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ABSTRACT Objective:Measuring the severity of the lateral spinal curvature, or Cobb angle, is critical for
monitoring and making treatment decisions for children with adolescent idiopathic scoliosis (AIS). However,
manual measurement is time-consuming and subject to human error. Therefore, clinicians seek an automated
measurement method to streamline workflow and improve accuracy. This paper reports on a novel machine
learning algorithm of cascaded convolutional neural networks (CNN) to measure the Cobb angle on spinal
radiographs automatically. Methods:The developed method consisted of spinal column segmentation using
a CNN, vertebra localization and segmentation using iterative vertebra body location coupled with another
CNN, point-set registration to correct vertebra segmentations, and Cobb angle measurement using the final
segmentations. Measurement performance was evaluated with the circular mean absolute error (CMAE)
and percentage within clinical acceptance (≤5◦) between automatic and manual measurements. Analysis
was separated by curve severity to identify any potential systematic biases using independent samples
Student’s t-tests. Results: The method detected 346 of the 352 manually measured Cobb angles (98%), with
a CMAE of 2.8◦ and 91% of measurements within the 5◦ clinical acceptance. No statistically significant
differences were found between the CMAEs of mild (<25◦), moderate (25◦-45◦), and severe (≥45◦) groups.
The average measurement time per radiograph was 17.7±10.2s, improving upon the estimated average of
30s it takes an experienced rater to measure. Additionally, the algorithm outputs segmentations with the
measurement, allowing clinicians to interpret measurement results. Discussion/Conclusion:The developed
method measured Cobb angles on radiographs automatically with high accuracy, quick measurement time,
and interpretability, suggesting clinical feasibility.

INDEX TERMS Convolutional neural network, point-set registration, machine learning, radiograph,
scoliosis.
Clinical and Translational Impact Statement—Implementing the developed method could allow for quick
and robust Cobb angle measurements on radiographs to expedite clinical workflow and advise adolescent
idiopathic scoliosis (AIS) treatment diagnosis.

I. INTRODUCTION

SCOLIOSIS is a three-dimensional spinal disorder, where
the spine is characterized by lateral curvature and axial

vertebral rotation. Adolescent idiopathic scoliosis (AIS) is
the most common type of scoliosis and occurs in approx-
imately 3% of adolescents [1]. Girls have a higher chance

of developing more severe curves. If left untreated, AIS can
result in visible deformity, cardiopulmonary compromise,
and back pain [1]. Determining the appropriate treatment
for AIS involves routine imaging of the spine with a pos-
teroanterior (PA) radiograph and measuring the severity of
the lateral curvature using the Cobb angle. The Cobb angle is
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FIGURE 1. (a) Cobb angle measurement of 19◦ main thoracic (red) and
29◦ thoracolumbar (cyan) curves; (b) A conventional x-ray PA radiograph;
(c) A low dose radiation (EOS system) PA radiograph.

the gold standard for quantifying the severity of the spinal
curvature, which is measured by first identifying the pairs
of most slanted vertebrae with opposing tilt angles [2]. The
difference between the angles of the upper endplate of the
superior most tilted and the lower endplate of the inferior
most tilted vertebrae is then calculated. The Cobb angles
measured on a child withAIS are depicted inFig. 1a, in which
the child has a double curve. A minimum Cobb angle of 10◦

is required for a child to be diagnosed with AIS [1]. Fig. 1b
and 1c show the PA radiographs obtained from a conventional
digital and low dose radiation x-ray system (EOS Imaging
Inc, Paris, France), respectively.

Treatment options for childrenwithAIS are typically based
on whether they meet certain Cobb angle thresholds [1].
If the adolescent exhibits curve progression, an increase of
more than 6◦ in the Cobb angle between consecutive visits
(typically six months apart), treatment may change from
observation to bracing and/or exercise or from bracing and/or
exercise to surgery [3]. Obtaining accurate and reliable mea-
surements is therefore crucial to AIS treatment prescription
and evaluation of treatment outcomes. Additionally, some
clinics have a large number of AIS patient visits per day
combined with regular clinical visits (2-3 times per year),
and so measuring the Cobb angle quickly and accurately
is highly desired by clinicians. An automatic measurement
method has been widely sought to minimize measurement
error, reduce clinician workload, and improve measurement
reliability [4]. However, some of the major concerns that
clinicians have with using machine learning algorithms for
automation are medical liability due to algorithmic error and
skepticism in a ‘black box’ diagnosis [5]. Consequently, the
automatic measurement algorithm must also fulfill a high
interpretability criterion to give clinicians confidence in the
final automated diagnosis and the option to easily correct the
output if they see something wrong with it.

Because of the outlined benefits, some groups have tackled
the problem of automating Cobb angle measurement on PA

radiographs. Many of them use a convolutional neural net-
work (CNN) based approach and achieved accurate results
[6], [7], [8]. However, thesemethods suffer from either testing
on only a small subset in the wide range of curve severities
present in the AIS population, or offering little interpretabil-
ity on how the method measured the Cobb angles. Many
other groups have outlined their own automatic measurement
methods, but they do not obtain comparable measurement
accuracies [9], [10], [11], [12], [13].

Our group [14] previously reported on a method that
achieved a circular mean absolute error (CMAE) and stan-
dard deviation of circular absolute errors (SD) of 2.8◦

±2.8◦

and 88% of its Cobb angle measurements within clinical
acceptance (≤5◦) when compared with manual measure-
ments. However, this was only tested on a 100-image test
set, and there was no reported analysis of performance by
curve severity. Additionally, the method took 90±41 seconds
on average to measure per radiograph, which is roughly
the time it takes for a less experienced rater to manually
measure. More experienced clinicians can measure Cobb
angles on a radiograph in approximately 30 seconds, mak-
ing the previous method’s runtime a barrier of entry for
adoption in real scoliosis clinics. This manuscript reports
the development of an improved fully automated algorithm
to quickly measure the Cobb angle on PA radiographs and
to display highly interpretable output images. The mea-
surement results on an expanded test set of 200 PA spinal
radiographs with a wide range of curve severities, along
with an analysis on the accuracy performance, are also
reported.

II. METHODS AND PROCEDURES
A. DATA
The PA radiographs of children with AIS used in this study
were provided by a local scoliosis clinic. These images were
taken by either a conventional digital x-ray system or the EOS
system. Ethics approval for this study was granted by the Uni-
versity of Alberta research health ethics board (Pro00102044
– chart review). A total of 330 PA radiographs were used
in this study and split into three separate groups of 110, 20,
and 200 radiographs. The first group of 110 radiographs was
used for training and validating a spinal column segmentation
CNN. The second group of 20 radiographs was used to create
340 vertebral body images (17 relevant vertebrae per spine)
for training and validating a vertebral body CNN. Finally, the
last 200-radiograph group was used for Cobb angle measure-
ment testing. Further details on the data sets used for each
task are provided in their respective section below. All ground
truth labels for CNN segmentation were annotated by two
raters. Prior to creating the training sets, both raters labelled
10 practice spines with verification by a researcher who had
over 20 years of experience in Cobb angle measurement. The
200 radiographs in the Cobb angle test set were all measured
by that experienced researcher.
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FIGURE 2. Flowchart of the overall Cobb angle measurement automation algorithm.

B. AUTOMATION ALGORITHM
A flowchart of the overall automatic Cobb angle measure-
ment algorithm is illustrated in Fig. 2. The general steps
consist of identifying the spinal column from the top tho-
racic vertebra (T1) to the bottom lumbar vertebra (L5) as a
region of interest, isolating the individual vertebral bodies
for segmentation, performing point-set registration to correct
poor vertebral body segmentations, and finally measuring the
Cobb angle using the corrected segmentations. The overall
structure of the algorithm is like our previous work [14],
except that the point-set registration step was added to min-
imize Cobb angle measurement errors from poor vertebral
body segmentations. Segmentation of the spinal column and
vertebral body was accomplished with CNNs trained on a
Linux virtual machine on the Industry Sandbox & Artifi-
cial Intelligence Computing (ISAIC) supercomputer, using
an NVIDIA Tesla V100 16GB GPU, an Intel Xeon Gold
6138 dual processor, and 64GB of RAM. All code was imple-
mented in Python, using the TensorFlow library for CNN
development as well as the pandas and pingouin libraries
for statistical analysis. Any images used for CNN training
were manually labelled using a user interface from the Image
Processing Toolbox in MATLAB [15].

1) SPINAL COLUMN SEGMENTATION
The spinal column was segmented to narrow the PA radio-
graph to a region of interest for vertebral body segmentation.
This step applied the same procedure of pre-processing, seg-
mentation, and post-processing as described in [14], except
that the spinal column segmentation CNN is trained differ-
ently due to further network optimizations.

A CNN architecture based on the U-net was used to seg-
ment the spinal column from the processed images [15]. The
architecture of the U-net based CNN is illustrated in Fig. 3.
In total, 110 PA radiographs were manually labelled with a
continuous spinal column segment from T1, the first thoracic
vertebra, to L5, the last lumbar vertebra. These images were
split into a 96-image training set and 24-image validation
set. Each set consisted of half conventional and half EOS
radiographs. To increase the effective size of the training set,
the data augmentation methods of random horizontal flipping
and rotations of up to 10◦ were employed. The average of the
manuallymeasured Cobb angles including all curves from the
110 images was 24.6◦

±12.4◦ (range: 6◦ - 97◦).

FIGURE 3. Architecture of the spinal column segmentation CNN, based on
the U-net. Dark green boxes represent the feature maps and white boxes
represent copied feature maps with the size of them indicated on the left
of each convolutional block and the number of them above each box. The
leaky rectified linear unit (ReLU) activation function after each
convolutional layer had an alpha value of 0.01.

The CNN was trained using the Adam optimizer [16]
and a Dice loss function [17]. Optimizing the hyperparam-
eters of the CNN was accomplished with a grid search,
which involved fitting multiple models with different hyper-
parameter combinations and using the hyperparameters of
the highest performing network, according to which one
produced the lowest Dice loss during training. The ranges
of hyperparameters explored are listed in Table 1. The opti-
mized spinal column CNN was trained for 1,000 epochs.
A learning rate of 10−3 and a batch size of 2 was employed.
To improve the CNN’s ability to generalize, dropout [18] of
0.5 probability was performed after each pooling and upsam-
pling layer, and batch normalization was performed before
each pooling and upsampling layer. The network with the
lowest validation loss during training was taken as the final
optimized CNN.

Similar to the work in [14], any small stray segmentations
were removed and only the largest connected component was
treated as the spinal column. Then, the spinal column curve
(SCC) was determined by fitting a ten-degree polynomial to
the spinal column. These two steps were executed to improve
performance in the subsequent vertebra isolation step. Fig. 4
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illustrates the spinal column segmentation pipeline of an ini-
tial PA radiograph to fully segmented with the SCC labelled.

2) VERTEBRAL BODY SEGMENTATION
The vertebral body was segmented individually so that the
most opposite tilted vertebra angles could be derived for Cobb
angle measurement. The details of the processing steps were
reported in [14], but the vertebral body segmentation CNN
training differed in this study.

Segmentation of the vertebral body was achieved using the
same CNN architecture as the spinal column CNN, except
the initial image size was modified to be 128 × 128. A total
of 340 vertebral body images from 20 subjects with AIS
were manually labelled and split into 272-image training and
68-image validation sets, with each set comprising of half
conventional and half EOS radiographs. Data augmentation
methods of horizontal flipping, rotations up to 45◦, horizontal
and vertical shifts up to 10%, and zooming from 80% to 120%
were employed. The average of the manually measured Cobb
angles of the 20 subjects was 24.9◦

±10.8◦ (range: 7◦ - 54◦).
A grid search was similarly employed to optimize the

hyperparameters of the vertebral body segmentation CNN
with the hyperparameter ranges explored listed in Table 1.
The optimized CNN used an Adam optimizer with a learning
rate of 10−4 and a Dice loss function. It was trained for 1,000
epochs with a batch size of 4. A dropout of 0.125 was used
after each pooling and upsampling layer. Batch normalization
was not used.

Similar to the spinal column segmentation, small stray
segmentations were removed from the final vertebral body
segmentation and only the largest connected component
was kept. Fig. 5 illustrates the vertebral body segmentation
pipeline of a cropped vertebral body image.

3) ITERATIVE VERTEBRAL BODY LOCATION
Because the vertebral body segmentation CNN was trained
on square images centered on the vertebral body, a method
of identifying potential vertebral body images within the
PA radiograph is required for accurate vertebral body seg-
mentation. Localizing vertebral body images to crop out for
segmentation was accomplished using an iterative algorithm
which was different from the procedure described in [14].
Iterative vertebral body location started by estimating a posi-
tion of T12, the last thoracic vertebra, to crop out and
segment. This vertebra was chosen because it typically is the
clearest in a radiograph and therefore results in the clear-
est segmentations. First, the vertical position of T12 was
estimated by calculating a ratio, r , describing its relative
vertical position within the T1 to L5 spinal column. This is
calculated using vertebral body heights, h, given in [19], [20],
and vertebral index, j, with T1 as j = 1 to L5 as j = 17:

r =

∑12
j=1 hj∑17
j=1 hj

(1)

FIGURE 4. (a) An initial PA radiograph; (b) The pre-processed version of
the radiograph; (c) Automatically segmented spinal column (yellow) with
spinal column curve (green) overlaid on the pre-processed radiograph.

This ratio is then multiplied by the height of the segmented
spinal column to obtain T12’s estimated vertical position,
v. To maximize the chances of obtaining a cropped image
that was centred on T12, five vertical positions were chosen
for cropping, with each being separated by a quarter of the
spinal column width (SCW) at v. The horizontal positions
were the centroids of the spinal column segmentation at each
respective vertical position. The size of each cropped image
was determined using the SCW at each vertical position.
These cropped images were input into the vertebral body
CNN and the best quality segmentation was selected.

To determine the quality of a segmentation automati-
cally, thirteen vertebral body masks from the training set
were treated as standard masks and compared with the pre-
dicted segmentation. A similarity loss was calculated, which
involved extracting the contours of both the predicted seg-
mentation and each standard mask, performing rotation and
scaling on the contour of the predicted segmentation so that it
was consistent with each standard mask, and then calculating
the minimum distances from each point on the predicted
contour to each standard contour and vice versa. A lower
similarity loss corresponded to a higher quality. Let the dis-
tributions of points in the predicted and standard contour
be 8 and � with a single point being ϕ and ω in each
contour, respectively. The difference loss, ℓ, is calculated as
shown below with Nx being the number of points in a given
distribution x andM being the set of all standard masks:

ℓ = min
M

√ 1
N8

∑N8

i=1

(
min
ω∈�

∥ϕi − ω∥

)2

+

√
1
N�

∑N�

i=1

(
min
ϕ∈8

∥ωi − ϕ∥

)2
 (2)
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TABLE 1. Ranges of hyperparameters explored in the grid searches for both segmentation CNNs.

FIGURE 5. (a) An initial cropped vertebral body image; (b) The processed
version of the vertebral body; (c) Automatically segmented vertebral body
(yellow) overlaid on the vertebral body image.

Once T12 was set, the position of the vertebra above
(T11) was estimated for segmentation. The SCW of T12
was multiplied by vertebral body height-to-width ratios to
obtain the distance to travel to reach the next vertebra [19],
[20]. The direction in which to travel was determined using
the tangent of the SCC at T12. Crop width was determined
using the SCW at the new estimated position. This cropped
image was then passed to the CNN for segmentation. Checks
were employed to ensure that a reasonable segmentation
was achieved, such as testing that its ℓ was low and that
the two segmentations were reasonably far apart. If any of
these checks were failed, the cropping parameters were mod-
ified in scaling and/or translation to achieve a higher quality
segmentation. To avoid cases of infinite looping where the
vertebra in question can never be segmented satisfactorily,
only seven segmentation attempts were allowed before the
algorithm proceeded. Once the vertebral body segmentation
is finalized, the procedure of cropping location estimation,
vertebral body segmentation, and quality verification was
repeated for the next vertebra above in an iterative procedure
until the top of the spinal column segmentation was reached.
If the number of vertebral bodies that was segmented to reach
the top of the spinal column was different than expected, then
the algorithm shifted the levels of the vertebrae appropriately.
The T11 or L1 vertebra was sometimes segmented at the start
instead of the T12 vertebra due to spinal structural differences
in children with AIS. The algorithm then moved back to
the vertebra above the initially segmented vertebra to iterate
downwards until the bottom of the spinal column segmen-
tation was reached. This vertebra was chosen as the starting
point instead of the initially segmented one since there was
now more information to leverage for its cropping location
estimation and a higher quality segmentation for it could be
achieved. This overall algorithm is illustrated in Fig. 6.

4) POINT-SET REGISTRATION CORRECTION
To measure the Cobb angle, the tilt angle of the minimum
bounding boxes of each vertebral body segmentation is used.

One limitation in the algorithm from previous work [14]
was that the tilt angle of a vertebral body segmentation was
sensitive to small protrusions due to the use of a bound-
ing box to determine vertebral tilt. Consequently, a step of
point-set registration correction was added to minimize the
number of extraneous protrusions and ensure high quality
bounding boxes that accurately reflect the tilt of the vertebral
body.

Identifying whether a vertebral body required point-set
registration to correct its segmentation involved checking
that the tilt angle of the current bounding box, the angle
formed from the top corners of the segmentation, and the
angle formed from the bottom corners of the segmenta-
tion were all within a 3.5◦ difference from each other.
The algorithm also checked if the tilt angle of the current
bounding box was within 10◦ of the angle perpendic-
ular to the SCC at the centroid of the vertebral body
segmentation. If any of these checks failed, the verte-
bral body went through point-set registration to correct its
segmentation.

Point-set registration was accomplished using the scaling
iterative closest points algorithm (SICP) [21]. This algorithm
found the affine transformation that minimized the sum of
squared minimum distances between the points of the con-
tours from the vertebral body segmentation and standard
mask that produced the lowest ℓ during the iterative ver-
tebral body location algorithm. An inlier ratio of 0.8 was
used, and the SICP algorithm was repeated for a maxi-
mum number of 100 iterations unless an improvement of
less than 10−3 was achieved between consecutive itera-
tions. Once the SICP algorithm was complete, the registered
standard mask was used for measurement instead of the
segmentation.

5) COBB ANGLE MEASUREMENT
The Cobb angle was measured using the angles of the bound-
ing boxes of the vertebral body segmentations or registered
standard masks. Extracting the Cobb angles involved identi-
fying the apices of the spinal column, the vertebrae that are
most laterally shifted from the centerline of the body. The
apical vertebrae therefore correspond to the points on the SCC
where the angles perpendicular to the SCC are 0◦. A Cobb
angle was then calculated for each apex, taking the difference
of the steepest opposing vertebral body tilt angles (calculated
from their minimum bounding boxes). If no opposing ver-
tebral body tilt angles were found, the apex was skipped.
For each curve, the algorithm determines its Cobb angle,
direction, upper end vertebra, apical vertebra, and lower end
vertebra.
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FIGURE 6. (a) Search for the starting vertebra by segmenting five cropped images at different vertical positions; (b) Quality coefficient calculation to
determine the initial segmented vertebral body to use as the starting point for the iterative vertebral body location algorithm; (c) Iterative vertebral body
location algorithm where the most recently segmented vertebral body is used to estimate the position of the vertebral body above and below to segment
in an iterative procedure until all vertebral bodies are segmented; (d) Final result of the iterative vertebral body location algorithm where the vertebral
bodies are now separated from each other.

FIGURE 7. Automatic measurement algorithm outputs with relevant vertebrae used in Cobb angle measurement outlined (green boxes) and final Cobb
angles listed (cyan text). The three leftmost images are from the conventional x-ray system, and the three rightmost images are from the EOS x-ray system.

C. VALIDATION
1) SPINAL COLUMN AND VERTEBRAL BODY
SEGMENTATION
The performance of the optimized segmentation networks
was evaluated using 5-fold cross validation. The same hyper-
parameters and design choices for the final optimized CNNs
were used in cross validation, except for the number of
images. All labelled images were used in each 5-fold cross
validation, with 110 spinal column images and 340 vertebral
body images. The mean and standard deviation of the Dice

coefficient, precision, and recall over all folds were reported
as the segmentation performance metrics.

2) COBB ANGLE MEASUREMENT
A total of 200 spinal PA radiographs were randomly selected
for automatic Cobb angle measurement to validate the devel-
oped method. The average of the manually measured Cobb
angles of these 200 subjects was 24.6◦

±9.7◦ (range: 8◦ - 52◦).
None of the images in this set were involved in network train-
ing or algorithm tuning. The automatic Cobb angle (A-Cobb)
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FIGURE 8. (a) Bland-Altman plot of A-Cobb and M-Cobb measurements with a bias of 1.3◦ (black line) and (−6.0◦, 8.7◦) limits of agreement (red lines);
(b) Scatter plot of A-Cobb vs. M-Cobb measurements with line of best fit in red (y = 1.03x + 0.62).

FIGURE 9. Poor segmentations of the end vertebrae that resulted in high
circular absolute errors of: (a) 30◦ and (b): 19◦.

measurements were compared to manual Cobb angle (M-
Cobb) measurements performed on the same radiograph. All
M-Cobb measurements were performed by a rater who was
blinded to the A-Cobb measurements and had over 20 years
of experience measuring Cobb angles manually.

To evaluate the measurement accuracy, the circular mean
absolute error (CMAE) and standard deviation of circular
absolute errors (SD) were calculated. These metrics were

TABLE 2. Cross validation (5-FOLD) results for CNNs.

calculated as follows:

CMAE =
1
N

∑N

i=1
arctan

(
sin
(∣∣θai − θmi

∣∣)
cos

(∣∣θai − θmi

∣∣)
)

(3)

SD =

√√√√∑N
i=1

[
arctan

(
sin(|θai −θmi |)
cos(|θai −θmi |)

)
− CMAE

]2
N − 1

(4)

whereN is the number of pairedmeasurements and θa and θm

are the A-Cobb and M-Cobb angle, respectively. Addition-
ally, percentage of measurements within clinical acceptance
between A-Cobb and M-Cobb measurements was reported.
Clinical acceptance was defined as an A-Cobb measurement
being within at most 5◦ of the respective M-Cobb mea-
surement. The inter-method intraclass correlation coefficients
(ICC2,1) were calculated to evaluate the reliability. The verte-
bral level agreement was evaluated using the error index (EI),
calculated as follows:

EI =
1
N

∑N

i=1

√(
uai − umi

)2
+
(
lai − lmi

)2 (5)

where ua and um are the automatic and manual upper end
vertebral levels and la and lm are the automatic and manual
lower end vertebral levels [22].

Analysis was further split by curve severity into a mild
(<25◦), moderate (25◦-45◦), and severe (≥45◦) group. These
angle thresholds were chosen because they correspond with
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TABLE 3. Comparison results for M-cobb vs. A-cobb measurements on the measurement test set for different categories.

FIGURE 10. Examples of improvements between our proposed method
(left) and the method of Sigurdson et al. (right) for PA radiographs in the
Cobb angle test set. For both cases, all measured curves were pushed
within clinical acceptance with the improved method. The manual
measurements for the curves are: (a) 18◦; (b) 13◦ upper and 16◦ lower.

different treatment options for AIS [1]. The ICC2,1 values
were not reported for the curve severity groups because
the restriction of population variance attenuates the coeffi-
cients. Independent samples Student’s t-tests were conducted
between the CMAEs of curve severity groups to identify
any potential systematic biases in algorithm performance.
A threshold of p < 0.05 indicated statistical significance.
To assess the improvements from the network optimizations
and point-set registration over the method developed by Sig-
urdson et al. [14], the 200-image test set in this study was also
measured using the method in [14] for comparison.
Bland-Altman analysis was conducted to evaluate the level

of agreement between the two measurement methods [23].
Linear regression analysis was performed to evaluate the
relationship and linear correlation between the M-Cobb and
A-Cobb measurements.

III. RESULTS
A. SPINAL COLUMN AND VERTEBRAL BODY
SEGMENTATION
The 5-fold cross validation results for each segmentation
network are listed in Table 2. Both networks achieved a Dice

coefficient greater than or equal to 0.9 for all folds. The
optimized spinal column and vertebral body segmentation
networks converged in 398 and 195 epochs, respectively.

B. COBB ANGLE MEASUREMENT
Among the 200 test images, the experienced rater mea-
sured 352 Cobb angles (M-Cobb). The developed automatic
algorithm successfully identified 346 of these curves, missing
6 curves. Overall, 91% of the A-Cobb measurements were
within the clinically accepted error of 5◦. Additionally, the
CMAE for all categories of measurements were below the
5◦ clinical acceptance threshold. There were no statistically
significant differences between mild, moderate, and severe
groups, indicating no systematic biases in measurement
performance. The method of Sigurdson et al. successfully
identified 341 curves, missing 11 in total. It achieved a lower
percentage within clinical acceptance of 86% and a higher
CMAE of 3.2◦. Table 3 outlines the results of the M-Cobb
vs. A-Cobb paired measurements comparison for all curves
and the different curve severity categories.

The current automatic measurement algorithm took on
average 17.7±10.2 seconds to measure the Cobb angles per
radiograph. The algorithm measured much more quickly on
radiographs taken by the EOS system (9.8±3.1 seconds) than
the conventional system (25.7±8.3 seconds). Examples of
segmented and measured radiograph outputs from the current
method are illustrated in Fig. 7. The method of Sigurdson et
al. took 76.2±34.2 seconds on average to measure the Cobb
angles per radiograph.

A Bland-Altman plot and scatter plot with line of best
fit for A-Cobb vs. M-Cobb measurements are illustrated in
Fig. 8. The Bland-Altman plot resulted in a bias and limits of
agreement of 1.3◦ (-6.0◦, 8.7◦). The 95% confidence interval
of the mean difference was [0.94◦, 1.74◦], meaning that the
bias was significant as this interval excludes 0◦. The equation
for the line of best fit in the scatter plot was y = 1.03x +

0.62 with a correlation (r) of 0.93.

IV. DISCUSSION
A. RESULTS ANALYSIS
The current method achieved 91% of A-Cobb measurements
within clinical acceptance of theM-Cobb measurements. The
percentage of measurements within clinical acceptance is a
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useful metric in determining the feasibility of the algorithm
from a clinical perspective. This high accuracy coupled with
the high interpretability that our method offers – namely,
providing overlays of the individually segmented vertebral
bodies along with the angles of each vertebral body –
can quell clinicians’ doubts in using a machine learning
algorithm to automate Cobb angle measurement. With the
added benefit of measuring a subject’s radiograph within
18 seconds on average, our proposed method has achieved
strong clinical feasibility. The estimated average time it takes
an experienced rater to manually measure the Cobb angle
is 30 seconds per radiograph, so our completely automatic
algorithm can significantly expedite clinical workflow.More-
over, our algorithm measures radiographs even more quickly
on EOS-based radiographs, with an average measurement
time of 10 seconds per radiograph. The EOS radiographs pro-
vide better image quality as its x-ray source moves vertically
which generates more even penetration energy when com-
pared with the conventional x-ray system in which the x-ray
source is in a fixed position (usually at the middle). Image
quality at the upper and lower parts of the body from the
conventional x-ray system is relatively poor. Therefore, lower
quality vertebral body segmentations are more frequently
obtained during iterative vertebral body location, resulting
in more attempts at re-segmentation and longer measurement
times. Nowadays, the EOS system is a more common x-ray
system in many scoliosis centers among developed countries
due to its low-dose radiation capability.

Moderate curves were automatically measured slightly less
accurately than mild or severe curves, but based on the Stu-
dent’s t-tests between pairwise comparisons of curve severity
groups, we conclude that there were no substantial discrep-
ancies in measurement accuracy among the different curve
severities. The Bland-Altman and scatter plots also support
this conclusion, as there are no visual trends of larger error as
the value of the Cobb angle increases. The level agreement in
mild curveswas less accurate (EI: 1.3) thanmoderate (EI: 0.9)
and severe (EI: 0.6) curves. This is expected, however, as mild
curves have end vertebrae with shallower tilts. This means
that the neighbors of the end vertebrae typically have tilt
angles closer to the true end vertebra, making identification
of the true end vertebra difficult from both an automatic and
manual perspective.

A total of 6 curves that were in the M-Cobb measurements
were not detected by the automatic algorithm. The primary
reason for these undetected curves was the inclusion of a
vertebra with a very shallow tilt angle in the curve. It is easier
for the algorithm tomiss a curve with at least one end vertebra
that has a small tilt angle because the Cobb angle is defined
for vertebrae with opposing tilt angles. In 4/6 of the missed
curves, the algorithm segmented the relevant end vertebra,
but with no opposing tilt angle, even though the actual value
of its angle was very close to the manual measurement.
One of the other curves was missed due to a poor vertebral
body segmentation of the bottom lumbar vertebra (L5). The
shape of the L5 vertebra is typically different than the other

vertebrae due to its 3D orientation in the spine, meaning that
mis-segmentations of L5 are more common. Finally, the last
curve was not detected due to a slight mis-segmentation in the
spinal column. Because the spinal column segmentation was
off, the SCC for this subject did not detect an apex in the upper
region of the spine, resulting in no Cobb angle measured at all
for that region. It should be noted that none of the undetected
curves were the major curve for the subject. The major curve
is more important to detect since it is what determines the
appropriate treatment option for AIS. Instead, all undetected
curves were mild and minor curves, and so would be less
important to the diagnosis of the child with AIS.

There were two Cobb angle measurements with notably
larger circular absolute errors of 30◦ and 19◦. In both
cases, the automatic measurement algorithm overestimated
the severity of the curvature due to poor vertebral body
segmentation. The end vertebrae that negatively influenced
these measurements the most are illustrated in Fig. 9. The
segmentation was either so poor that image registration failed
at correcting the tilt angle sufficiently, or the poor segmenta-
tion was not detected as unreasonable and therefore did not
undergo image registration for correction. Fixing these errors
could potentially be accomplished by training the vertebral
body segmentation network with more data. However, these
errors, especially the 30◦ error, are at least apparent andwould
likely have been caught by a clinician with a quick inspection
of the segmented images.

B. COMPARISON WITH OTHER METHODS
Two other relevant papers reported on an approach that
involved CNN segmentation of spinal features to derive
automatic Cobb angle measurement [6], [8]. However, the
segmentation targets for our method differ from the other
papers. The methods in the related literature segment the
separated vertebral bodies from the full spinal radiograph,
whereas our method splits the task into segmentation of the
spinal column as one continuous segment on the full spinal
radiograph and segmentation of each individual vertebral
body from a square cropped image with the vertebral body
roughly centered. Therefore, we unfortunately cannot draw a
meaningful one-to-one comparison with these papers.

Table 4 outlines the comparison between our method and
other similar methods reported in the literature. The only two
algorithms that outperformed our CMAE performance either
had a very limited curve severity test set distribution [6] or
provided no curve severity test set distribution information at
all [8]. Accurate performance on curves above 25◦ is crucial
because this is the approximate Cobb angle threshold where
treatment options are seriously considered. Brace treatment is
considered as an option at around the 25◦ mark, and surgery
is considered for curves at around 45◦ [1]. Therefore, for an
automatic measurement algorithm to be clinically feasible,
accurate and reliable measurements must be achieved on
more severe curves to avoid misdiagnosis and ensure opti-
mal treatment outcomes. The other method [7] performed
worse in terms of CMAE, but had a potentially broader curve
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TABLE 4. Comparison of test set information and accuracy performance
of various automatic cobb angle measurement algorithms.

severity distribution. However, this method suffers from not
providing interpretability, meaning that one cannot visually
confirm the validity of the measurements.

Based on the performance of themethod of Sigurdson et al.
on our expanded test set, we conclude that the network opti-
mizations and point-set registration step positively impacted
the Cobb angle measurement automation algorithm. The
CMAE and SD improved by 0.4◦ and 1.1◦, respectively.More
importantly, the percentage of measurements within clinical
acceptance improved by 5% from 86% to 91%, which is a
metric that is of great relevance to clinicians when determin-
ing a measurement algorithm’s clinical feasibility.

Fig. 10 depicts a comparison of performance between the
two methods for two PA radiographs in the Cobb angle test
set. The lower end vertebra for the curves in Fig. 10a par-
ticularly illustrates the impact that an extraneous protrusion
can have on a Cobb angle measurement. For this case, the
added point-set registration step removed the protrusions,
thereby pushing the automatic measurement within clinical
acceptance.

C. LIMITATIONS
A limitation of this study is that there were not as many
severe curves included in the Cobb angle measurement test
set. Our method reports the curve severity distribution and
measures accurately on curves >20◦, unlike Horng et al.
and Zhao et al. [6], [8]. However, while the algorithm
did achieve 100% of A-Cobb measurements within clinical
acceptance for severe curves, 12 datapoints is not enough
to confidently conclude that the algorithm performs well
on curves ≥45◦. Severe curves make up a small proportion
of AIS cases, since bracing is typically prescribed to pre-
vent moderate curves from progressing to these high Cobb
angles. Therefore, with a randomly selected measurement
set, severe curves will naturally comprise a smaller propor-
tion of the set’s population. Consequently, a further study
with a test set of only cases with severe major Cobb angles
needs to be conducted to confidently validate the proposed
method.

Another limitation is that the study population was lim-
ited only to subjects with AIS. There are different forms of
scoliosis, such as congenital or neuromuscular, that would
benefit from an automatic Cobb angle measurement method
as well. While we have not tested our algorithm on congenital
or neuromuscular scoliosis patients, we strongly suspect that

the CNNs would need to be re-trained with labelled images
of other types of scoliosis to be accurate on those forms of
scoliosis.

Finally, there were no non-scoliotic cases in the validation
set population. We suspect that the algorithm would not mis-
classify non-scoliotic cases as scoliotic, since non-scoliotic
radiographs were included in the training sets of the CNNs for
this reason. However, future work would consist of testing the
algorithm on a set of non-scoliotic radiographs to confidently
validate this suspicion.

V. CONCLUSION
A fully automatic Cobb angle measurement method on
PA radiographs was developed using a cascaded design
of two CNNs, where one CNN segmented the spinal col-
umn and the other segmented individual vertebral bodies.
A point-set registration step was added to improve ver-
tebral body segmentations and was found in many cases
to push measurements within the clinically accepted error.
The developed method yielded 91% of measurements with
clinical acceptance with a 2.8◦ CMAE, indicating high accu-
racy. Measurements were obtained within 18s on average
per radiograph, which is quicker than what an experienced
rater manually measures. Additionally, measurements were
output in an interpretable fashion, with the segmentations
being output along with the measurement so that clinicians
can quickly confirm the validity of the measurement. These
three characteristics of the method are key in realizing actual
implementation in clinical practice. Future work consists
of validating on a set of more severe curves to cement
this method as truly clinically feasible. When this is com-
pleted, the algorithm could offer robust measurements for
informed treatment diagnosis of AIS and streamline clinical
workflow.
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