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Abstract
Objectives To develop a deep learning–based pulmonary vessel segmentation algorithm (DLVS) from noncontrast chest CT and
to investigate its clinical implications in assessing vascular remodeling of chronic obstructive lung disease (COPD) patients.
Methods For development, 104 pulmonary CT angiography scans (49,054 slices) using a dual-source CT were collected, and
spatiotemporally matched virtual noncontrast and 50-keV images were generated. Vessel maps were extracted from the 50-keV
images. The 3-dimensional U-Net-based DLVSwas trained to segment pulmonary vessels (with a vessel map as the output) from
virtual noncontrast images (as the input). For external validation, vendor-independent noncontrast CT images (n = 14) and the
VESSEL 12 challenge open dataset (n = 3) were used. For each case, 200 points were selected including 20 intra-lesional points,
and the probability value for each point was extracted. For clinical validation, we included 281 COPD patients with low-dose
noncontrast CTs. The DLVS-calculated volume of vessels with a cross-sectional area < 5 mm2 (PVV5) and the PVV5 divided by
total vessel volume (%PVV5) were measured.
Results DLVS correctly segmented 99.1% of the intravascular points (1,387/1,400) and 93.1% of the extravascular points
(1,309/1,400). The areas-under-the receiver-operating characteristic curve (AUROCs) were 0.977 and 0.969 for the two external
validation datasets. For the COPD patients, both PPV5 and %PPV5 successfully differentiated severe patients whose FEV1 < 50
(AUROCs; 0.715 and 0.804) and were significantly correlated with the emphysema index (Ps < .05).
Conclusions DLVS successfully segmented pulmonary vessels on noncontrast chest CT by utilizing spatiotemporally matched
50-keV images from a dual-source CT scanner and showed promising clinical applicability in COPD.
Key Points
• We developed a deep learning pulmonary vessel segmentation algorithm using virtual noncontrast images and 50-keV
enhanced images produced by a dual-source CT scanner.

• Our algorithm successfully segmented vessels on diseased lungs.
• Our algorithm showed promising results in assessing the loss of small vessel density in COPD patients.
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Abbreviations
%PVV5 Volume of pulmonary vessels with a cross-

sectional area < 5 mm2 divided by the total vol-
ume of pulmonary vessels

AUROC Area under the receiver operating characteristic
curve

COPD Chronic obstructive lung disease
DLCO Diffusion lung capacity for carbon monoxide
DLVS Deep learning–based automatic pulmonary vessel

segmentation algorithm on noncontrast chest CT
images

FEV1 Forced expiratory volume in 1 s
FVC Forced vital capacity
GOLD Global Initiative for Chronic Obstructive Lung

Disease
HU Hounsfield unit
LRL Lower reproducibility limits
PFT Pulmonary function test
PVV5 Volume of pulmonary vessels with a cross-

sectional area < 5 mm2

URL Upper reproducibility limits

Introduction

In recent years, deep learning approaches have been explored in
various fields in radiology [1, 2]. With its excellent natural con-
trast to the surrounding structures, the lung is one of the most
promising organs for the application of deep learning algorithms.
Specifically, the relatively high Hounsfield unit (HU) values of
vessels compared with the lung parenchyma and airway may
make pulmonary vessel segmentation more favorable than in
other organs. Moreover, extracting pulmonary vessels from
noncontrast chest CTmay reduce theworkload for central nodule
detection or mediastinal lymph node evaluation, and could be
applied to various volume measurement tasks.

Pulmonary vessel extraction has been tried in previous stud-
ies, mainly using mathematical modeling on contrast-enhanced
CT images, including HU thresholding and connection-detecting
techniques [3, 4]. However, these techniques are hardly applica-
ble for noncontrast CT scans, in which the HU contrast between
the lung and vessel is reduced. A deep learning approach might
be attempted, but a major challenge could be the producing
enough vessel maps on noncontrast CT images for training [3,
4]. If spatiotemporally matched noncontrast and contrast-
enhanced CT scans could be obtained simultaneously, the gen-
eration of vessel maps from noncontrast scans would be replaced
by that from enhancedCT images. In this aspect, dual-energy CT
may provide a solution, as virtual noncontrast images could be
generated from enhanced scans.

The purpose of our study was to develop and validate a
deep learning–based automatic pulmonary vessel

segmentation algorithm for noncontrast chest CT images
(DLVS). We generated virtual noncontrast scans from CT
pulmonary angiography images using a dual-source CT, and
utilized them for training a deep learning algorithm to segment
vessel maps from noncontrast CT scans. To examine the clin-
ical role of the algorithm, we additionally explored the impact
of DLVS in assessing vascular remodeling in chronic obstruc-
tive lung disease (COPD) patients, in whom the loss of micro-
vasculature is known to be associated with the pathogenesis of
the disease [5–7].

Materials and methods

This retrospective study was approved by Seoul National
University Hospital institutional review board, and the re-
quirement for patients’ informed consent was waived. One
coauthor (S.J.P.) is a founder and CEO of MedicalIp, but did
not have control over any of the data submitted for
publication.

Development of DLVS

For the development of DLVS, 104 pulmonary CT angio-
grams (49,054 slices) scanned using a dual-source scanner
(Somatom Force; Siemens Healthineers) from 104 patients
taken between September 2017 and February were collected.
From the 80-keV and 150-keV angiography images, virtual
0.7-mm-section 50-keV contrast-enhanced images and virtual
noncontrast images were produced. From the 50-keV CT im-
ages, the pulmonary vessels were segmented in a semi-
automatic manner, using a thresholding technique, followed
by a novel graph-cut algorithm (eFigure 1) [8].

DLVS was trained using each virtual noncontrast CT
image as an input and spatiotemporally matched vessel
map as an output. All input images were windowed under
a width, level of 2,500, 150 before normalization. To de-
crease false-positive results, 5-fold data augmentation was
performed by adding false nodules to each scan (number
of false nodules: 20–60; size: 2–10 mm). Training was
conducted in 2 steps: (a) an algorithm generating vessel
maps from virtual noncontrast scan was trained (pre-
DLVS), and (b) another algorithm producing vessel maps
from the union of pre-DLVS results and ground-truth ves-
sel maps was trained. For both training steps, a 3-
dimensional (3D) U-Net based neural network was used,
receiving an input size of 512 × 512 × 8 and using 3
encoders and 3 decoders (eFigure 2). Except for the final
convolution (1 × 1 × 1 convolution), every convolutional
layer consisted of 3 × 3 × 3 convolution, followed by the
rectified linear unit and group normalization [9]. Detailed
information is presented in supplement.
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Internal validation

Internal validation was performed using 10 pulmonary CT
angiography scans from 10 patients, whose inclusion criteria
were the same as those in the development dataset. Vessel
maps from these 10 images were generated by the same meth-
od used for the development dataset. To validate the vessel
segmentation performance of DLVS, the Dice coefficient was
calculated for each case [10, 11]. The total vascular
volume and the volume of the vessels with a cross-sectional
area < 5 mm2 were measured and compared between the
ground-truth vessel maps and the DLVS results .
Additionally, 1,000 points were randomly selected from both
inside and outside the area of the pulmonary vessels, and the
probability score for each point was measured [12, 13].

Validation of DLVS

External validation

For external validation, a temporally and vendor-independent
dataset was collected (SNUH dataset). Among 63 patients
who underwent both pre- and post-contrast-enhanced chest
CT simultaneously for the purpose of pre-bronchoscopy eval-
uation at Seoul National University Hospital between March
to December 2019, CT scans from 14 patients (mean age 67.4
± 10.9 years [range 41–82 years]; 5 men and 9 women) were
selected, all with lung parenchymal diseases. For each case,
200 points (100 intravascular and 100 extravascular) were
selected from noncontrast CT images and labeled as either
intravascular or extravascular, referring to the simultaneously
taken contrast-enhanced CT images. Among 100 intravascu-
lar points, 40 points were selected within the segmental artery
(n = 20) or vein (n = 20) and 60 points within small
subsegmental vessels, with a diameter of less than 2 mm.
The 100 extravascular points were selected within the lung
parenchyma (n = 60), bronchial wall (n = 20), or intra-
lesional area (n = 20). Intra-lesional points were selected in-
side parenchymal abnormalities (i.e., consolidation, ground-
glass opacities, nodules, or atelectasis). The probability score
of DLVS for each point with its decision (intravascular vs.
extravascular) and HU was measured. Additionally, an open
dataset from the VESSEL12 challenge (n = 3) was used [14].
The probability scores of DLVS for the referenced 876 points
were used (278 intravascular points and 598 pulmonary pa-
renchymal points).

Assessment of vascular remodeling in the COPD low-dose CT
cohort

To include COPD patients, all patient whose forced expiratory
volume in 1 s (FEV1) divided by forced vital capacity (FVC)
was less than 0.7 on a post-bronchodilator pulmonary function

test (PFT) performed between 2014 and 2015 were included
(n = 2,204) and classified using the Global Initiative for
Chronic Obstructive Lung Disease (GOLD) criteria (GOLD
1, FEV1%> 80; GOLD 2, FEV1% 50–80; GOLD 3, FEV1%
30–50; and GOLD 4, FEV1% < 30). Of these patients, 372
underwent low-dose chest CT within 1 month after the PFT
examination. Ninety-one patients with superimposed active
lung diseases that may affect pulmonary vascularity were ex-
cluded, as follows: pneumonia or active tuberculosis (n = 71),
malignancy (n = 11), empyema (n = 4), interstitial lung dis-
ease (n = 4), and pneumothorax (n = 1). Finally, 281 low-dose
CT scans from 281 patients were included (mean age 67.3 ±
9.31 years [range 42–88 years]; 256 men and 25 women).
Among them, 234 patient had measured diffusion lung capac-
ity for carbon monoxide (DLCO). Vendor and CT parameter
information is provided in eTable 1. To evaluate vascular
remodeling, the volume of total pulmonary vessels and those
with a cross-sectional area < 5 mm2 (PVV5) and %PVV5,
defined as PVV5 divided by total pulmonary vascular volume,
were calculated from this-slice images (< 1.5 mm). The intra-
lung area was calculated using a lung segmentation algorithm
[15]. Additionally, the emphysema index was calculated for
each patient from 3-mm-thick soft kernel images, as the per-
centage of lung voxels showing attenuation below −950 HU
[16, 17]. The correlations of PVV5 and %PVV5 with GOLD
categories, DLCO, and the emphysema index were explored
and compared.

Statistical analysis

The classification performance of DLVS in terms of detecting
intravascular areas was evaluated using the area under the
receiver operating characteristic curve (AUROC). Upper/
lower reproducibility limits (URL/LRL) were evaluated for
PVV5, %PVV5, and the total vascular volume on interval
validation, and Bland-Altman analysis was conducted. The
correlations of PVV5 and %PVV5 with the GOLD indices
were assessed using the Spearman rho coefficient.
Differences in PVV5 and %PVV5 between GOLD 1–2 and
GOLD 3–4 patients were evaluated using the independent t
test. Statistical analyses were performed with SciKit-Learn
0.19.0 [18] and MedCalc version 15.8. Comparison of signif-
icant Spearman rho coefficients was conducted using an
online calculator (http://quantpsy.org) following Steiger’s
method [19].

Results

Internal validation

Among the 10 cases included in the internal validation dataset,
only 2 showed relatively clean lungs, while the other 8 cases
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showed parenchymal infiltration, including numerous meta-
static nodules (n = 1), ground-glass infiltration (n = 3), multi-
focal consolidation (n = 2), mass with pneumonia (n = 1), and
multiple embolization coils (n = 1). The mean Dice coefficient
between the DLVS results and ground-truth vessel maps were
91.5 ± 3.17 (93.1 ± 0.17 for healthy lungs and 91.1 ± 3.47 for
diseased lungs). Both the total vascular volume and PVV5
measured from DLVS results showed < 2% error rates to the
ground-truth vessel maps, and showed strong correlations
(Spearman rho coefficient > 0.96, p < .001 for both;
eTable 1). On Bland-Altman plots, all 10 points were located
within the 95% CI limits of difference for total vascular vol-
ume, PVV5, and %PVV5 (eFigure 3). For discriminating the
2,000 randomly selected points per case (1,000 intravascular
and 1,000 extravascular points), DLVS yielded an AUROC of
0.995. DLVS correctly classified 94.3% of all points (18,867/
20,000), 89.5% of points from the intravascular area (8,952/
10,000), and 99.2% from the extravascular area (9,915/
10,000) (Table 1).

External validation results

In external validation performed with 14 noncontrast CT
scans (SNUH dataset), the AUROC of DLVS was 0.977 for
2,800 manually selected points (Table 2). It successfully clas-
sified 99.1% (1,387/1,400) of intravascular points, including
99.0% (832/840) of the points within small vessels (diameter
< 2 mm). For the extravascular areas, 93.1% (1,309/1,400) of
the extravascular points were correctly classified as non-
vessel by DLVS. Specifically, 100% of normal lung points
were correctly mapped, while 15.7% (44/280) points within
the bronchial wall were misclassified. For the intra-lesional
areas, 84.3% (233/280) of the points were accurately classi-
fied. Although > 90% of points were correctly classified for
calcified nodules (92.6% [25/27]), consolidation (90.7% [49/
54]), and ground-glass opacities (95.4% [83/87]), DLVS
showed decreased accuracy for points within linear atelectasis
(86.5% [32/37]) and demonstrated suboptimal results for
noncalcified nodules (accuracy 58.7% [44/75]; Table 3).
Representative cases are presented in Fig. 1.

For the VESSEL 12 challenge dataset, DLVS showed an
AUROC of 0.969. Its diagnostic accuracy was 84.1% (736/
876), 45.6% from the intravascular areas (127/298) and 100%
from the non-vessel areas (598/598) (Table 2).

Assessment of vascular remodeling from low-dose CT
of COPD patients

Among 281 COPD patients confirmed from post-
bronchodilator PFT, 166 were categorized as GOLD 1, 98
as GOLD 2, and 17 as GOLD 3. No patients were categorized
as GOLD 4. Both DLVS-driven volume parameters (PVV5
and %PVV5) tended to be lower in patients with a higher Ta
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GOLD index, and statistical significance was found for PPV5,
although the correlation was weak (Spearman rho, 0.20). A
remarkable difference was found for GOLD 1 or 2 patients
versus GOLD 3 patients: the mean values for both volume
parameters showed a significant difference (p < .01 for both;
Table 2). PVV5 showed an AUROC of 0.804 (optimal thresh-
old, 61.6 mL) in differentiating GOLD 3 from GOLD 1 or 2
patients (Table 2 and Fig. 2). Examples are shown in Fig. 3.
PVV5 showed a significant correlation with both absolute and
%predicted DLCO. Both PVV5 and %PVV5 were significant-
ly correlated with the emphysema index (Table 4 and Fig. 4),
and %PVV5 showed a significantly stronger correlation
(Spearman rho, 0.37 vs. 0.17; p < .001). Among various

indices which showed significant correlation with PVV5,
DLCO (%predicted) showed a higher Spearman rho
(Spearman rho, 0.32) than rho with GOLD criteria (0.20;
p = .02) or emphysema index (0.17; p = .004).

Discussion

We developed an automatic pulmonary vessel segmentation
algorithm from noncontrast chest CT by utilizing spatiotem-
porally matched CT pulmonary angiography images for ves-
sel map generation. DLVS showed promising results in dis-
criminating intravascular and extravascular areas on the

Table 3 Detailed performance of
DLVS on the SNUH dataset Point HU of the points Detection rate

Intravascular area (n = 1,400) – 99.1% (1,388/1,400)

Segmental arteries (n = 280) 17.0 ± 52.0 (−299, 106) 98.6% (276/280)

Segmental veins (n = 280) 16.5 ± 50.2 (−220, 113) 100% (280/280)

Subsegmental vessels (n = 840)* −94.2 ± 126.1 (−669, 111) 99.0% (832/840)

Extravascular area (n = 1,400) – 93.5% (1,309/1,400)

Lung parenchyma (n = 840) −880.5 ± 39.7 (−1003, −694) 100% (840/840)

Bronchial wall (n = 280) −421.6 ± 211.5 (−952, 152) 84.3% (236/280)

Intra-lesional (n = 280) – 83.2% (233/280)

Noncalcified nodule (n = 75) 16.6 ± 192.0 (−543, 1,277) 58.7% (44/75)

Calcified nodule (n = 27) 1271.6 ± 585.1 (158, 2222) 92.6% (25/27)

Consolidation (n = 54) −12.1 ± 93.7 (−388, 102) 90.7% (49/54)

Ground-glass opacity (n = 87) −565.8 ± 127.1 (−774, −286) 95.4% (83/87)

Linear atelectasis (n = 37) −114.2 ± 193.3 (−974, 93) 86.5% (32/37)

DLVS deep learning–based automatic pulmonary vessel segmentation algorithm on noncontrast chest CT images,
SNUH Seoul National University Hospital

*These points were selected inside small vessels with diameter < 2 mm

Table 2 Internal and external validation results of DLVS

Interval validation External validation

Interval validation (n = 10) SNUH dataset (n = 12) VESSEL12 open dataset (n = 3)**

DICE coefficient 91.5 ± 3.17 N/A N/A

Clean lungs (n = 2) 93.1 ± 0.18

Diseased lungs (n = 8) 91.1 ± 3.47

Classification performance for intravascular vs. extravascular points

Number of points evaluated 20,000 2,800 876

Intravascular 10,000 1,400 278

Extravascular 10,000 1,400 598

Diagnostic accuracy 99.4% (18,867/20,000) 96.1% (2,690/2,800) 82.7% (725/876)

Intravascular 89.5% (8,952/10,000) 99.1% (1,387/1,400) 45.6% (127/278)

Extravascular 99.2% (9,915/10,000) 93.1% (1,303/1,400) 100% (598/598)

AUROC 0.995 (0.994–0.996) 0.994 (0.990–0.996) 0.969 (0.956–0.980)

DLVS deep learning–based automatic pulmonary vessel segmentation algorithm on noncontrast chest CT images, SNUH Seoul National University
Hospital

**The VESSEL12 data comprised contrast enhancement chest CT images
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internal and external validation datasets, even for diseased
lungs. On low-dose CT scans from COPD patients, the
DLVS-measured pulmonary small vessel area was significant-
ly correlated with patients’GOLD criteria, DLCO, and emphy-
sema index, and successfully differentiated GOLD 3 patients
from GOLD 1 or 2 patients.

Vessel map generation has been a major hurdle in devel-
oping an automatic vessel segmentation algorithm [3, 4], es-
pecially from noncontrast CT images. We enabled to produce
vessel maps paired with spatially matched noncontrast CT by
generating virtual noncontrast scans from CT pulmonary an-
giography images taken from a dual-source CT scanner. The

Fig. 1 Examples of DLVS results
in the external validation dataset.
a DLVS successfully segmented
pulmonary vessels inside a part-
solid nodule on noncontrast CT. b
DLVS successfully segmented
small vessels, without yielding
false positive results for nodules
or consolidation. c DLVS
detected small vessels passing
through the multicystic mass
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training dataset of DLVS was inevitably homogeneous, as all
scans were obtained using a device from a single vendor with
the same protocol. However, DLVS worked well in the exter-
nal validation dataset and COPD low-dose CT datasets taken
from various vendors with heterogeneous settings (including
different reconstruction kernel), suggesting that generalization
was accomplished. We used a 3D U-Net model with group
normalization and modification of the first max pooling size,
which successfully enhanced the performance of DLVS.
Group normalization is important for 3D U-Net training with
a small batch size, and the first max pooling size was modified
to 1 × 2 × 2 to preserve the data in the z-axis [9]. We also
performed 2-step training, adding 1 more neural network that
took the pre-DLVS result as an input, to reduce false-posi-
tives. We did not specify the results, but by passing one more
network, we achieved a roughly 8% reduction of false-
positives on noncalcified nodules.

A strength of DLVS is that it showed good performance in
diseased lungs. Several studies have reported good perfor-
mance in automatic pulmonary vessel segmentation, but the
performance of the algorithm for diseased lungs was not thor-
oughly evaluated [13, 20]. DLVS exhibited an excellent Dice
score for both healthy and diseased lungs on internal valida-
tion and showed < 10% false positives for most parenchymal

Fig. 2 Performance of PVV5 and %PVV5 in differentiating GOLD 3
patients from GOLD 1–2 patients. The areas under the receiver operating
characteristic curve were 0.804 and 0.715, respectively

Fig. 3 Examples of DLVS results for low-dose CT of COPD patients. PVV5 and %PVV5 both tended to decrease as the patients’GOLD categorization
increased. The red vessels have a cross-sectional area ≥ 5 mm2, while the green vessels have a cross-sectional area < 5 mm2
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lung lesions, including consolidation and ground-glass opac-
ity, while detecting distinguishable intra-lesional vessels (Fig.
1). Combinedwith HU thresholding, DLVS can be utilized for
accurate volume segmentation of intra-parenchymal lesions,
for applications such as the volumetric evaluation of COVID-
19 pneumonia burden [21]. DLVS could be applied in various
other clinical settings, i.e., quantitatively assessing disease
progression in diffuse lung disease or assisting readers’ per-
formance in mediastinal lymph node evaluation, thromboem-
bolism detection, or lung nodule detection. However, DLVS
showed suboptimal performance for noncalcified lung

nodules (accuracy 58.7%). We tried to minimize false posi-
tives by applying specific data augmentation (5-fold
augmentation of cases with false nodules with varying sizes)
and conducting 2-step training, but DLVS still mis-registered
41.3% (31/75) of the points in lung nodules as intravascular.
Since nodule detection is an expected indication of automatic
vessel segmentation, this result is quite disappointing. Further
modification of the algorithm by removing nodules through
connectivity evaluation could be beneficial.

In the COPD low-dose CT cohort, DLVS yielded some
potentially meaningful parameters, including PVV5 and

Fig. 4 Plots showing correlations
between the emphysema index
and vascular volume parameters
calculated from DLVS for the
COPD low-dose CT cohort: a
PVV5 and b %PVV5

Table 4 Vascular volume
analysis of DLVS from the
COPD low-dose CT cohort

PVV5 (mL) %PVV5

GOLD index

GOLD 1 (n = 166) 73.4 ± 14.4 (12.5–125) 63.9 ± 7.90 (42.2–86.0)

GOLD 2 (n = 98) 70.9 ± 14.6 (43.8–119) 63.4 ± 8.26 (43.0–91.5)

GOLD 3 (n = 17) 55.9 ± 14.8 (37.0–92.8) 57.8 ± 12.2 (40.5–83.6)

Correlation to GOLD index* 0.20 (P = .001) 0.10 (P = .10)

GOLD 1–2 vs. GOLD 3 differentiation

p values for difference** <.001 .006

AUROC (95% C.I)*** 0.804 (0.753–0.849) 0.715 (0.658–0.767)

Correlation with DLCO (n = 234)*

DLCO (mL/mmHg/min) 0.32 (p < .001) −0.03 (p = .62)

DLCO, % predicted 0.23 (p = .001) 0.06 (p = .40)

Emphysema Index (−950 HU)†

Correlation* 0.17 (p = .01) 0.37 (p < .001)

*Correlation data presented with Spearman’s rho coefficients with their p values

**p values calculated from independent t test

***Differentiation performance presented as AUROC values and their 95% CI
†Emphysema index was calculated from 3-mm-thick, soft kernel-reconstructed images

COPD chronic obstructive lung disease, DLVS deep learning–based automatic pulmonary vessel segmentation
algorithm on noncontrast chest CT images, GOLD Global Initiative for Chronic Obstructive Lung Disease,
AUROC area-under-the receiver operating characteristics curve, PVV5 volume of pulmonary vessels with a
cross-sectional area < 5 mm2 , %PVV5 volume of pulmonary vessels with a cross-sectional area < 5 mm2 divided
by total volume of pulmonary vessels
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%PVV5. Endothelial dysfunction and loss of microvascula-
ture, leading to increased vascular resistance and reduced ox-
ygen delivery capacity, are well-known histopathologic phe-
nomena observed in patients with COPD [5–7, 22, 23]. It has
been known that both increased emphysema burden and de-
creased DLCO are associated with losses of pulmonary micro-
vasculature [23], and the histology-radiology correlation of
pulmonary microvasculature had been established on autopsy
cases [5]. The significant correlation between CT-assessed
PVV5with other COPD-associated indices, including emphy-
sema index, FEV1, and DLCO, was also reported [5, 24, 25].
Similar to the prior reports, our DLVS-computed PVV5 or
%PVV5 significantly correlated with patients’ GOLD catego-
rization, emphysema index, and DLCO. DLVS-computed
PVV5 successfully differentiated GOLD 3 patients from
GOLD 1–2 patients with an AUROC of 0.804. However,
consistent with the previous study [24], the correlations were
not very strong among these indices (Spearman rho indices
< 0.4). As all COPD-associated indices we evaluated, PVV5,
emphysema index, FEV1, and DLCO, all represent a certain
part of the pathogenesis of COPD, we believe each factor may
have its own clinical meaning. Although the correlations be-
tween the indices were not strong, these indices may act as
independent factors predicting disease progression. Our study
has strength in that we derived noninvasive and automatic
parameters which reflect the pathogenesis of COPD. Further
investigation of these volume-related factors would be bene-
ficial as a way to explore patients’ survival or disease
prognosis.

Our validation process for DLVS has some weaknesses.
First, the VESSEL 12 dataset contained contrast-enhanced
CT images, while DLVS was designed for noncontrast CT.
As we could not find any relevant dataset of noncontrast CT
scans for external validation of the pulmonary vessel segmen-
tation, we had to use this contrast-enhanced dataset. Most
likely due to this discrepancy, the diagnostic accuracy of
DLVS in the detection of intravascular areas was unsatisfac-
tory, even though the AUROC was high (0.969). Threshold
adjustment should be considered when applying DLVS to
scans obtained using different CT protocols. Indeed, a sensi-
tivity and specificity of 90.6% and 95.3%, respectively, could
have been achieved if the threshold was adjusted in accor-
dance with the Youden index J [26]. Another limitation of
our COPD dataset is that it was retrospectively collected,
and the reasons for the examinations were diverse. As
COPD patients usually do not undergo low-dose CT for
COPD evaluation on our institution, most patients who
underwent low-dose CT might have had respiratory symp-
toms or other underlying thoracic diseases. As a result, a con-
siderable portion of the initial consecutively collected cohort
was excluded (92 out of 373 patients). Additionally, most of
the patients were GOLD 1 or 2, and none were classified as
GOLD 4. This inevitably yielded selection bias, and a well-

designed prospective study is warranted to confirm the clinical
significance of DLVS-assessed pulmonary vascular
remodeling.

Our study has some other limitations. First, as vessel map
generation is labor-intensive, the size of the training dataset
was limited. We tried to maximize the performance by using
spatiotemporally matched vessel maps and augmenting im-
ages by adding false pulmonary nodules. Second, the role of
DLVS in routine practice was not explored. As vessel seg-
mentation is expected to improve radiologists’ performance
in pulmonary nodule detection or mediastinal lymph node
evaluation, a further evaluation that incorporates an evaluation
of diagnostic performance would be beneficial. Third, our
training dataset was homogeneous, which may limit the gen-
eralizability of the algorithm. Finally, we did not compare the
performance of DLVS with that of other vessel segmentation
algorithms, including ImageJ or Aview [25, 27].

In conclusion, DLVS successfully segmented pulmonary
vessels from noncontrast chest CT images and showed prom-
ising results in assessing the loss of small vessel density in
COPD patients.
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