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Abstract
Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations

in the dystrophin gene. The pathology of DMD manifests in patients with progressive mus-

cle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is

muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of

the pro-inflammatory cytokine interleukin 1β (IL-1β) in response to toll like receptor (TLR)

stimulation compared to controls; therefore, blocking the IL-1β pathway could improve the

disease phenotype inmdxmice, a mouse model of DMD. Kineret1 or IL-1Ra is a recombi-

nant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To

determine the efficacy of IL-1Ra in a DMDmodel, we administered subcutaneous injections

of saline control or IL-1Ra (25 mg/kg/day) tomdxmice daily for 45 days beginning at 5

weeks of age. Functional and histological parameters were measured at the conclusion of

the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there

were still interesting observations to be noted. For example, although not significantly

changed, splenocytes from the IL-1Ra-treated group secreted less IL-1β after LPS stimula-

tion compared to control mice indicating a blunted response and incomplete inhibition of the

pathway (37% decrease). In addition, normalized forelimb grip strength was significantly

increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force

measurements, histological parameters, or motor coordination assessments in the dystro-

phic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement

time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies

examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1β with IL-

1Ra significantly altered only a few behavioral and strength related disease parameters;

however, treatment with inhibitors that completely block IL-1β, pathways upstream of IL-1β

production or combining various inhibitors may produce more favorable outcomes.
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Introduction
Duchenne muscular dystrophy (DMD) is an X-linked muscle disease characterized by inflam-
mation and fibrosis in the skeletal muscles which results from constant cycles of muscle degen-
eration and regeneration [1–3]. DMD is a progressive muscle weakness disease which causes
loss of ambulation by the teenage years and mortality by the third decade of life usually due to
cardiovascular complications. Despite the severity of this disease, there are only limited treat-
ment options for DMD patients with the current standard-of-care regimen being glucocorti-
coids (GCs) [4–6]. These drugs have been demonstrated to delay the onset of symptoms
associated with DMD; however, GCs have many side effects in patients, highlighting the need
for safer and more effective alternative therapies. Themdxmouse model, identified via a spon-
taneous mutation in the dystrophin gene, exhibits some of the hallmark pathologies of DMD
[3,7,8]. In this model, inflammation develops in both the limbs and diaphragm at 3 weeks of
age, with a peak at about age 8–10 weeks, before diminishing in the limbs but not the dia-
phragm [9]. Pre-clinical testing has demonstrated that anti-inflammatory drugs improve the
mdxmuscle phenotype and therefore have the potential to alleviate inflammatory pathways in
DMD patients [10–13].

Inflammatory cytokines play a major role in the DMD phenotype and these include factors
like tumor necrosis factor alpha (TNFα) and interleukin 1 beta (IL-1β). Expression of TNFα in
mdxmice has been well characterized and shown to be increased with age in the diaphragm
muscle where inflammation is usually high in this model [14]. Many studies have been per-
formed to block this signaling at various levels to improve the dystrophic phenotype by reduc-
ing necrosis, degeneration and contraction-induced injury [14–22]. Because TNFα had already
been examined extensively, another cytokine of particular interest to target in DMD is IL-1β. It
has previously been shown that IL-1β plays a role in the initiation and perpetuation of muscle
pathology in both DMD and limb girdle muscular dystrophy 2B (LGMD2B) patients [23]. In
addition, IL-1βmRNA levels are higher inmdxmice than in controls, and reducing both the
expression and activity of IL-1β could potentially treat muscle inflammation [23]. IL-1β is
secreted as a precursor protein and becomes biologically active after undergoing proteolytic
cleavage by caspase-1 [24]. IL-1βmediates signaling via the interleukin 1 receptor (IL-1R) and
downstream activation of the nuclear factor kappa B (NFκB) pathway. Interestingly, NFκB
activity has been previously shown to be elevated in the muscle ofmdxmice [23]. Conversely,
blocking NFκB activity has been shown to reduce the inflammatory response and IL-1β levels
in both DMD patients andmdxmice [11,12,25,26]. These effects are similar to those seen in
patients on GCs and can potentially be used in a combinatorial manner to reduce muscle
inflammation even further [5,6,27–31].

The interleukin 1 receptor antagonist (IL-1Ra) is a naturally occurring cytokine that inhibits
the binding of IL-1β to IL-1R. IL-1Ra lacks the binding domain necessary for recruiting the IL-
1R accessory protein to the receptor complex; therefore, preventing downstream pro-inflam-
matory signaling. A synthetic form of IL-1Ra, anakinra (Kineret1), is a recombinant and non-
glycosylated form of human IL-1Ra that has been granted approval for use in arthritis by the
Food and Drug Administration (FDA). Anakinra exerts its physiological effects in a similar
manner to the naturally occurring antagonist, by competitively binding to the IL-1R and neu-
tralizing the effects of IL-1β. The protective role of anakinra in many diseases, including those
affected by inflammation, makes this compound attractive for the treatment of inflammatory
diseases of the muscle, such as myositis and DMD. Since inflammation plays a detrimental role
in DMD, the high level of IL-1β in the muscles of DMD patients andmdxmice make this path-
way an attractive target for reducing the muscle pathology in these affected individuals. We
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hypothesized that the inflammatory effects of DMD would be reduced by treatment with ana-
kinra and that, in vivo,mdxmice would have improved muscle function.

Materials and Methods

Animal care
All animal work was conducted in accordance with guidelines for the care and use of laboratory
animals provided by the National institutes of health and protocols were approved by the Chil-
dren’s National Institutional Animal Care and Use Committee (IACUC) (Protocol #304-13-
04). For surgery, all animals were anesthetized using ketamine/xylazine and euthanasia was
performed while under anesthesia using cervical dislocation. Four-week-old female C57BL/
10ScSn-Dmdmdx/J (mdx) mice weighing 10–18 g were purchased from The Jackson Laboratory
(Bar Harbor, ME). Mice were housed in individually ventilated cage system with a 12-h light-
dark cycle and received standard mouse chow and water ad libitum. Mice were rested at least
7 days before treatment and treatment began when the mice were 5 weeks old. All functional
measures were acquired in a blinded manner.

Study design
IL-1Ra (anakinra, trade name Kineret1) was a gift from Amgen Inc. (Thousand Oaks, CA).
Our study involved daily subcutaneous injections of two groups of animals: (a) a controlmdx
group, dosed with 0.9% NaCl (n = 6), and (b) a drug-treatedmdx group, which received IL-
1Ra at 25 mg/kg/day in a 50-μL volume of 0.9% NaCl (n = 10). Mice were randomized on the
basis of body mass and were treated for 45 days, beginning at 5 weeks of age ending when they
were 12 weeks old. IL-1Ra and the vehicle were injected subcutaneously, 7 days a week.

Enzyme-linked immunosorbent assay (ELISA)
Primary splenocytes were isolated at necropsy frommdxmice that had been treated with IL-
1Ra or saline; the cells were then maintained for 24 h in vitro. The medium was changed, and
the splenocytes were treated for 24 h with lipopolysaccharide (LPS) or LPS-free medium. IL-1
was measured in the medium from the splenocytes. IL-1 was quantified using a Quantikine IL-
1 ELISA kit (R&D Systems, Minneapolis, MN) according to the manufacturer’s instructions.
N = 4 for each group analyzed.

Rotarod test
Rotarod tests were performed as described previously [32,33]. In brief, mice were trained for 2
days prior to being tested twice a day for 3 consecutive days according to the following parame-
ters: 10 rpm for 60s (the stabilization period), followed by acceleration from 10 rpm to 40 rpm
(reached within the first 25s), totaling 240 s. Latency to fall (in seconds, s) was recorded, and
six scores were averaged for each mouse. N = 6 saline, n = 10 IL-1Ra treated.

Grip strength testing
Grip strength was assessed using a grip strength meter as previously described [26,33]. Five
successful hindlimb and forelimb strength measurements within 2 min were recorded. The
maximum values for each day over a 5-day period were used for subsequent analysis, and the
data were normalized to body mass and expressed as kilogram force (KGF). N = 6 saline,
n = 10 IL-1Ra treated.
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In vitro force measurements
Maximal force (mN) and twitch force (mN) generated by the extensor digitorum longus (EDL)
muscle from the right hind limb was measured using a force transducer (Aurora Scientific,
Aurora, Ontario, Canada) as previously described [11]. Specific force was calculated by divid-
ing the maximal force generated by the EDL muscle by the cross-sectional area of the muscle
(kN/m2). N = 4 saline, n = 6 IL-1Ra treated.

Histological evaluations
Mice were anesthetized using ketamine followed by cervical dislocation in order to prevent ani-
mal suffering. Muscles were harvested and a portion of each dissected muscle (e.g., gastrocne-
mius, diaphragm, EDL, or heart) was placed in formalin for paraffin embedding. These tissues
were later sectioned and stained with hematoxylin and eosin (H&E). The remaining portion of
each tissue was embedded in Tissue-Tek optimal cutting temperature (O.C.T.) compound,
(Sakura Finetek USA, Torrance, CA) and frozen in liquid nitrogen chilled isopentane for cryo-
sectioning. Tissues were imaged under a light microscope with a 20X objective, and a digital
image was obtained using computer software (Olympus C.A.S.T. Stereology System, Olympus
America Inc., Center Valley, PA). The digital images were loaded into Image J (NIH) with
additional plug-ins to count the cells. The total number of cells, centralized nuclei, peripheral
nuclei, and cells with centralized nuclei were counted and analyzed for comparison between
treatment groups. Fibers showing degeneration (as defined by a loss of striations and a homog-
enous appearance of the fiber contents), regeneration (as defined by a basophilic cytoplasm
and large peripheral or central nuclei with prominent nucleoli), and inflammatory foci per
field were assessed in a blinded fashion as described previously [33].

Behavioral activity measurement
Open-field activity was measured using an open-field Digiscan apparatus (Omnitech Electron-
ics, Columbus, OH) as described previously [33]. In brief, all mice were acclimated for 60 min
daily in the week prior to data collection. Data were collected every 10 min over a 1-h period
each day for 4 consecutive days. Results were calculated as mean ± standard error of the mean
(SEM) of all recordings. N = 6 saline, n = 10 IL-1Ra treated.

Statistical analysis
Statistical analyses comparing two groups at a time were performed using parametric,
unpaired, two-tailed, t-tests (Graph Pad, Prism software). P-values� 0.05 were considered sta-
tistically significant. Values in the graphs in the figures represent Values in the graphs repre-
sent mean ± standard error of the mean (SEM).

Results

IL-1Ra blunted the effect of LPS on IL-1 secretion in splenocytes from
mdxmice
To test whether IL-1Ra is effective in vivo in inhibiting IL-1 secretion, splenocytes frommdx
mice treated with IL-1Ra or saline (control) were stimulated with lipopolysaccharide (LPS).
The IL-1 secretion was comparable in the unstimulated splenocytes from the saline-treated
mice and the IL-1Ra-treated mice, indicating that IL-1Ra treatment alone did not alter the
basal level of IL-1 secretion in themdxmice (Fig 1). As expected, LPS stimulation significantly
increased IL-1 secretion in saline-treatedmdxmice. There was also a significant increase in IL-
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1Ra-treated splenocytes challenged with LPS. Although it was not statistically significant, it is
important to note there was 37% decrease in IL-1 secretion from LPS-stimulated splenocytes of
IL-1Ra-treatedmdxmice when compared to those from saline-treated controlmdxmice (Fig
1). Therefore, LPS-induced IL-1 secretion was blunted in the splenocytes from mice treated
with IL-1Ra when compared to those receiving saline indicating IL-1Ra only partially inhibited
this pathway.

IL-1Ra treatment improves limb muscle strength inmdxmice
Grip strength measurements, performed to measure muscle strength, demonstrated that IL-
1Ra-treatedmdxmice showed a significant 11% increase in maximum forelimb strength mea-
surements and a 7% increase in maximum hindlimb strength where statistical significance was
not attained likely due to one outlier (Fig 2A and 2B). Mice treated with IL-1Ra exhibited sig-
nificantly improved normalized forelimb grip strength (Fig 2C) and improvements in normal-
ized hindlimb strength when compared to control animals (Fig 2D). The normalized forelimb
and hindlimb grip strengths increased by approximately 11% (p<0.05) and 7% (p = 0.056),
respectively, in the mice treated with IL-1Ra when compared to the saline-injected controls
(Fig 2C and 2D). Latency to fall measurements are an indicator of motor coordination, learn-
ing, and balance; however, there were no significant differences in these measurements between
IL-1Ra-treated and controlmdxmice (Fig 2E).

IL-1Ra treatment does not alter in vitro force generation or histological
parameters inmdxmice
To further examine muscle strength, in vitro force measurements were performed. The in vitro
twitch force (mN) and absolute force (mN) of the EDL muscle did not differ between IL-1Ra-

Fig 1. IL-1Ra blunted the effect of LPS on IL-1 secretion in splenocytes frommdxmice. Enzyme-linked
immunosorbent assay (ELISA) was performed on medium from primary splenocytes isolated frommdxmice
that had been treated with IL-1Ra or saline. Splenocytes from IL-1Ra- and saline-treated mice were isolated
and stimulated with lipopolysaccharide (LPS). Medium was collected after 24 h to quantify the levels of IL-1
secreted into the medium by the splenocytes. LPS treatment significantly increased the IL-1 production in the
splenocytes from control mice (groups 1–2) and from the IL-1Ra-treated mice (groups 3–4). Although not
significant, this increase was blunted in the IL-1Ra and was 36% lower than the amount of secreted IL-1 in
group 2. Values in the graphs represent mean ± SEM. Statistically significant differences were determined by
using parametric, unpaired, two-tailed, t-tests with a p�0.05 being significant (n = 4 for each group tested).

doi:10.1371/journal.pone.0155944.g001
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treated and saline-treatedmdxmice (Fig 3A–3C). The specific force (kN/m2) and EDL mass
(mg) was not significantly changed but there was a 12% reduction in specific force comparing
the mean values of the IL-1Ra-treated animals which could partially be explained by the slight
(not statistically significant) differences in mass of the EDL from the IL-1Ra-treated mice ver-
sus saline (9.67 mg versus 9.36 mg, Table 1). There were no significant differences in the abso-
lute body mass, skeletal muscle (gastrocnemius, soleus) mass, or heart mass between the saline-
treated and IL-1Ra-treated mice (Table 1). From histology, no differences were observed in the
number of degenerating or regenerating fibers, inflammatory cells, or centralized or peripheral
nuclei in the gastrocnemius muscles from the IL-1Ra-treated and controlmdxmice (Fig 4A
and 4B).

IL-1Ra treatment decreases activity inmdxmice
Behavioral measurements of horizontal and vertical activity were performed using an open-
field Digiscan apparatus as previously described [33]. IL-1Ra treatment did not have a signifi-
cant effect on either horizontal or vertical activity in IL-1Ra-treatedmdxmice when compared

Fig 2. Grip strength is increased inmdxmice treated with IL-1Ra.Maximal strength (KGF) was measured using a grip-strength meter and
normalized to body mass in kg to determine the force per kg of animal mass (KGF/KG). Animals treated with IL-1Ra (n = 10) had significantly higher
(A) maximal (p = 0.047, 11% increase) and (C) normalized forelimb grip-strength (p = 0.028, 11% increase) than did control saline-treated (n = 6)
animals. Hindlimb strength was measured in the same way as forelimb, and there was an increase in (B) maximal hindlimb grip strength (p = 0.100,
7% increase) and (D) normalized hindlimb strength when the means of the IL-1Ra treated (10.56 KGF/KG) and saline-injected mice (9.87 KGF/KG)
were compared; this difference almost reached statistical significance (p = 0.058). There were also no significant differences in hindlimb grip
strength without normalization, although a similar trend remained. (E) There were no significant differences in the latency to fall in control- (95.44s)
and IL-1Ra- (99.15s) treatedmdxmice, although the mean values showed a longer latency to fall for the IL-1Ra-treated mice. Values in the graphs
represent mean ± SEM. Statistically significant differences were determined by parametric, unpaired, two-tailed, t-tests with a p�0.05 being
significant.

doi:10.1371/journal.pone.0155944.g002

Fig 3. IL-1Ra treatment does not alter EDLmuscle force.Muscle force in the extensor digitorum longus (EDL) muscle did not differ in saline-
treated and IL-1Ra-treatedmdxmice. There was a decrease in the strength capacity of the mice treated with IL-1Ra when compared to the controls
for all measurements recorded: (A) twitch force, mN (5% decrease), (B) muscle force, mN (4% decrease) and (C) specific force, kN/m2 (12%
decrease); however, none of these differences was statistically significant. Values in the graphs represent mean ± SEM. Statistical significance was
determined by parametric, unpaired, two-tailed, t-tests (n = 4 saline and n = 6 IL-1Ra).

doi:10.1371/journal.pone.0155944.g003
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to saline-injected mice (Fig 5; data not shown). Movement time and total distance traveled
were significantly decreased (by 27%) in the IL-1Ra-treated mice when compared to the saline-
treated mice (Fig 5B and 5C).

Discussion
During inflammatory processes, IL-1β is produced by several cell types in response to activa-
tion of a variety of innate immune receptors, including the toll-like receptor (TLR) superfamily.
Stimulation of IL-1β and subsequent binding to the IL-1R activates the pro-inflammatory
NFκB pathway. IL-1β signaling is controlled by IL-1Ra, a natural antagonist of IL-1R, and
overexpression of IL-1β has been implicated in the pathology of a wide variety of human

Table 1. Body andmuscle mass inmdxmice after treatment with saline or IL-1Ra.

Parameters Saline-treated IL-1Ra-treated p-value

Body mass, g 20.93 (0.42) 21.85 (0.31) 0.12

Gastrocnemius, mg 109.28 (5.06) 114.67 (3.00) 0.36

Soleus, mg 7.53 (0.42) 7.81 (0.29) 0.60

EDL, mg 9.36 (0.59) 9.67 (0.35) 0.66

Heart, mg 100.55 (5.73) 100.29 (2.68) 0.96

There were no statistically significant differences in the overall body mass or the masses of the

gastrocnemius, soleus, extensor digitorum longus (EDL), or heart between the IL-1Ra-treated and control

saline-treated mice. Muscle mass was expressed as the average of the left and right muscle, where

applicable, and also as a percentage of the total body weight. Values are expressed as mean, with SEM in

parentheses. No significant differences were determined as calculated by parametric, unpaired, two-tailed,

t-tests; p-values are indicated.

doi:10.1371/journal.pone.0155944.t001

Fig 4. IL-1Ra treatment does not alleviate muscle pathology inmdxmice.Degenerating (A) and regenerating (B) muscle fibers were quantified
in gastrocnemius muscle. Inflammatory cells were also quantified in sections from saline- and IL-1Ra-treated mice (C). Nuclei from sections were
scored and quantified as either centralized (D) or peripheral (E). The number of fibers with centralized nuclei (F) was quantified by treatment group
Values in the graphs represent mean ± SEM. Statistical significance was determined by parametric, unpaired, two-tailed, t-tests (N = 5, saline;
N = 9, IL-1Ra).

doi:10.1371/journal.pone.0155944.g004
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diseases associated with chronic inflammation. Development of inhibitors such as anakinra
have been shown to be effective in many diseases with an inflammatory component including:
inhibiting apoptotic events during experimental acute myocardial infarction [34], improving
symptoms of type 2 diabetes [35–38] and reducing the symptoms of rheumatoid arthritis (RA)
in clinical trials [39,40]. Improvements in auto-inflammatory diseases, including Muckle-
Wells syndrome (MWS) [41] and gout [42] have also been described after using anakinra.
Since inflammation is a major player in DMD, the IL-1β pathway is expected to play a role in
the initiation and perpetuation of the muscle pathology in DMD. Muscle inflammation and
necrosis is also evident in themdxmouse model; therefore, IL-1Ra treatment in pre-clinical
studies could prevent the inflammatory effects of systemic IL-1β secretion on IL-1R activation
potentially limiting cellular inflammation. In addition, it is known that in themdxmouse
model of DMD, there is an increase in the expression of TNF-α and IL-1β prior to disease
onset [23]. IL-1Ra is already FDA-approved making this drug a good candidate to try to inhibit
IL-1β upregulation and prevent the associated downstream signaling.

To date, many preclinical studies have focused on pharmacological treatments to inhibit
TNF-α as a potential treatment for DMD. Several of the drugs tested have been shown to ame-
liorate the muscle pathologies associated with themdx phenotype [14–22]. In the present
study, inhibiting IL-1β in themdxmodel was tested using a synthetic inhibitor of IL-1R, IL-
1Ra, treatingmdxmice for 45 days. The dosing regimen selected here, 25mg/kg daily, was
based on a previous study that demonstrated efficacy in a model of alcoholic steatohepatitis in
mice [43]. To assess whether IL-1Ra had engaged the target, we performed an in vitro stimula-
tion assay using LPS to activate splenocytes collected from treated and untreated animals.
Here, we saw a blunted effect of IL-1Ra on splenocytes treated with LPS (27% less than control
LPS-stimulated splenocytes), indicating IL-1Ra incompletely inhibited IL-1 under our condi-
tions, thus allowing signaling to persist even after treatment (Fig 1).

In addition to examining signaling effects of IL-1Ra, strength testing was also performed
and revealed significantly improved forelimb gripstrength and a trend for hindlimb grip-
strength, though not significant, toward increasing (Fig 2). No changes were detected in latency
to fall (Fig 2E), or muscle force (twitch, maximal, or specific force, Fig 3). Open-field activity
measures were mainly down-regulated in the mice treated with IL-1Ra (Fig 5). One possible
explanation for the 27% decrease in movement in the IL-1Ra-treated mice could be that the
mice are nauseous and therefore less likely to move about the cage. This is certainly reasonable
to consider since this is one of the potential side effects of IL-1Ra in humans (Fig 5). Increased

Fig 5. IL-1Ra treatment decreases activity and increases rest time inmdxmice.Horizontal activity (A) was measured using an open-field
Digiscan apparatus and did not differ significantly between IL-1Ra- and saline-treated mice. During the Digiscan measurements, the (B) movement
time (26% decrease in the IL-1Ra-treated mice vs. control, p = 0.0075) and (C) total distance traveled (27% decrease in the IL-1Ra-treated mice vs.
control, p = 0.008) were recorded and were significantly lower in the IL-1Ra-treated mice than in the controls. Graphs represent mean ± SEM and
statistically significant differences were determined by parametric, unpaired, two- tailed, t-tests with a p�0.05 being significant. (n = 6 saline, n = 10
IL-1Ra).

doi:10.1371/journal.pone.0155944.g005
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gripstrength and decreased open-field activity measures could have been caused by differential
effects of IL-1 signaling. For example, it is known that immobilization stress induces IL-1β in
rats [44,45], IL-1 administration induces stress [46], exposure to acute stress induces IL-1
expression in rodents [47]. IL-1R-null mice show decreased anxiety, and conversely IL-1Ra-
null mice show increased anxiety as they age [48,49]. Additionally, mice with IL-1β overexpres-
sion specifically in the hippocampus (IL-1βXAT) demonstrate increased locomotion, the con-
verse of what was seen in these studies inhibiting that pathway [50]. IL-1 could be released to
mediate a stress response, and when the natural inhibitor of IL-1, IL-1Ra, is genetically
removed, the animals elicit an increased stress response [49]. For this study, the mice were han-
dled prior to the grip strength measurement, and although they had become acclimated during
the week before the measurements were collected, grip strength could have been improved
because of increases in IL-1β leading to behavioral stress response. True muscle force is mea-
sured by the in vitro force measurements, because these measurements are not confounded by
volition. In vitro force was not changed in our study after IL-1Ra treatment, indicating that IL-
1Ra did not improve muscle strength possibly due do an incomplete inhibition of this pathway.

The skeletal muscles from the mice treated with IL-1Ra had no differences in histological
measurements including inflammatory foci, muscle fibers with centralized nuclei, regenerating
fibers, or degenerating fibers when compared to controls. This can also be explained by IL-1Ra
being a weak inhibitor of the pathway (Fig 4). There are several other factors that could provide
an explanation for this including: lack of potency, dosage, duration of treatment, and the role
of the IL-1 pathway in muscle disease progression at the time of treatment. A longer-term
study could reveal improved cellular patterning in IL-1Ra-treatedmdxmice and indicate that
IL-1Ra can indeed diminish the secretion of IL-1; however, this possibility still needs to be
tested. For this study, treatment was administered after the onset of skeletal muscle necrosis in
mdxmice and others have shown that inhibiting another inflammatory cytokine, TNFα, using
Remicade1 (an anti-TNFα antibody) at seven days of age delayed onset of acute necrosis at 21
days inmdxmice [22]. Treating mice at earlier time points with IL-1Ra could be considered
for future experiments to examine the full potential of this drug at all stages of the disease phe-
notype in themdxmice. Interestingly, at 12 weeks there were no significant pathological
changes found after Remicade1 treatment as we have shown after IL-1Ra treatment [22]. To
overcome this challenge with the stabilizedmdxmuscle phenotype, oldermdxmice could be
treated with IL-1Ra and challenged using a treadmill to exacerbate the disease phenotype at
this stage and examine additional effects from this treatment on dystrophic muscles similarly
to what was done with TNFα inhibition [20]. Lastly, it is possible that inhibition of TNFα
could be more efficacious than IL-1Ra treatment in themdxmice; however, considerations
have to be taken for examining cardiac function as long-term TNFα inhibition has been dem-
onstrated to have a negative impact on heart function [51].

Overall, the dose of IL-1Ra used here may have been enough to elicit a behavioral response
but insufficient to completely block the inflammatory signaling cascade and associated pheno-
type in the skeletal muscles of themdxmice. In order to further examine the inhibition of IL-1
and the benefits of down-regulating the secretion of this inflammatory factor, other IL-1R
inhibitors could also be examined in preclinical trials. They could be compared with IL-1Ra to
determine whether or not they are more potent inhibitors and, if so, what histological and
functional outcomes might improve from their use. Others have examined the possibility of
decreasing inflammation by using exon-skipping technology targeting IL-1RAcP [52]. Target-
ing IL-1R can have broad applications for many inflammatory diseases, and the mechanisms of
its inhibition are important to understand in order to decrease inflammation associated with
the disease. The goal of the ongoing studies in our laboratory is to broaden the therapeutic
options for DMD patients and their families beyond prolonged steroid regimens. In this short-
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term study ofmdxmice, which have a milder phenotype than DMD patients, IL-1Ra treatment
displayed an improvement in some functional parameters for muscle strength when compared
to saline-treated mice; however, these changes could have been a result of the behavioral effects
of the treatment. Optimization of the dosage and timing of the IL-1Ra treatment is clearly
needed to clarify whether a greater inhibition of the IL-1β signaling pathway (and resulting
clinical improvement) can be achieved in DMD.
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