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ABSTRACT

ATAC-seq has been widely adopted to identify acces-
sible chromatin regions across the genome. How-
ever, current data analysis still utilizes approaches
initially designed for ChIP-seq or DNase-seq, with-
out considering the transposase digested DNA frag-
ments that contain additional nucleosome position-
ing information. We present the first dedicated ATAC-
seq analysis tool, a semi-supervised machine learn-
ing approach named HMMRATAC. HMMRATAC splits
a single ATAC-seq dataset into nucleosome-free
and nucleosome-enriched signals, learns the unique
chromatin structure around accessible regions, and
then predicts accessible regions across the entire
genome. We show that HMMRATAC outperforms the
popular peak-calling algorithms on published hu-
man ATAC-seq datasets. We find that single-end se-
quenced or size-selected ATAC-seq datasets result in
a loss of sensitivity compared to paired-end datasets
without size-selection.

INTRODUCTION

The genomes of all known eukaryotes are packaged into a
nucleoprotein complex called chromatin. The nucleosome
is the fundamental, repeating unit of chromatin, consisting
of approximately 147 base pairs of DNA wrapped around
an octet of histone proteins (1). The eviction of nucleosomes
into nucleosome-free regions (NFRs) makes DNA more ac-
cessible to various DNA binding transcription factors (2).
Transcription factor bindings exert spatiotemporal control
of gene expression, which is critical in the establishment of
cellular identity during development, cellular responses to
stimuli, DNA replication and other cellular processes (3).
The genome-wide investigations on nucleosome positioning
found the interplay between transcription factor binding to
nucleosome organization at accessible chromatin where the
binding sites are nucleosome-depleted and surrounded by
precisely phased nucleosomes (4).

Several assays exist to identify open chromatin regions in
a genome-wide manner. These include DNase-seq, which

utilizes the DNase I nuclease (5), FAIRE-seq, which uti-
lizes differences in polarity between nucleosome-bound and
nucleosome-free DNA (6), and ATAC-seq, which uses a
transposase to cut into accessible DNA selectively (7). Al-
though each of these assays identifies some unique open
chromatin regions, they are generally highly correlated in
their identifications (7). Whereas DNase-seq and FAIRE-
seq are complex protocols that require, on average, one mil-
lion cells, ATAC-seq is a simple three-step protocol, which
is optimized for fifty thousand cells and can be performed
on as few as 500 cells or at a single cell level (7,8). ATAC-
seq has become popular over the years, and the Cistrome
Database (9), in an effort to collect all publicly available
functional genomics data, has listed nearly 1500 datasets for
human and mouse.

Due to steric hindrance, the Tn5 transposase used in
ATAC-seq preferentially inserts into NFRs. However, it is
also possible for the transposase to insert into the linker
regions between adjacent nucleosomes, resulting in larger
(over 150 bp) DNA fragments, which correspond to the in-
teger numbers of adjacent nucleosomes (7). The DNA frag-
ments are constructed in a paired-end library for sequenc-
ing, and after mapping both sequenced ends of each frag-
ment to the genome sequence, we can infer their fragment
lengths according to the observed mapping locations, or the
insertion length. As demonstrated in (7), if we plot the ob-
served fragment length versus frequency, we will see a multi-
modal distribution that creates different modes represent-
ing transposase insertion into NFRs and linker regions be-
tween nearby phased nucleosomes up to +4 nucleosome.
This fact allows ATAC-seq to elucidate multiple layers of
information relative to the other assays. Although compu-
tational tools exist for DNase-seq, FAIRE-seq and ChIP-
seq (10), that can be and are used for ATAC-seq analysis,
such as MACS2 (11) and F-Seq (12), these would fall short
since they only utilize a subset of information, usually the
nucleosome-free signals. NucleoATAC (13) was designed
to separate an ATAC-seq dataset into its nucleosome-free
and nucleosome components then to identify nucleosome
positions. However, NucleoATAC only refines a predefined
peak set, rather than utilize the nucleosomal information
in the peak calling process. To date, there are no dedicated
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peak-callers specifically to account for both NFR and nu-
cleosomal signals at the same time from ATAC-seq.

We present here HMMRATAC, the Hidden Markov
ModeleR for ATAC-seq, a semi-supervised machine learn-
ing approach for identifying open chromatin regions from
ATAC-seq data. The principle concept of HMMRATAC
is built upon ‘decomposition and integration’, whereby a
single ATAC-seq dataset is firstly decomposed into dif-
ferent layers of coverage signals corresponding to the se-
quenced DNA fragments originated from NFRs or nucleo-
somal regions; and then the relationships between the layers
of signals at open chromatin regions are learned in a Hid-
den Markov Model and utilized for predicting open chro-
matins. Our method takes advantage of the unique features
of ATAC-seq to identify the chromatin structure more ac-
curately. We found that HMMRATAC was able to iden-
tify chromatin architecture and the most likely transcrip-
tion factor binding sites. Additionally, compared with ex-
isting methods used for ATAC-seq analysis, HMMRATAC
outperformed them in most tests, including recapitulating
active and/or open chromatin regions identified with other
assays.

A typical analysis pipeline for ATAC-seq would begin
with aligning the sequencing reads to a reference genome
using aligner such as BOWTIE2 (14) or BWA (15), then
the identification of accessible regions or ‘peaks’ by HMM-
RATAC, and then downstream analysis such as motif en-
richment using MEME (16) or footprint identification in
the accessible peaks with CENTIPEDE (17); differential
accessibility analysis with Diffbind (18); and association
studies with other data sets, such as with gene expres-
sion data with BETA (19). Quality control measurements
would also take place at each step, such as calculating se-
quence quality before alignment using FASTQC ( http://
www.bioinformatics.babraham.ac.uk/projects/fastqc) or af-
ter the alignment and performing replicate correlation dur-
ing peak calling using ATACSeqQC (20). We envision
HMMRATAC becoming the principle peak-calling method
in such a pipeline.

MATERIALS AND METHODS

Preprocessing of ATAC-seq data

The human GM12878 cell line ATAC-seq paired-end
data used in this study was publicly available and down-
loaded under six SRA (21) accession numbers SRR891269-
SRR891274. There are three biological replicates generated
using 50 000 cells per replicate and other three generated us-
ing 500 cells per replicate. Each dataset was aligned to the
hg19 reference genome using BOWTIE2 (14). After align-
ment, each group of replicates (either 50 000 cells or 500
cells) were merged together, sorted and indexed. Reads that
had a mapping quality score <30 or that were considered
duplicates (exact same start and stop position) were re-
moved from the merged files. It should be noted that HMM-
RATAC will remove duplicate and low mapping quality
reads by default, although some other algorithms do not.

The merged, filtered and sorted BAM files, created as de-
scribed above, were the input for MACS2. HMMRATAC
took the sorted paired-end BAM file and its corresponding

BAM index file as the main inputs. F-Seq requires a single-
end BED file of alignment results as its input. To generate
this BED file, we converted the paired-end BAM file into a
BED file, using an in-house script, and split each read pair
into forward and reverse strand reads.

The human monocyte data from (22) was publicly avail-
able and downloaded from the Cistrome Database (9) as
aligned BAM files to the hg19 reference genome. The
data corresponds to Gene Expression Omnibus accessions
GSM2325680, GSM2325681, GSM2325686, GSM2325689
and GSM2325690. One replicate per condition was used
and processed in the same way as described above, including
merging and filtering on the BAM files.

The HMMRATAC algorithm

The HMMRATAC algorithm is built upon the idea of ‘de-
composition and integration’, and based on the observation
of distinct nucleosome organization at accessible chromatin
(2–4,7) (see Results, Figure 1A, and Supplemental Figure
S1). A single ATAC-seq dataset is firstly decomposed into
different layers of coverage signals corresponding to the se-
quenced DNA fragments originated from NFRs or nucleo-
somal regions; and then the relationships between the layers
of signals at open chromatin regions are learned in a Hidden
Markov Model and utilized for predicting accessible regions
across the whole genome (Figure 1B). The detailed steps of
HMMRATAC algorithm are described as follows.

Segregation of ATAC-seq signals

After the preprocessing step that eliminates duplicate reads
and low mapping quality reads, the main HMMRATAC
pipeline (Figure 1B) begins by separating the ATAC-seq sig-
nal into four components, each representing a unique fea-
ture. These features are nucleosome-free regions (NFRs),
which are most likely to occur within the open chromatin
region itself, and three nucleosomal features, representing
mono-, di- and tri-nucleosomes (1Ns, 2Ns and 3Ns), re-
spectively. We utilize four distributions to represent the
four signal tracks: an exponential distribution (Ps(β|x))
for the nucleosome-free track and three Gaussian distri-
butions (Pm(μm, σm|x), Pd (μd , σd |x), Pt(μt, σt|x)) to rep-
resent the mono-, di- and tri-nucleosomal signal tracks,
where x represents the observed insertion length of a reads
pair, β, μm, μd ,and μtrepresent the means, σm, σdand
σtrepresent the standard deviations of the corresponding
distribution.
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Figure 1. The HMMRATAC Algorithm. (A) A schematic to represent the structure of an accessible region. (B) The algorithmic workflow. (C) Estimation
of fragment length parameters through the Expectation-Maximization algorithm. Mean and standard deviation parameters per EM iteration for three
nucleosomal distributions are consistent among datasets using 50 000 and 500 cells. The parameters for NFR signals are fixed during EM training so they
were not plotted. Iteration #1 shows the initial parameters. EM was applied to pooled biological replicates. The parameters per biological replicate were
shown in Supplemental Figure S3. (D) The transition and emission parameters of the Hidden Markov Model trained through the Baum-Welch algorithm
on the 50 000 GM12878 cells ATAC-seq data.
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These distributions were utilized by Buenrostro et al. to
identify their cutoffs for fragment separations (7). Although
sequence read data is discrete, the fact that the expectation
value of each Gaussian is large (>100 bp) and the num-
ber of observations is high, the discrete distribution, such
as a Poison distribution, can be approximated as a Gaus-
sian. The mean value of the exponential distribution for
NFRs is set as a fixed value at runtime, either as the de-
fault value or a user-defined value. The parameters of three
Gaussian distributions are initialized at runtime with de-
fault or user-defined values and then updated using the ex-
pectation maximization (EM) algorithm for Gaussian mix-
ture models. These initial values were the same as those
used by Buenrostro et al. (7) to define their distributions
for the chromatin features. Briefly, each nucleosomal frag-
ment, those larger than 100 bps, is classified as belonging to
one of the nucleosomal distributions based on its weighted
probability. Once each fragment has been classified, new
means, standard deviations, and weights are calculated for
each distribution and become the new values for the mixture
model. This process continues iteratively until the change in
the mean values between iterations is less than a reasonable
epsilon value. At this point, the model is assumed to have
reached convergence, and the EM process is halted (Fig-
ure 1C). In order to decrease the time required for the EM
algorithm, HMMRATAC randomly sub-selects 10% of all
the fragments to use as the training data. Once the parame-
ters of the four distributions have been determined, HMM-
RATAC creates four genome-wide signal tracks. For every
genomic position, all of the fragments that occupy that po-
sition are determined. Each track is then incremented by the
probability calculated in the above equation that a particu-
lar fragment belongs to the tracks’ corresponding distribu-
tion. We then use a square root transformation to get the
data into continuous space. Although the transformations
are commonly done with logarithmic transformations, we
chose square root because our data is all positive values but
also contains zeroes.

Training the Hidden Markov Model of accessible chromoso-
mal regions, and refining the model with the Baum-Welch al-
gorithm

Once the four signal tracks have been created, the main
HMMRATAC process begins. HMMRATAC first identi-
fies up to 1000 training regions throughout the genome,
with which it learns the model. These training regions
are determined by scanning the genome for regions whose
read coverage fold changes over background falls within
a certain range. The default lower and upper limit of fold
changes, as used in the Result section, is set between 10
and 20. These regions are then extended by 5 kbps in ei-
ther direction, in order to ensure that background regions
are included in the training set. It is also possible for users
to provide a BED file containing predefined training re-
gions. The initial HMM has proportional initial probabili-
ties, which are not updated during training, as well as pro-
portional transition probabilities, which are updated dur-
ing training. The emission probabilities are calculated with

k-means clustering, by separating the training regions into
three clusters with random initialization and calculating the
means and covariance matrices for the four signal tracks
for each cluster. The four signal tracks, across the train-
ing regions, are the only input to the k-means algorithm.
We model the emissions as a multivariate Gaussian distri-
bution since this assumption has been successfully adopted
in other HMM-based genome segmentation methods such
as hiHMM (23,24) and Segway (25,26). The three clusters
represent the three states of our model, corresponding to the
center of the open region with overall high enrichment of all
of the four types of signals, the nucleosomes with low NFR
signal but moderate nucleosomal signals, and a background
state with low enrichment of any signals, respectively. It is
also possible to create a model using a different number
of states instead of 3, although this option is not gener-
ally recommended. Once this initial HMM is created, the
transition and emission parameters are updated with the
Baum–Welch algorithm (27) until convergence (Figure 1D).
Furthermore, to demonstrate the robustness of the training
approach, we ran HMMRATAC three times on the same
GM12878 ATAC-seq data with different random initializa-
tions for k-means and found that the k-means centers and
HMM parameters were virtually identical, as shown in Sup-
plemental Table S1.

Annotating with the Viterbi algorithm

Once the HMM has been created and refined, the Viterbi
algorithm (28) is used to classify every genomic position
into one of the three states of our model. In our experi-
ence, when Viterbi encountered a high coverage region, it
was interrupted and mistakenly called the entire regions
following the high coverage region as either a peak or a
background region. Therefore, regions whose z-scored
coverage is above a certain cutoff, either a default or user-
defined value, are masked prior to the Viterbi algorithm.
Additionally, it is possible to include a list of genomic
regions to mask along with the extremely high coverage
regions, such as annotated blacklisted sites provided by
the ENCODE project. We have found that 91% of the
high coverage regions that are masked from the Viterbi
algorithm in the GM12878 cells are annotated blacklist
regions (downloaded from https://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDacMapabilityConsensusExcludable.bed.gz).
A genome-wide BedGraph of all state annotations can
be reported by HMMRATAC, although this is not the
default behavior. By default, HMMRATAC will take all
regions classified as belonging to the center state and
whose length is above a default or user-defined threshold
and merge them with the nucleosome states located both
upstream and downstream of the center state. We gen-
erally consider the nearby nucleosomes to be part of the
regulatory region (See Results), and therefore the region
is then reported as a peak in gappedPeak format (https:
//genome.ucsc.edu/FAQ/FAQformat.html#format14).
Each reported region is given a score, which represents the
maximum read coverage of the center state. Additionally,

https://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensusExcludable.bed.gz
https://genome.ucsc.edu/FAQ/FAQformat.html#format14
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HMMRATAC also supplies a file containing the summits
of each region. To calculate a summit, HMMRATAC
first filters the read coverage signal throughout the center
state using a Gaussian smoothing function with a window
size of 120 bp. It then calculates the position that has the
maximum read coverage and reports that position as the
summit.

Software implementation

HMMRATAC software is implemented using JAVA lan-
guage. It should be noted that at all stages of the algo-
rithm, HMMRATAC does not store the read or cover-
age information in memory. Any information needed by
the program is read from the desired file and used at the
specific time. This was incorporated to reduce the mem-
ory usage of HMMRATAC. However, because of this fea-
ture, it is not recommended to run HMMRATAC simul-
taneously with the same data files. It is, however, possible
to process multiple different data sets in parallel. In terms
of system requirements, the only required component is
to have Java 7 or higher installed. We have tested HMM-
RATAC on OpenJDK 7, standard edition JRE 8 and the
standard edition JRE 10. In terms of hardware requirement,
although all results involved in this study were generated on
our server equipped with AMD Opteron™ Processor 6378
and 500GB memory, HMMRATAC can successfully pro-
cess human ATAC-seq datasets on modest personal com-
puters such as the author’s laptop equipped with a 2.8GHz
Intel Core i7 processor and 16 GB of DDR3 memory. The
actual maximum memory usage and the runtime of HMM-
RATAC mainly depend on the parameter settings. As an ex-
ample, when the window size for Viterbi decoding (option
–window) was set to 2500 kbps, the maximum memory us-
age decreased from 24GB, when using the default window
size of 25 000 kbps, down to 13GB, on the same merged
GM12878 ATAC-seq dataset. We recognize that HMM-
RATAC takes longer than most algorithms and are cur-
rently optimizing it in order to decrease runtime. We will
also introduce a parallel computing ability, which we be-
lieve will dramatically reduce the runtime. These efforts are
active and ongoing and will be incorporated into future re-
leases.

Evaluation

Calls from MACS2. MACS version 2.1 was used to call
peaks using the sorted paired-end BAM files created as de-
scribed above. With each run the input file format (option
-f) was set to ‘BAMPE’ and the option for keeping du-
plicate reads (option –keep-dup) was set to ‘all’, as dupli-
cate reads had already been discarded in pre-processing.
MACS2 was run with the local lambda option turned off
(option –nolambda) and was run with q-value cutoffs (op-
tion -q) set to 0.5, 0.1, 0.05 (default), 0.005, 0.0005 and
0.00005. It was also run with a P-value cutoff (option -p)
set to 0.6 and 0.3.

Calls from F-Seq. F-Seq version 1.84 was used to call
peaks using the single-end BED files created as described
previously. With each run, the output was reported as a

BED file (option -of). The standard deviation cutoff (op-
tion -t) was set to 0.1, 1, 4 (default), 6, 7, 8, 10, 15 and 20.

Calls from HMMRATAC. HMMRATAC version 1.2 was
used to call peaks using the sorted BAM file. The upper
limit fold-change for choosing training regions (option -u)
was set to 20 with corresponding lower limits (option -l) set
to 10. These settings are the HMMRATAC defaults. The
blacklisted sites for hg19 were provided, which were masked
from the program and all subsequent steps. For the preci-
sion, recall and false positive rate calculations, the HMM-
RATAC peaks were filtered by minimum score cutoffs of
0, 5, 10, 15, 20, 25, 30, 35, 40 and 45. Additionally, for
two monocyte samples (accession numbers GSM2325689 –
RPMI 4h and GSM2325681 – BG d1) HMMRATAC did
not produce a typical model with the default settings (-u
20 –l 10). The ideal model should show the highest NFR,
1Ns, 2Ns and 3Ns signals in the third (center) state and
the second highest values of all four signals in the sec-
ond (nucleosome) state. In this case, we found that the sec-
ond state (nucleosome) had the highest NFR signal while
the third (center) state had the highest 1Ns, 2Ns and 3Ns
signals. Re-running it with more stringent parameters (-u
40 –l 20) solved that problem and produced a model that
had the highest signal values in the third state and the sec-
ond highest in the second state. These peak results from
HMMRATAC were then filtered by the same cutoffs as the
other samples and tested in the same way. All the transition
and emission parameters learned by HMMRATAC from
GM12878 50k cells, 500 cells, five human monocyte sam-
ples are summarized in Supplemental Table S2.

Compiling the ‘Gold Standard’ lists and ‘True Negative’ set

We tested the performance of HMMRATAC and other
methods on ATAC-seq datasets of GM12878 cells against
three proxies of ‘gold standard’ datasets. The first one,
which we call ‘active regions’, is made by combining
two chromatin states ‘Active Promoters’ and ‘Strong En-
hancers’ generated in GM12878 cells using chromHMM
(29,30) (downloaded from UCSC genome browser track
wgEncodeBroadHmmGm12878HMM). The other two sets
were DNaseI hypersensitive sites (UCSC track wgEn-
codeAwgDnaseUwdukeGm12878UniPk) and FAIRE ac-
cessible regions (wgEncodeOpenChromFaireGm12878Pk)
(31) called from DNase-seq and FAIRE-seq on the
GM12878 cell line. Because the DNase-seq and FAIRE-seq
regions were called by the ENCODE project (32) from tra-
ditional methods including Hotspot (33) and F-Seq (12),
the evaluation based on either of them is less unbiased com-
pared with the test based on chromatin states which in-
tegrate multiple independent experiments. We found that
there were numerous cases throughout the genome where
clusters of DNaseI or FAIRE regions were in close proxim-
ity to one another. These clusters tended to have broad en-
richment in either DNase-seq or FAIRE-seq signals. There-
fore, we merged all DNaseI or FAIRE regions that were
within 2 kbps of each other into a single region and used
these merged sets as the proxies to the gold standard.

The ‘real negative’ set was made with the ‘Heterochro-
matin’ state annotation from chromHMM. When using the
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‘active region’ set as ‘gold standard’, no modifications were
necessary because the three states are mutually exclusive.
When using either the DNaseI or FAIRE sets, any ‘het-
erochromatin’ states that overlapped (by any amount) a
DNaseI or FAIRE region were excluded from the final ‘real
negative’ set. Additionally, any DNaseI or FAIRE peak that
overlapped any ‘heterochromatin’ state (by any amount)
was, likewise, excluded from its respective ‘gold standard’
set.

The ‘gold standard’ set used for the human monocyte
ATAC-seq data were compiled as follows. For each condi-
tion, 2 replicates of H3K27ac, H3K4me1 and H3K4me3
ChIP-seq datasets, one replicate of H3K9me3 from the
same study (22) were downloaded from the Cistrome
Database (9) as aligned BAM files. Each file was processed
by MACS2 with the P-value parameter (-p option) set to
0.15. We set this loose cutoff, so that, when combining ac-
tive and heterochromatin marks, the true and false sets can
be more exclusive. In order to identify a loose cutoff, we per-
formed MACS2 cutoff-analysis (callpeak –cutoff-analysis)
approach to identify the critical cutoff below which the ge-
nomics background noises start to be picked up by peak
caller. The resulting peaks were sorted by the –log10(FDR)
value and the top 10 000 peaks for each sample were kept.
The ‘active regions’ true set was created as the genomic
regions overlapped with either H3K27ac, H3K4me1 or
H3K4me3 but not overlapped with H3K9me3 peaks. This
list of ‘active regions’ became the proxy of ‘gold standard’
set for each condition. Any H3K9me3 peak that did not
overlap the ‘active region’ set was kept as the ‘real nega-
tive’ set for that condition. The accession numbers for all
above histone modification ChIP-seq data are listed in Sup-
plemental Table S3.

Calculating precision, recall, false positive rate and area un-
der the curves

Let Predicted Positive (PP) represent the number of base
pairs identified as accessible regions from any method. Let
Real Positives (RP) represent the number of base pairs in the
‘gold standard’ sets. Let Real Negatives (RN) represent the
number of base pairs in the ‘real negative’ set. Let True Pos-
itive (TP) represent the number of overlapping base pairs
between a called peak and a real positive. Let False Pos-
itive (FP) represent the number of overlapping base pairs
between a called peak and a real negative.

Then the precision or positive predictive value (PPV) is
calculated as PPV = TP/(TP+FP). The Recall, or true pos-
itive rate (TPR), is calculated as TPR = TP/RP. The false
positive rate (FPR) is calculated as FPR = FP/RN. The
number of overlapping base pairs was calculated with the
BEDTools intersect tool (34). After the precisions, recalls
and false positive rates were calculated for accessible regions
predicted by a given method under various cutoff values, the
approximate area under the curve (AUC) was calculated for
the recall versus false positive rate (ROC) curves and for the
precision-recall (PR) curves, after adding extreme points to
the unreachable ends of the curves. The extreme points to
the ROC curves are TPR = 0 and FPR = 0, and TPR = 1
and FPR = 1; the extreme points to the PR curves are TPR
= 0 and PPV = 1, and TPR = 1 and PPV = Ltrue/(Ltrue +

Lfalse) where the Ltrue is the total length of real positive set
and the Lfalse is the total length of the real negative set.

RESULTS

The distinctive pattern of ATAC-seq fragments around known
accessible elements

In order to investigate the ATAC-seq signal profile around
accessible genomic regions, we took the ATAC-seq data in
the human GM12878 cell line from Buenrostro et al. (7) and
separated the fragments into short nucleosome-free (un-
der 100 bp) and mono-nucleosome (180–250 bp) fragments
based on cutoffs identified by Buenrostro et al. These cut-
offs were determined by fitting the fragment length distri-
bution to several simulated distributions modeling nucle-
osome and nucleosome-free transposition frequencies (7).
We plotted the two types of fragments around the cen-
ters of DNaseI hypersensitive sites (DHSs) in the same cell
line, identified by ENCODE (32) (Supplemental Figure S1).
We observed a clear, symmetrical pattern around the cen-
ters of these sites characterized by an enrichment of the
nucleosome-free fragments and flanking enrichment of the
mono-nucleosome fragments. We were able to visually dis-
cern at least three distinct regions around an open site: (i)
the center, characterized by an enrichment of nucleosome-
free fragments and flanked by nucleosome fragments; (ii)
the nucleosome regions, characterized by an enrichment of
nucleosome fragments; (iii) and the background, character-
ized by a depletion in any fragments (Figure 1A; Supple-
mental Figure S1). Based on this observation and existing
knowledge on the nucleosome positioning around the ac-
cessible chromatin (2–4), we hypothesized that such pattern
would exist at the open chromatin throughout the genome
and that by learning and recognizing this pattern compu-
tationally in a single ATAC-seq dataset, we would identify
the open chromatin regions with higher confidence than any
other existing method.

Signal decomposition through the probabilistic approach

In the first ATAC-seq paper by Buenrostro et al., the au-
thors separated the fragments according to their insertion
lengths into four populations representing those from the
NFRs and those spanning one, two or three nucleosomes
(7). Non-overlapping and non-adjacent cutoffs were used.
For example, lengths below 100 bp represent nucleosome-
free signals and lengths between 180 and 250 bp represents
mono-nucleosome signals. We consider such cutoff-based
strategy not a general practice for the following two rea-
sons. First, different species or different cell lines may have
different nucleosome spacing and these differences may not
be adequately understood (35,36). Secondly, since the frag-
ments whose size falls between the non-overlapping and
non-adjacent cutoffs are discarded (e.g. those between 100
and 180 bp long), the recall (or sensitivity) to identify acces-
sible regions will be reduced (Supplemental Figure S2). As
a fact, about 15% of the entire data generated from the orig-
inal paper are ignored with their strategy. We addressed the
above two challenges in a probabilistic approach in HMM-
RATAC.
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First, we utilize the Expectation-Maximization (EM) al-
gorithm to identify the optimal parameters for the four
different distributions of fragment lengths. Using the dis-
tributional assumptions of Buenrostro et al., we create
four distributions to represent four different chromatin fea-
tures: nucleosome-free regions (NFRs), mono-nucleosomes
(1Ns), di-nucleosomes (2Ns) and tri-nucleosomes (3Ns).
HMMRATAC uses a mixture model and Expectation-
Maximization (EM) algorithm to identify optimum param-
eters. As an example, HMMRATAC identified the opti-
mum fragment lengths representing 1Ns, 2Ns and 3Ns from
ATAC-seq data in the human GM12878 cell line (7), gen-
erated by merging three replicates, as being 195, 396 and
693 bp, respectively (Figure 1C). As a demonstration of
different nucleosome spacing in different datasets, HMM-
RATAC determined the optimum fragment lengths for the
1Ns, 2Ns and 3Ns from ATAC-seq data in human mono-
cytes treated with RPMI for one day (22) as 186, 368 and
549 bp, respectively. Additionally, the values for any of
the individual replicates, in the GM12878 data, were never
more than 5 bps off from the average values listed above
for the merged datasets (Supplemental Figure S3). Not all
ATAC-seq datasets show a clear multi-modal pattern, espe-
cially datasets from fewer cells. As an example, the fragment
distribution generated by Buenrostro and et al. utilizing 500
cells (GM12878 cells) per-replicate, did not show as clear
of a distribution as 50 000 cells per replicate (Supplemen-
tal Figure S4A and B). However, we found our approach
can robustly identify the parameters even if the multi-modal
pattern is not clear. As we can see from Figure 1C, the mean
and standard deviation values converged after no more than
12 iterations and the parameters converged to very similar
values for either the 50 000-cell per-replicate or 500 cell per-
replicate datasets.

Secondly, we propose in HMMRATAC a probabilistic
approach to make use of data from the entire spectrum of
fragment lengths. We generate four distinct signal profiles
in 10 bps resolution, for NFRs, 1Ns, 2Ns and 3Ns, allow-
ing each mapped fragment to contribute to all profiles with
different weights corresponding to its particular fragment
length. For each genomic location that is occupied by a par-
ticular fragment, all four signal profiles are incremented by
the probabilities that this fragment, assigned with an ob-
served fragment length through read mapping, belongs to
each of the four corresponding distributions. We tested the
performance of a regular HMMRATAC approach with this
probabilistic method utilizing the entire data and an alter-
native approach utilizing only the subset of data satisfy-
ing the cutoffs proposed in Buenrostro et al. The two ap-
proaches were compared in terms of precision and recall
against the ‘active regions’ true set (Supplemental Figure
S2). We found that our probabilistic method had consid-
erably better recall and precision compared to the cutoff
based method. This result proved that the traditional way
to discard reads between cutoffs of fragment sizes would
hurt the prediction power.

HMMRATAC utilizes the length of an insertion frag-
ment, identified by paired-end sequencing, as an essential
and critical piece of information in its processes. As such,
HMMRATAC can only be used in paired-end sequenc-
ing libraries. Because we observed a decrease in the perfor-

mance of our method when we used the cutoff based ap-
proach, which resulted in the removal of ∼15% of all se-
quencing reads, we wanted to understand the effects of size-
selection and paired-end sequencing on ATAC-seq peak
calling. We performed two in silico size-selections on the
data from Buenrostro et al. The first restricted the fragments
to those whose length was under 100 bp and the second re-
stricted the fragments to those with lengths under 300 bp.
We also treated the data as single-end, by unpairing the
read mate pairs. We then used MACS2 (11) to call peaks
with each data set, including the original unaltered data and
compared the performance to predict the accessible chro-
matin (Supplemental Figure S5). As a result, the original
unaltered data performed the best in terms of precision and
recall. This indicates that an ATAC-seq assay should better
be performed without a size selection step and the resulting
fragments should undergo paired-end sequencing, regard-
less of the peak calling algorithm that is used.

Integration through Hidden Markov Model

After removing reads with low mapping quality, and mask-
ing blacklist regions from downstream analysis, HMM-
RATAC identifies a set of training regions throughout the
genome to train a 3-states Hidden Markov Model (HMM)
with multivariate Gaussian emissions, representing the un-
derlying three chromatin states of (i) the center of open
chromatin, (ii) the nucleosome regions and (iii) the back-
ground (Figure 1A). By default, training regions can be ei-
ther specified by users or automatically selected where the
signal fold-change above background falls within a prede-
termined range. After signal decomposition, a matrix of 10
bps resolution signals for NFRs, 1Ns, 2Ns and 3Ns in train-
ing regions is used to train the parameters in HMM through
the Baum-Welch algorithm (27). The initial state transition
probabilities are set equally as 0.33 and the emission param-
eters for each state are calculated after clustering all loca-
tions in the training regions into 3 classes (see Methods for
detail). Figure 1D shows the final parameters for the HMM
on ATAC-seq in the GM12878 cell line, by merging three
replicates from 50k cells (7). Although the parameters will
change depending on the choice of training regions and the
datasets provided, several key characteristics are evident in
the model and remain mostly stable with different settings
and data. State 3 in the HMM model, which HMMRATAC
annotated as the center state, showed the highest average
signal across the four signal profiles. State 2, annotated as
the nucleosome state, showed the second highest average val-
ues. Additionally, as we hypothesized, the results show the
center state mainly transits from or to the nucleosome state.

After learning the model, HMMRATAC takes a matrix
of genome-wide NFRs, 1Ns, 2Ns and 3Ns signals and la-
bels each genomic location with one of the states using the
Viterbi algorithm (28). On the 50K cells ATAC-seq data in
GM12878 cell line, there were ∼4.3 million regions anno-
tated as background with an average size of 288 bp (∼35%
of the human genome), ∼4.5 million regions annotated as
nucleosomes with an average size of 382 bp (∼49% of the
human genome), and ∼226 thousand regions annotated as
center regions with an average size of 504 bp (∼3% of hu-
man genome). HMMRATAC finally connected the center
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regions with their adjacent nucleosomes and called a total
of 87 440 accessible regions with an average size of 1831
bp (5% of the human genome), excluding those with abnor-
mally high coverage and those below a minimum length. It
should be noted that many of the nucleosomes are not adja-
cent to the center state. These may represent nucleosomes
away from regulatory elements that ATAC-seq is able to
identify or may be artifacts due to increased transposition
frequency, an issue which can be caught by quality assess-
ment tools such as ATACseqQC (20).

Recapitulating chromatin architecture at functional elements

We hypothesized that HMMRATAC could identify chro-
matin architecture around accessible regions, or ideally, nu-
cleosomes near the regulatory elements. To prove this, we
explored the distribution of histone modification ChIP-
seq signal around our identified accessible regions. We
downloaded and analyzed datasets released by ENCODE
in the GM12878 cell line (32), including ChIP-seq for
CTCF, active histone marks such as H3K4me1, H3K4me3,
H3K9ac and H3K27ac, and repressive histone marks such
as H3K9me3 and H3K27me3, as well as sequencing of mi-
crococcal nuclease digestion (MNase-seq). Figure 2A shows
two loci, one on chromosome 8 that was identified as an
accessible region by MACS2 and F-Seq but not HMM-
RATAC and another locus on chromosome 2 that was
identified as accessible by all three methods. At the chro-
mosome 2 locus, we observed that the center state was
located in regions characterized by depletion in both ac-
tive histone marks and MNase digestion. The surround-
ing nucleosome states showed enrichment of active histone
marks and MNase digestion. We next plotted the same
ChIP-seq, DNase-seq and MNase-seq data around all dis-
tal (>10 kbps from any gene promoter) center states and
used k-means clustering to group the resulting profiles (Fig-
ure 2B). We found that HMMRATAC states can identify,
what appears to be, different chromatin features at the ac-
cessible genomic regions. For example, the first cluster (C1)
characterized by strong enrichment of H3K27ac relative to
H3K4me1 seems to indicate active enhancers while the third
cluster (C3) marked by high levels of H3K4me1 and more
moderate levels of H3K27ac would suggest weak or poised
enhancers (Figure 2B). The second cluster (C2), character-
ized by strong enrichment of CTCF binding, lower levels of
H3K4me1, H3K4me3 and acetylation histone marks and a
higher level of H3K27me3, seems to suggest that this clus-
ter represents insulators or domain boundaries. The fourth
cluster (C4), similar to C2, suggested accessible regions also
exist in the DNA elements with repressive functions in eu-
chromatin, potentially bound by factors rather than CTCF.
To summarize, these results indicate that HMMRATAC re-
capitulates the histone architecture around accessible re-
gions.

The chromosome 8 locus exemplifies some of the ad-
vantages of HMMRATAC over other peak callers. Both
MACS2 and F-Seq identified this locus as being accessi-
ble, despite the lack of other corroborating evidence, such
as transcription factor binding and the presence of active
chromatin states. It appears that these methods called the
site because of an enrichment of the mono-nucleosome sig-

nal. Because neither MACS2 or F-Seq integrate the various
chromatin features present in ATAC-seq data and because
they are based on signal enrichment only, as opposed to
HMMRATAC which incorporates the structure of the el-
ement, they both falsely identified this region as accessible,
while HMMRATAC identified the region as being a nucle-
osome state.

In order to understand the chromatin features that are
enriched in each state across the genome, as the unique
result HMMRATAC concluded from a single ATAC-seq
data, we plotted the overlap of the 3 hidden states with
chromHMM states and histone mark calls from ChIP-seq
in the GM12878 cell line based on ENCODE data (Figure
3A; Supplemental Table S4). We found that the chromatin
states ‘Active Promoters’, ‘Strong Enhancer’, ‘Insulator’,
‘Poised Promoter’ and ‘Weak Promoter’ states mainly over-
lap with our center state, and the ‘Heterochromatin’, ‘Repet-
itive’, ‘Repressed’, ‘Transcription Elongation’, and ‘Weak
Transcription’ barely overlaps with the center state. Inter-
estingly, the ‘Strong Enhancer’ state had a similar amount
of overlap with the nucleosome state as the center state.
Combined with our observation that our nucleosome state
showed elevated levels of active histone marks near accessi-
ble regions, we hypothesized that this state may represent
positioned nucleosome nearby regulatory elements, those
marked by active histone modifications and adjacent to ac-
cessible regions. We plotted the H3K4me1 active histone
mark around the centers of our center states as well as
around the centers of the adjacent nucleosome states, those
directly flanking our center states (Figure 3B). As we can
see, the center states show a bimodal enrichment for the hi-
stone mark, consistent with MACS2 and F-Seq peaks. Ad-
ditionally, our adjacent nucleosome states show central en-
richment for the histone mark. This indicates that the nucle-
osome state, at least those adjacent to our center states, are
likely nucleosomes close to regulatory elements. As a result,
HMMRATAC merges the center states with their adjacent
nucleosome states, both upstream and downstream, to iden-
tify the regulatory region as the output.

Functional regulatory elements that harbor transcription
factor binding sites are generally under higher evolution-
ary constraint (37). Success in transcription factor ChIP-
seq data analysis is often benchmarked by high PhastCons
score, a precompiled evolutionary conservation score at ev-
ery base pair (38), at the peak center or summit, relative
to the surrounding regions (39). We found that the sum-
mits of accessible regions detected by HMMRATAC in the
GM12878 cell line also showed PhastCons enrichment in
vertebrates (Figure 3C), indicating that these summits were
likely locations of evolutionarily conserved regulatory ele-
ments and could represent functional regulatory elements.

Method comparison with MACS2 and F-Seq

We next sought to compare the performance of HMM-
RATAC in identifying open chromatin regions to other
popular methods for ATAC-seq. We chose MACS2 (11)
and F-Seq (12) which had previously been shown to be
the most accurate peak-callers in identifying open chro-
matin regions from DNase-seq (40). MACS2, originally de-
signed for ChIP-seq, utilizes a local Poison model wherein
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Figure 2. Chromatin Architecture at HMMRATAC Peaks. (A) IGV browser screenshots of various signals around a negative locus on chromosome 8 and
a positive locus on chromosome 2. Top four tracks show ATAC-seq signals, after being separated by size, the fifth track shows CTCF ChIP-seq signal, the
sixth through ninth tracks show various histone modification ChIP-seq signal and the tenth track shows MNase-seq signal. The bottom panel shows RefSeq
genes, HMMRATAC calls and state annotations (called with default settings, red: background state, green: nucleosome state, and blue: center state), MACS2
and F-Seq peaks (called with default parameters), the active regions combined from ‘Active Promoters’ and ‘Strong Enhancers’ states from chromHMM
(see Materials and Methods). (B) ChIP-seq of H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K9ac and H3K9me3, DNase-seq and MNase-seq signals
(log2 transformed library size normalized pileup) plotted across all distal (>10 kbps from gene promoters) center states. Data were clustered using k-means
algorithm into four clusters.

enrichment is calculated relative to a local Poisson model.
F-Seq invokes a Gaussian kernel-smoothing algorithm and
then calculates enrichment based on the resulting Gaus-
sian distribution. Although none of them utilize the intrin-
sic and unique features in ATAC-seq data we described be-
fore, MACS2 has been used to analyze ATAC-seq data in
many published works (22,41–45), and MACS2 and F-Seq
is part of the ENCODE analysis pipeline for ATAC-seq
data (https://github.com/kundajelab/atac dnase pipelines).
We didn’t include ZINBA, an algorithm based on the zero-
inflated negative binomial model, in this manuscript, al-
though it was used to analyze the GM12878 ATAC-seq
dataset in Buenrostro et al.’s original work (7). ZINBA was
reported as less sensitive than other methods while being
applied to DNase-seq data (40) and we found the same con-
clusion (Supplemental Figure S6). Since this manuscript is

not for reviewing all available methods, we decided to only
show our improvement over the current best practices in the
field. We tested the performance of the above algorithms us-
ing the two ATAC-seq datasets in the GM12878 cell line as
the previous sections.

A major limitation in comparing the performance of
identifying open chromatin regions is the absence of a valid
‘gold standard’ (3). To overcome this problem, we chose
to compare the performance of HMMRATAC and the
other algorithms to three distinct independent datasets as
the proxies of true and false set: (i) the active regions and
heterochromatin from chromatin states analysis combining
multiple independent histone features (29), (ii) DNase-seq
(5) and (iii) FAIRE-seq (6) accessible regions of the same
GM12878 cell line, originally called from traditional meth-
ods such as Hotspot (33) and F-Seq (12).

https://github.com/kundajelab/atac_dnase_pipelines
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Figure 3. Chromatin features of HMMRATAC states. (A) The overlap between either histone modification ChIP-seq peaks or chromatin states in GM12878
and three HMMRATAC states – background, nucleosome, and center. The color shows the percentage of GC, the percentage of total genome length, or the
percentage of histone peaks or chromatin states overlapping with each of HMMRATAC states. Overlaps were calculated in basepair level. (B) Distribution
of GM12878 H3K4me1 ChIP-seq signal in 1000 bp window surrounding the summits of F-Seq peaks, MACS2 peaks, or HMMRATAC center and
nucleosome states. (C) Distribution of Phastcons conservation score within vertebrates in 1000 bp window surrounding the summits of F-Seq, MACS2 and
HMMRATAC calls.

Enrichment in chromatin states of active regions

The first proxy of the true set that we compared the
algorithms to is referred to as ‘active regions.’ These
sites were defined through an integrative chromatin state
segmentation using chromHMM (29,30) algorithm con-
ducted by the ENCODE project. Eight histone modifi-
cations (H3K27me3, H3K36me3, H4K20me1, H3K4me1,
H3K4me2, H3K4me3, H3K27ac and H3K9ac), one tran-
scription factor (CTCF) ChIP-seq and one whole genome
input datasets in the GM12878 cell line were integrated
through an unsupervised machine learning approach and
each genomic location was annotated as one of 15 mutually-
exclusive states. Two resulting states, ‘Active Promoters’ and
‘Strong Enhancers’, were merged together to create our list
of ‘active regions’. Additionally, the state annotated as ‘Het-
erochromatin’ was used as a false set. In Figure 2A and
Supplemental Figure S7, we showed some examples of con-
sistent and inconsistent peaks called by MACS2, F-Seq
and HMMRATAC, with default settings from each algo-
rithm. A general observation is that conventional peak call-
ing approaches fail to call regions that show the charac-
teristic pattern of decomposed signals (Supplemental Fig-
ure S7, left three regions), or can be misled by high ATAC-
seq nucleosomal signals and call regions with no NFR sig-
nal as peaks (Figure 2A left and Supplemental Figure S7,
right three regions). Full peak calls from default setting
can be accessed through a UCSC genome browser track

hub (http://biomisc.org/data/HMMRATAC hub/hub.txt).
However, the total number of such cases in the genome is
strongly dependent on the cutoffs used by the individual
algorithms. By tweaking cutoffs, false positives may disap-
pear while sacrificing sensitivity. Therefore, we decided to
test different cutoff values for each algorithm (see Materials
and Methods). We found that HMMRATAC outperformed
the other algorithms, in terms of precision, recall, and false
positive rate in identifying these ‘active regions’ while avoid-
ing ‘heterochromatin’ (Figure 4 top row). The area under
the curve (AUC) was then calculated for the recall vs. false
positive rate curves (Area Under Curve of Receiver Opera-
tor Characteristics; AUCROC) and for the precision-recall
curves (Area Under Precision–Recall Curve; AUPRC) (Ta-
ble 1), after adding extreme points to the unreachable ends
of the curves. HMMRATAC was proved to have better
AUC than the two other methods. It worth noting that
HMMRATAC calls larger peaks than the other two meth-
ods due to its merging of the adjacent nucleosome states to
the center state. However, despite the larger average peak
size, HMMRATAC identifies a comparable number of ac-
cessible regions in base pairs, as shown in Supplemental
Figure S8, at comparable levels of sensitivity for ‘active re-
gions’. This would also indicate that many peaks called by
the other methods are falling outside of the ‘gold standard’
regions, possibly contributing to their deficits in precision
compared to HMMRATAC. Additionally, we retrieved 257

http://biomisc.org/data/HMMRATAC_hub/hub.txt
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Figure 4. Comparison of performance between HMMRATAC, MACS2, and F-Seq Left: receiver operator characteristic (ROC) curves and right: precision-
recall (PR) curves for the real positive and real negative pairs of 1. active chromatin states vs. heterochromatin for GM12878 cells, 2. active histone marks
(either H3K4me1, H3K4me3 or H3K27ac) versus heterochromatin (H3K9me3) for human monocytes (see Materials and Methods for detail).

GM12878 super-enhancers from the dbSUPER (46) as a
true set, assuming these regions are bound by an array of
transcription factors and always been broadly accessible,
and used the ‘heterochromatin’ regions as false for an ex-
tra test. We found that HMMRATAC again performs bet-
ter than other algorithms (Supplemental Figure S9). To
study the effect of size-selection, we performed an in sil-

ico size-selection to restrict the fragments to those whose
length was under 250 bp, then we tested the performance of
HMMRATAC, MACS2, and F-Seq as shown before. We
found that although the overall performance on the par-
tial data decreases compared with full data set without size-
selection, HMMRATAC can still outperform others (Sup-
plemental Figure S10). Taken together, these results indi-
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cate that HMMRATAC is able to identify active chromatin
regions with higher recall and precision and lower false pos-
itive rate, than MACS2 and F-Seq.

Consistency with results from DNase-Seq and FAIRE-Seq

We then used the accessible chromatin regions detected
by two independent assays DNase-seq and FAIRE-seq in
GM12878 cell line as cross-validation of ATAC-seq analy-
sis. We downloaded DNaseI hypersensitive sites (DHSs) (5)
and FAIRE-seq (6) accessible regions called by ENCODE
in the GM12878 cell line (32), then merged DHSs or FAIRE
accessible regions that were within 2 kbps of each other
to define our alternative true sets. We continued to use the
heterochromatin states outlined above as our false set, al-
though we eliminated any DHSs or FAIRE regions that
overlapped a heterochromatin state region and vice versa.
We found that HMMRATAC outperformed the other two
methods in terms of AUPRC in recapitulating DHSs (Sup-
plemental Figure S11, Table 1). MACS2 performed slightly
better in AUCROC by 0.001. F-Seq was found to per-
form the best in terms of AUCROC and AUPRC with the
FAIRE-seq data. Because the DNase-seq and FAIRE-seq
regions were initially been called from traditional methods
such as Hotspot (33) and F-Seq (12), the evaluations based
on them are expected to be more biased to traditional ap-
proaches.

Application for human monocytes

Thus far, we have shown the performance of HMMRATAC
and other algorithms with data generated in the human
GM12878 cell line. In order to determine our method’s per-
formance with different data sets and different cell lines, we
analyzed ATAC-seq data generated in human monocytes
subjected to several chemical treatments and sequenced at
different time points (22). In addition to ATAC-seq, No-
vakovic et al. performed ChIP-seq on the same cells, with
the same treatments and time points, for the active histone
marks histone H3K27ac, H3K4me1 and H3K4me3, and
the repressive histone mark histone H3K9me3. We chose
five separate data sets generated by that group: RPMI treat-
ment after 4 and 24 h, LPS treatment after 6 days and BG
treatment after 4 and 24 h. Using the active histone mod-
ification as the ‘Gold standard’ and the repressive histone
modification as the ‘real negatives’ (See Method section for
more details), we compared the performance of the algo-
rithms in the same way we compared their performance in
human data (Figure 4 the second to the sixth row, Table 1).
We found that HMMRATAC has superior precision, sensi-
tivity, specificity, AUCROC and AUPRC over both MACS2
and F-Seq. Overall, this data indicates that HMMRATAC’s
superior performance over the other algorithms is consis-
tent across different data sets and different cell lines.

Summary of method comparisons

The summary is shown in Table 1. We used a total of 16 in-
dependent measures in two different cell types and six differ-
ent conditions to benchmark the performance of the three

algorithms, including 8 AUCROC and 8 AUPRC. We found
that HMMRATAC outperformed the other two methods
in six of eight AUCROC and seven of eight AUPRC. Fur-
thermore, in all of the 12 evaluations of which the real posi-
tives were compiled by integrating multiple histone modifi-
cation ChIP-seq datasets, HMMRATAC outperformed the
other methods consistently. Overall, these results indicate
that HMMRATAC is the most accurate and reliable peak-
caller for ATAC-seq data analysis.

DISCUSSION

HMMRATAC is designed to integrate the nucleosome-
free and nucleosome-enriched signals derived from a single
ATAC-seq dataset in order to identify open chromatin re-
gions. For this reason, HMMRATAC should not be used on
ATAC-seq datasets that have undergone either physical or
computational size selection. For that same reason, single-
end sequence libraries from ATAC-seq cannot be analyzed
with HMMRATAC. However, we have shown that size se-
lection results in a decrease in sensitivity and should not be
used as a general practice in ATAC-seq protocols. There-
fore, a reasonable way to evaluate the quality of ATAC-seq
data for HMMRATAC analysis is to check the length dis-
tribution of the transposition fragments to ensure that large
fragments are present and relatively abundant.

Identifying transcription factor footprints, wherein the
DNA protected by a binding protein shows resistance to
nonspecific DNA digestion, is an area of active research. Al-
though footprint identification may be possible with certain
datasets or for specific transcription factors, we believe that
HMMRATAC identified summits, or the position with the
most insertion events within the open region, are more ro-
bust to identify potential transcription factor binding sites.
In fact, it has been previously shown that DNase-seq signal
intensity at a binding motif is a better predictor of transcrip-
tion factor binding than the strength of a footprint (47), and
we believe this principle applies to ATAC-seq as well. How-
ever, a major reason for this result from He et al., was that
many footprints were artifacts caused by the enzymes’ se-
quence bias. The Tn5 transposase also has a sequence bias,
which would need to be corrected before an effective foot-
print analysis could occur. Several methods exist (48,49)
that could correct the sequence bias from an ATAC-seq li-
brary. HMMRATAC could be used downstream of such se-
quence corrections, to reduce bias’ in peak calling, or up-
stream of the corrections, to identify the reads within peaks
that need to be corrected for footprint or other downstream
analysis.

It is possible to extend HMMRATAC to identify differ-
entially accessible regions between two or more conditions.
Most of the approaches for identifying such differences
from ATAC-seq data would suffer from the same problems
mentioned before, namely, that these methods only consider
the relative strength of the signal and the differences in sig-
nal intensity between conditions. As we’ve shown here, the
incorporation of the structure of regulatory chromatin into
a model could increase the accuracy and sensitivity of call-
ing accessible regions. We believe our strategy of ‘decom-
position and integration’ can be adopted in a differential
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Table 1. The area under the curves (AUCs) of method comparisons of HMMRATAC, MACS2 and F-Seq

GM12878 cell line Human monocytes

NA RPMI day 1 RPMI 4 hours LPS day 6 BG 4 hours BG day 1

Chromatin
states DNase-seq FAIRE-seq Histone mark ChIP-seq: H3K4me1, H3K4me3, H3K27ac & H3K9me3

PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC

MACS2 0.508 0.829 0.54 0.818 0.563 0.809 0.402 0.720 0.447 0.721 0.336 0.672 0.438 0.732 0.402 0.730
F-Seq 0.531 0.827 0.572 0.817 0.597 0.818 0.440 0.728 0.457 0.736 0.326 0.690 0.45 0.749 0.426 0.737
HMMRATAC 0.631 0.854 0.611 0.817 0.577 0.816 0.580 0.772 0.614 0.792 0.427 0.715 0.602 0.794 0.545 0.763

accessibility analysis pipeline, by studying the differential
NFRs and nucleosomal signals separately and then com-
bining together.

ATAC-seq shows numerous advantages over other meth-
ods for identifying open chromatin regions, such as DNase-
seq and FAIRE-seq, owing to its low starting material re-
quirement and simple protocol. For these reasons, ATAC-
seq has become one of the standard assays for locating
regions of open chromatin, particularly as biomedical re-
search continues to move toward translational research
and precision medicine. Although the number of published
ATAC-seq datasets increases rapidly, researchers are still us-
ing methods initially developed for ChIP-seq to analyze the
data. We present HMMRATAC as a dedicated algorithm
for the analysis of ATAC-seq data. We take advantage of the
nature of the ATAC-seq experiment that due to the lack of
size-selection while preparing the DNA library in its proto-
col, DNA fragments associated with well-positioned nucle-
osomes around open chromatin will be sequenced as well.
Different from current methods where only the read en-
richment is considered, HMMRATAC separates and inte-
grates ATAC-seq data to create a statistical model that iden-
tifies the chromatin structure at accessible and active ge-
nomic regions. We have shown that HMMRATAC outper-
forms other computational methods in recapitulating open
and active chromatin identified with other assays such as
chromatin state analysis integrating multiple histone mark
ChIP-seq, DNase-seq and FAIRE-seq. As HMMRATAC
is a cross-platform and user-friendly algorithm, we envi-
sion it becoming the standard for ATAC-seq data analysis
pipeline, replacing current methods designed for ChIP-seq
analysis.

DATA AVAILABILITY

The HMMRATAC source code, executable file, quick
start guide, and javadocs can be downloaded from https:
//github.com/LiuLabUB/HMMRATAC. All peaks/regions
called by HMMRATAC, F-Seq, and MACS2, as well
as the various ‘gold standard’ files, can be downloaded
from the following URL: http://biomisc.org/download/
HumanData.tar.gz.
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