. Integral equation formalism variant
(IEFPCM) [63–65] was applied along with ExternalItera-
tion [66, 67], DoVacuum, and SMD [68] options.

2Unpublished results (2018)

Evaluation of the results

The performance of each scoring model was estimated with
Pearson correlation coefficient (R) calculated with respect
to the experimentally determined inhibitory activity repor-
ted by Ren et al. [32]. Dissociation constant Kd was chosen
as a reference, since all thermodynamical data provided
by Ren et al. [32] were obtained with the recombinant cat-
alytic domain of human PDE5, whereas IC50 values referred
to the full-length of rabbit PDE5. As a further perfor-
mance measure, the statistical predictor Npred , represent-
ing the success rate of prediction of relative affinities, was
applied. Npred is calculated among all pairs of inhibitors
as the percentage of concordant pairs with relative stability
of the same sign as in the reference experimentally deter-
mined binding potency [69]. To enable comparison with the
non-empirical interaction energy results, assigning lower
binding energy values to more potent inhibitors, the scor-
ing functions with higher score implying the greater binding
potency were assigned the opposite values of the calculated
correlation coefficient.

Results and discussion

Non-empirical models of PDE5 inhibitors binding

PDE5 binding site model considered herein includes 11
amino acid residues surrounding the inhibitor in the vicinity
of 5 Å within the atom occupying pyrimidinone 5-position
(Fig. 2). Asp764 is the only charged residue within this
set. Except for Tyr612, Gln775, and Gln817, the remaining
neutral residues are nonpolar. Total binding energies
calculated by summing up the values characterizing
individual amino acid residue-inhibitor dimers are given
in Table 1. The corresponding EMP 2 pairwise interaction
energy values are provided in the Supplementary Material.

Negative values of total interaction energy calculated
at the reference MP2 level of theory, EMP 2, indicate
the favorable interaction with PDE5 binding site. The
prevalent contribution to binding energy at MP2 level of
theory appears to be due to electrostatic interaction, E

(10)
EL

(Table 1). The positive values of the first-order Heitler-
London energy, E(10), imply the overestimated repulsion, as
the short-range exchange contribution, E

(10)
EX , is particularly

sensitive to any structural inaccuracies [70]. Accounting
for the subsequent delocalization term, E

(R0)
DEL, restores the

stabilizing nature of the resulting ESCF interaction energy
(Table 1), however, the proper ranking of inhibitors is
established only after including the correlation contribution,
E

(2)
CORR . Except for 5-Br and 5-Cl inhibitors, featuring the

same value of EMP 2 binding energy, the ranking of PDE5
inhibitors resulting from interaction energy calculated at
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Table 1 Total PDE5-inhibitor interaction energya at the consecutive levels of theory

Inhibitor pKd
b E

(10)
EL,MT P E

(10)
EL E(10) ESCF EMP 2 E

(10)
EL,MT P + EDas

5-I 6.82 −19.6 −36.5 10.4 −5.1 −33.4 −55.1

5-Br 6.38 −19.7 −36.7 11.9 −3.2 −30.1 −52.9

5-Cl 6.12 −17.0 −30.2 4.5 −7.7 −30.1 −46.5

5-H 5.84 −19.4 −35.3 5.6 −7.9 −28.7 −47.6

5-F 5.76 −18.1 −32.4 5.9 −6.8 −26.7 −45.7

Rc −0.45 −0.54 0.75 0.66 −0.95 −0.93

Npred
d 70.0 70.0 40.0 30.0 100.0 90.0

aIn units of kcal · mol−1

bKd values are taken from Ref. [32]
cCorrelation coefficient between the energy obtained at a given level of theory and the experimental inhibitory activity
dPercentage of successful predictions [%]

MP2 level of theory (Table 1) is in agreement with
experimental data [32].

To quantify the performance of particular interaction
energy models, the relationship between the binding energy
calculated at the subsequent levels of theory and the
experimentally determined dissociation constants [32] was
expressed by means of the Pearson correlation coefficient
(R) and the success rate of prediction of relative inhibitory
potency (Npred ; see Table 1). The experimental binding
affinities are reproduced only when dispersion is accounted
for, i.e., at the EMP 2 (R = −0.95, Npred = 100%) or

E
(10)
EL,MT P + EDas (R = −0.93, Npred = 90%) levels of

theory. In fact, the predictive ability of the E
(10)
EL,MT P +

EDas model is essentially due to the dispersion contribution,
EDas . As demonstrated by low values of R correlation
coefficients, neither multipole electrostatic nor the first-
order electrostatic interaction energy alone provide reliable
predictions of the binding affinity in terms of the correlation
with the experiment (R = −0.45 and −0.54 for E

(10)
EL,MT P

and E
(10)
EL , respectively; Table 1). Npred values associated

with these levels of theory (70% in both cases) are lower
compared to the models accounting for the dispersion
interactions, mostly due to the underestimation of the 5-Cl
inhibitor affinity.

Binding energies calculated at E(10) level of theory
anti-correlate with the experimental inhibitory activity,
i.e., higher repulsion is associated with stronger inhibitors
(Table 1). Due to exponential dependence of E

(10)
EX con-

tribution (accounted for at the E(10) level of theory) on
the interatomic distance, any minor structural deficiencies
resulting from, e.g., insufficiently accurate starting geome-
tries, significantly affect this particular interaction energy
term [20, 70]. The extent to which E

(10)
EX term is altered

seems to be influenced by the overall binding strength,
as the more potent ligands tend to experience higher

repulsion originating from overestimated E
(10)
EX contribu-

tion. In consequence, delocalization energy, E
(R0)
DEL, that

contributes to the subsequent level of theory, namely ESCF ,
is not able to recover the proper inhibitory activity trend,
as ESCF remains anti-correlated with respect to the experi-
mental ligand affinity (Table 1). Finally, the inverse ranking
of PDE5 inhibitors is overcome with E

(2)
CORR contribution

and the resulting EMP 2 energy provides a reasonable esti-
mate of the inhibitory activity. The important role of the
correlation term appears to be in agreement with the results
of Riley et al. [71] demonstrating that halogen bonding
involves the interplay between electrostatic and dispersion
forces. As already emphasized, the performance of the
approximate E

(10)
EL,MT P +EDas model, accounting for long-

range interaction energy terms only, is comparable to the
predictive capabilities of EMP 2 binding energy. However,
the computational cost of E

(10)
EL,MT P +EDas model is equiv-

alent to force field calculations [20], as it scales with the
square number of atoms, O(A2), while computational scal-
ing of EMP 2 energy is described by the fifth power of the
number of atomic orbitals, O(N5).

The higher the atomic number of the substituting
halogen (Cl, Br, I), the stronger the interaction with the
protein, as described by nonempirical E

(10)
EL,MT P + EDas

model. This is in agreement with other available studies
of halogen series, where it has been shown that the
strength of the halogen bond increases with the increasing
polarizability of the halogen atoms [72]. In particular, the
increased halogen atom polarizability has been related to
the magnitude of σ -hole potential [73, 74]. At the MP2
level of theory, the interaction energy values of both 5-
Cl and 5-Br inhibitors are roughly the same, probably
due to the incorporation of the short-range contributions,
especially E

(10)
EX . As a result, accounting for delocalization

and correlation terms improves the overall performance
of the EMP 2 energy, but the binding affinities of the
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aforementioned compounds are still more similar than
expected.

Solvation effects

In our recent work on protein-protein interaction (PPI)
inhibitors [23, 33], �Gsolv has emerged as an important
factor determining whether significant correlation between
relative interaction energy values and experimental results
could be obtained. Estimation of binding affinity with inter-
action energy-based models is justified only if the remaining
contributions to binding free energy are essentially constant
across the inhibitor series. Relatively high standard devia-
tion (SD) values of solvation free energy characterizing a
set of ligands indicate that no predictions could be made
based on the interaction energy alone. Accordingly, any cor-
relation with the experimental binding affinity other than
coincidental should not be expected. To overcome this issue,
the inhibitor set could be limited to compounds featuring
similar �Gsolv values.

As for the analyzed PDE5 inhibitors, the correlation
between experimental affinity and EMP 2 or E

(10)
EL,MT P +

EDas binding energy already is significant. Nevertheless,
it seemed important to verify solvation effects here as
well, especially given the findings of Fanfrlik et al. [34],
where binding energy of halogenated ligands yielded no
correlation with experiment unless solvation energy was
accounted for. The relatively low SD values of �Gsolv

calculated for PDE5 inhibitors with SMD model (Table 2)
further support the predictive abilities of interaction energy-
based models tested herein. The coincidence of low
�Gsolv standard deviation and the significant R correlation
coefficient values for PDE5 inhibitors is in line with our
previous analyses (see Refs. [23] and [33]), showing that
in order to obtain correlation for the interaction energy, the
associated solvent effects estimated with SMD model need
to be relatively similar within the ligand set.

Table 2 Solvation free energy (�Gsolv) of PDE5 inhibitors along with
the electrostatic (�Gsolv,el) and non-electrostatic (�Gsolv,non−el)
contributions.a

Inhibitor �Gsolv �Gsolv,el �Gsolv,non−el

5-I −8.6 −11.7 3.2

5-Br −7.4 −10.2 2.8

5-Cl −7.2 −10.7 3.5

5-H −8.3 −11.9 3.6

5-F −6.9 −11.0 4.1

SDb 0.73 0.72 0.46

aIn units of kcal · mol−1

bStandard deviation calculated for the �Gsolv energy values; in units
of kcal · mol−1

As reported by Ren et al. [32], entropy contribution
related to 5-F inhibitor is substantially higher than for
the remaining compounds (such observations are also
described in the literature [75, 76]). In fact,the entropy term
characterizing 5-F compound exceeds the corresponding
enthalpic term, while the latter constitutes the main binding
free energy contribution for the remaining PDE5 inhibitors
within this set [32]. Interestingly, this is not reflected in
our solvation energy calculations, where 5-F compound
is associated with the lowest �Gsolv value compared to
the remaining inhibitors (see Table 2). Moreover, low SD
values calculated for the analyzed PDE5Is indicate similar
solvation effects across the series of ligands. Possibly, the
methods for computing the solvation free energy of ligands
are only approximate, yielding �Gsolv results that suffer
from significant errors [77–79], and, as a result, they do not
represent the experimental results accurately enough.

Insights into the nature of the PDE5Is’ binding

EMP 2 binding energy values obtained for individual amino
acid residues or residue pairs (Asp764-Leu765, Ala767-
Ile768, and Ile778-Ala779) are shown in Fig. 3. The high-
est interaction energy values are due to Gln817 residue
(−13.4 to −14.6 kcal · mol−1, Table S1 in the Supplemen-
tary Material). Phe820 residue also contributes significantly
to the overall binding energy (−4.7 to −6.4 kcal · mol−1).
Interestingly, the interaction with Tyr612 residue, that seems
to be halogen bonded to the inhibitor molecules, is of
moderate strength (−0.7 to −2.4 kcal · mol−1). Appar-
ently, interactions with the remaining closely positioned
amino acid residues (Gln817, Phe820, Val782, Asp764, and
Leu765; Fig. 3) contribute together to the overall binding
strength. In this case, focusing on a particular interac-
tion (i.e., halogen/hydrogen bonding with Tyr612), while
neglecting the contributions arising from the other nearby
residues during novel inhibitors design should be reconsid-
ered. In particular, our results do not support the decreased
binding strength in 5-I-Tyr612 complex, accompanied by
enhanced interaction with a buried water molecule, as
observed by Ren et al. [32]. Further discussion on these
differences is provided in the Supplementary Material.

As mentioned in the previous section, Ren et al. [32]
reported substantial difference in the experimentally derived
enthalpic/entropic contribution to the binding of 5-F inhibi-
tor, as compared to the remaining compounds. It was sug-
gested that the low enthalpic term of 5-F compound could
be due to the electron withdrawal from the pyrimidinone
ring upon the fluorine substitution, which probably results
in reduced interactions with PDE5 amino acid residues,
e.g., Phe820 or Val782 [32]. This was not confirmed
by computational results reported herein (see Fig. 3 and
Table S1 in the Supplementary Material), as binding of 5-F
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Fig. 3 Contribution of
individual amino acid residues
or residue pairs to EMP 2
interaction energy of PDE5
inhibitors
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due to Phe820 and Val782 residues is of a similar magnitude
as in the case of 5-H ligand.

Another possible reason pointed out by Ren et al. [32]
for the decreased enthalpic contribution of 5-F inhibitor
involved weakening of the bond between Tyr612 and
Gln817 residues and 5-F compound. As shown in Fig. 3,
5-F–Tyr612 interaction amounting to −0.7 kcal · mol−1 is
indeed weaker than for the remaining compounds, featuring
EMP 2 interaction energy within the range of −1.3 to
−2.4 kcal · mol−1 (see Table S1 in the Supplementary
Material). However, 5-F–Gln817 EMP 2 contribution is
comparable to the corresponding value characterizing 5-
H compound (−13.4 and −13.5 kcal · mol−1, respectively).
Another weaker interaction of the 5-F compound is
the one with the Asp764-Leu765 residue pair (see
Table S1 in Supplementary Material for details). It seems
that the latter, together with the Tyr612 interaction,
contribute to the somewhat smaller enthalpic term of 5-
F inhibitor. Weakening of the interaction upon fluorine
substitution might be due to prevalent negative electrostatic
potential characterizing fluorine atoms covalently bonded
to aromatic systems [80]. Nevertheless, the difference in
the enthalpic/entropic contribution of 5-F compound is not
as pronounced as one could expect given the experimental
data.

Empirical scoring

Scoring functions applied for the evaluation of PDE5Is
included GoldScore, ChemPLP (ChemPLPG), ChemScore,
and Astex Statistical Potential (ASP) from GOLD 5.6.3,
ChemPLP (ChemPLPP ), and PLP scoring functions from
PLANTS, XBSF from VinaXB, as well as GlideSP and

GlideXP from Glide. Correlation coefficients associated
with all these methods are compared in Fig. 4. The values
of each empirical score obtained for PDE5 inhibitors, along
with the corresponding correlation coefficients and Npred

values, are provided in Table S2 in the Supplementary
Material.

Out of the nine scoring functions tested herein, only
GoldScore function was capable of ranking the PDE5
inhibitors in sufficient agreement with the experimental
inhibitory activity (R = −0.96, Npred = 90%, see Fig. 4).
In most cases, the affinity of 5-Cl and/or 5-F inhibitor
is severely overestimated (see Table S2 in Supplementary
Material). This might indicate that the majority of the
currently used scoring functions lack the ability to properly
describe halogen interactions, and there still is a room for
improvement. Overall, the performance of scoring functions
appear to be different depending on the system studied [23]
and there is no apparent choice of an appropriate scoring
approach to be used with a certain protein-ligand system.
However, our nonempirical E

(10)
EL,MT P + EDas model has

been shown to possess the satisfactory predictive abilities
for a variety of enzyme-inhibitor complexes [20, 21]
including the PPI inhibitors [22, 23, 33]. Our current results
seem to extend the range of application of E

(10)
EL,MT P +EDas

model to halogen-bearing compounds.

Summary

In this work, a congeneric series of halogenated PDE5
inhibitors, sharing a common pyrimidinone scaffold, was
evaluated with the ab initio HVPT energy decomposition
scheme, followed by the analysis with an approximate
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Fig. 4 Pearson correlation
coefficients obtained for the
empirical scoring functions and
nonempirical E

(10)
EL,MT P + EDas

model

E
(10)
EL,MT P + EDas model, including only multipole elec-

trostatic and dispersion interaction energy terms. The latter
method of the assessment of the inhibitory activity was
compared to a number of empirical scoring approaches.

The interaction energy calculated for such a model accu-
rately reproduces the experimentally derived affinities, as
the correlation coefficients with respect to experimental
inhibitory activity are equal to −0.95 and −0.93 for the ref-
erence EMP 2 and nonempirical E

(10)
EL,MT P + EDas binding

energies, respectively. It must be noted that the experimen-
tal results are reproduced by the nonempirical models only
when dispersion forces are accounted for. In the case of
the computationally affordable E

(10)
EL,MT P + EDas model,

the damped dispersion expression EDas was included in the
revised version, containing the halogen atom parameters. As
for the empirical scoring, only GoldScore performance is
adequate (R correlation coefficient of −0.96) and compara-
ble to either an approximate E

(10)
EL,MT P + EDas or the most

robust EMP 2 level of theory.
The performance achieved for the E

(10)
EL,MT P + EDas

model with the revised EDas parameters suggests that
it could be successfully used in systems that involve
halogenated species. It is especially important in the
view of mostly unsatisfactory results obtained with the
empirical scoring functions, which demonstrates that
reliable description of such systems remains a challenge.
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