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ABSTRACT
Background and objective Detecting complex
patterns of association between genetic or environmental
risk factors and disease risk has become an important
target for epidemiological research. In particular,
strategies that provide multifactor interactions or
heterogeneous patterns of association can offer new
insights into association studies for which traditional
analytic tools have had limited success.
Materials and methods To concurrently examine
these phenomena, previous work has successfully
considered the application of learning classifier systems
(LCSs), a flexible class of evolutionary algorithms that
distributes learned associations over a population of
rules. Subsequent work dealt with the inherent problems
of knowledge discovery and interpretation within these
algorithms, allowing for the characterization of
heterogeneous patterns of association. Whereas these
previous advancements were evaluated using complex
simulation studies, this study applied these collective
works to a ‘real-world’ genetic epidemiology study of
bladder cancer susceptibility.
Results and discussion We replicated the
identification of previously characterized factors that
modify bladder cancer risk—namely, single nucleotide
polymorphisms from a DNA repair gene, and smoking.
Furthermore, we identified potentially heterogeneous
groups of subjects characterized by distinct patterns of
association. Cox proportional hazard models comparing
clinical outcome variables between the cases of the two
largest groups yielded a significant, meaningful difference
in survival time in years (survivorship). A marginally
significant difference in recurrence time was also noted.
These results support the hypothesis that an LCS
approach can offer greater insight into complex patterns
of association.
Conclusions This methodology appears to be well
suited to the dissection of disease heterogeneity, a key
component in the advancement of personalized medicine.

BACKGROUND AND SIGNIFICANCE
A major goal for epidemiologists is the identifica-
tion of genetic and environmental factors that
predict common complex diseases (eg, cancer).
Traditional Mendelian (single-gene) approaches,
such as those typically adopted in genome-wide
association studies, have yielded limited success
when applied to most common diseases, at best
identifying common variants that contribute only
modestly to a given phenotype.1 2 Perceived pro-
blems, common to these analyses, such as the
lack of reproducibility,3 4 the observation of
‘missing heritability’,2 5 6 and the sheer number of

candidate factors identified as potentially related to
disease, are all suggestive of a complex pattern of
association. Complexity references the number of
factors involved, the influence of interaction (eg,
additive or epistatic), and the inconsistency of het-
erogeneity. From an evolutionary perspective, these
types of complex disease associations would be
expected as the logical byproduct of canalization
and the accumulation of cryptic genetic variation.7

The term epistasis was coined to describe a
genetic ‘masking’ effect viewed as a multi-locus
extension of the dominance phenomenon, where a
variant at one locus prevents the variant at another
locus from manifesting its effect.8 This type of inter-
action might plausibly occur between sets of genetic
or environmental factors. To date, the detection and
modeling of epistasis and general interaction effects,
has received a great deal of attention. Random
forests,9 multifactor dimensionality reduction
(MDR),10 detection of informative combined effects
(DICE),11 combinatorial partitioning method,12

logistic regression,13 patterning and recursive parti-
tioning,14 and Bayesian pathway modeling15 repre-
sent just a handful of the available strategies. By
comparison, strategies that accommodate heterogen-
eity are in the minority. The meaning of the term
heterogeneity depends on the context. In the
context of admixture, heterogeneity simply refers to
genetic differences in population structure.16

In genetic modeling, a heterogeneous model
describes the independent effect of a number of
factors.17 Similarly, in association studies, hetero-
geneity refers to an independence effect seen in
three different phenomena: allelic heterogeneity,
locus heterogeneity, and phenocopy.18 Allelic het-
erogeneity occurs when two or more alleles of a
single locus are independently associated with the
same trait, while locus heterogeneity occurs when
two or more DNA sequence variations at distinct
loci are independently associated with the same
trait. Heterogeneity, typically classified as either
genetic (locus and allelic) or environmental (ie,
phenocopy), occurs when an individual, or set, of
factors is independently predictive of the same
phenotype. Additionally, trait heterogeneity occurs
when a trait or disease has been defined with insuf-
ficient specificity such that it is actually two or
more distinct underlying traits.18 In the context of
mining genetic and environmental patterns within
an association study, there is no practical distinction
between genetic heterogeneity, trait heterogeneity,
and phenocopy, since these phenomena manifest
the same type of independent associations. From
a computer science prospective, the problem of
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heterogeneity is similar to a latent or ‘hidden’ class problem.
While the disease status (case or control) of each patient
is already known, the individuals making up either class would
be more accurately subgrouped into two or more ‘hidden’
classes, each characterized by an independent predictive model
of disease.

As mentioned, there are far fewer successful strategies for
dealing with the heterogeneity problem. Most strategies that
examine epistasis, neglect to consider the impact of heterogen-
eity. An exception to this is seen in an evaluation of MDR that
demonstrated that simulated heterogeneity dramatically hinders
MDR’s power to detect all underlying modeled factors.19

Statistical approaches such as the admixture test,20 M test,21 and
β test22 are specific to family-based data and can only identify
the existence of heterogeneity rather than characterize it. The
most common approach to heterogeneity is to try to remove its
confounding effect by data stratification. This has been done
using strategies such as ordered subset analysis,23 latent class
analysis,24 25 tree-based recursive partitioning,26 and cluster-
ing.27 28 These methods preprocess the dataset based on genetic
risk factors, demographic data, phenotypic data, or endopheno-
types in order to form more homogeneous subsets of subjects.
This is in line with the standard epidemiological paradigm
that seeks to find a single best disease model within a given
homogeneous sample. The obvious drawback of these methods
is that their success completely relies on the availability, quality,
and relevance of these covariates. Additionally, stratification
represents a relative reduction in sample size, leading to an
inevitable loss in power to detect associations within these
homogeneous subsets.

Only a few strategies have been considered that concurrently
examine the problems of epistasis and heterogeneity without
resorting to some form of stratification. These include
MDR,19 29 random forests,30 association rule discovery,31 and
clique-finding for heterogeneity and multidimensionality in bio-
medical and epidemiological research (CHAMBER).32 While
some algorithms have been successful in accommodating the
problem of heterogeneity, explicit characterization has remained
a major challenge. CHAMBER, an algorithm that uses graph
building was the first to consider the joint characterization of
interaction and heterogeneity. Specifically, heterogeneity was
characterized through the identification of groups of individuals,
within which, different predictive attributes were correlated
with disease risk. In the context of data mining and machine
learning, the word attribute refers to a variable such as a single
nucleotide polymorphism (SNP) or a demographic variable such
as gender that is used to make a prediction. While CHAMBER
represents a unique step in the direction of data-driven
approaches to heterogeneity and epistasis, its exhaustive search
strategy limits its application to much smaller datasets. Also, the
CHAMBER algorithm has yet to be externally applied, and is
not accessible for download.

Given the apparent complexity of common disease, and the
likelihood that multi-locus interactions and heterogeneity are
present and likely to be ubiquitous components of disease
risk,33 34 it is critical to develop powerful new strategies that
concurrently deal with these phenomena. Strategies that make
assumptions about the nature, number, or source of underlying
factors will inevitably be susceptible to complicating phenom-
ena. Learning classifier systems (LCSs)35 are a rule-based class of
algorithms that combine machine learning with evolutionary
computing and other heuristics to produce an adaptive system.
They represent solutions as sets of rules, affording them the
ability to learn iteratively, form niches, and adapt. This class of

algorithm breaks from the traditional single model paradigm by
evolving a solution comprising multiple rules, consequently
avoiding the need for data stratification. These characteristics
make the application of LCSs to the problem of heterogeneity,
in particular, intrinsically appealing.

Previously, we explored the application of different LCS algo-
rithms to the detection and modeling of simulated epistatic and
heterogeneous genetic disease associations and demonstrated
their ability to successfully detect predictive factors in the pres-
ence of heterogeneity, and an extreme, precisely defined form of
epistasis referred to as pure epistasis.36 37 A purely epistatic
interaction occurs between n loci that do not display any main
effects.38 39 These proof-of-principle analyses identified
Michigan-style LCSs (M-LCSs) as the most promising imple-
mentation for our particularly complex, noisy problem domain.
However, knowledge discovery in M-LCSs remained problem-
atic. In another study40 we developed an analysis pipeline with
visualization-guided knowledge discovery to overcome this obs-
tacle. In addition to significance testing, the pipeline presented
subjective visualization strategies for inferring patterns of attri-
bute interaction and heterogeneity from the rule-set. Still
lacking, was a strategy for explicitly identifying heterogeneity
and linking instances in the dataset to respective heterogeneous
subgroups. With AF-UCS (attribute feedback-sUpervised
Classifier System)41 we introduced attribute tracking and feed-
back as mechanisms to deal with this problem, and improve
learning and generalization in the M-LCS algorithm. While the
aforementioned efforts to apply LCSs to the characterization of
both epistatic and heterogeneous patterns of association were
evaluated over a diverse spectrum of simulated datasets, we have
yet to apply them to a real-world investigation of common
complex disease. In this study we applied our extended M-LCS
approach to the investigation of bladder cancer susceptibility.

Like other common complex diseases, cancer is recognized as
a multifactorial disease that results from complex interactions
between many genetic and environmental factors. In an effort
to validate the utility of our M-LCS approach we investigated
the relationship between DNA repair gene SNPs, smoking, and
bladder cancer susceptibility in 355 cases and 559 controls
enrolled in a population-based study of bladder cancer. This
dataset was previously analyzed by Andrew et al42 using a multi-
faceted statistical approach that included the application of
logistic regression, MDR, and information theory. These previ-
ous findings identified XPD codon 751 and 312 SNPs together
with smoking as the best predictors of bladder cancer.

In this study, we applied AF-UCS,41 to the same dataset in an
attempt to replicate these previous findings and characterize any
patterns of interaction or heterogeneity that might be associated
with bladder cancer risk. We have demonstrated how the cluster-
ing of attribute tracking scores within instances of the dataset
may be used to identify sample subsets, after training. These
subsets aim to capture heterogeneous patterns of disease associa-
tions. Additionally, we have attempted to validate these sub-
groups with statistical comparisons examining clinical outcome
variables. Specifically, we examined age of diagnosis, survivor-
ship, age of recurrence, and tumor stage/grade between reliable
patient clusters.

MATERIALS AND METHODS
In this section we describe (1) the bladder cancer data examined
in this study, (2) the AF-UCS algorithm and associated run para-
meters, and (3) the analytical pipeline and statistical analysis
used in this study.
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Dataset
The bladder cancer dataset considered in this study was previ-
ously collected and examined by Andrew et al.42 After
removal of subjects with missing SNP values, the dataset
included 355 cases and 559 controls each with seven SNPs,
age, gender, and cigarette smoking history. DNA repair gene
SNPs were examined that had been previously related to
bladder cancer (XRCC1, XRCC3, XPD, XPC) and other
pathway members that physically interact with these genes
(APE1). A full description of this dataset is given by Andrews
et al.42 Along with the variables considered in that publica-
tion,42 additional clinical outcome variables were recorded for
the cases in this study group that are used in this study. These
included (1) tumor stage and grade, (2) age at diagnosis
(years), (3) survival time in years (ie, survivorship), and
(4) time to first recurrence in years. Censoring occurs when
we do not know the time of death or recurrence for all sub-
jects. Censoring indicators were included in the dataset corre-
sponding to both survivorship and recurrence. Tumor stage
and grade was included as a categorical variable with the fol-
lowing categories: (1) non-invasive low grade, (2) non-invasive
missing grade, (3) non-invasive high grade, (4) in situ tumor,
(5) stage II, (6) stage III, and (7) stage IV. Non-invasive, low-
grade tumors are the least aggressive and have the best prog-
nosis. Stage II and higher-stage tumors are tumors that are
‘invading’ through the bladder wall, which can then metasta-
size to other organs. In this study, analysis of the described
dataset was completed without access to unique patient identi-
fiers in accordance with institutional review board human
subject protection. Any identifiers added to track patients
during learning, clustering, and comparison of clinical vari-
ables, were arbitrarily assigned for the purposes of this study.

Summary of previous findings
The results of previous analyses performed by Andrew et al42

are summarized here. Overall, no significant associations were
identified between any single DNA repair gene SNP and bladder
cancer risk. A marginally significantly increased risk was seen in
the XPD codon 751 homozygote variant among subjects who
never smoked. The XRCC1 191 variant allele was associated
with reduced bladder cancer risk among heavy smokers. MDR
analysis identified pack-years smoking as the strongest single
factor for predicting bladder cancer risk (average testing accur-
acy=0.63). The best two-factor model included XPD 751 and
XPD 312 (average testing accuracy=0.65). The best three-factor
model (also the best overall model) added pack-years smoking
to XPD 751 and XPD 312 (average testing accuracy=0.66).
The application of information theory suggested that the rela-
tionship between the two XPD SNPs and bladder cancer is
mostly non-additive (ie, epistatic), while the effect of smoking is
mostly additive. It was noted that the two XPD SNPs were in
significant linkage disequilibrium. Further analysis indicated that
the combination of these SNPs into a haplotype indicated that a
variant XPD haplotype was more susceptible to bladder cancer,
an effect that was magnified with the inclusion of smoking.
XPD stands for xeroderma pigmentosum group D, the gene
encoding an enzyme in the nucleotide excision repair pathway.
This enzyme is known to remove certain DNA crosslinks, ultra-
violet photolesions, and bulky chemical adducts.43 Interactions
between XPD 312 and XPD 751 have also been seen in relation
to lung cancer risk, and several studies found that the risk of
lung cancer associated with the variant allele was higher among
non-smokers than among smokers.44 45

AF-UCS
The most unique feature of M-LCS is that it evolves a popula-
tion of rules which collectively constitute the learned prediction
model. Learning proceeds iteratively, with the rule population
training on one instance from the dataset at a time. Rule discov-
ery is largely achieved with a genetic algorithm operating at the
level of individual rules within the population. For a complete
LCS introduction and review, see Urbanowicz and Moore.35

UCS46 is an M-LCS based largely on the popular XCS
(eXtended Classifier System) algorithm47 but replaces reinforce-
ment learning with supervised learning. UCS was designed spe-
cifically to deal with single-step problems such as classification
and data mining, where delayed reward is irrelevant, and
showed particular promise when applied to epistasis and hetero-
geneity as we showed in a previous study.36 Previously, we devel-
oped the AF-UCS algorithm,41 an expansion of UCS which
incorporated attribute tracking and feedback into the basic
supervised learning algorithm. The AF-UCS algorithm is out-
lined in figure 1. Each rule includes a condition and class (ie, if
certain instance attributes have a specific state, then the rule pre-
dicts the specified class). Rules are built using a quaternary rep-
resentation, where each attribute of the condition will either
specify an SNP genotype encoding (ie, 0, 1, 2) or that attribute
will be generalized (ie, ‘#’, wild/don’t care). The right-hand
yellow box in figure 1 gives an example (C) including three
hypothetical rules represented in this manner. Notice that their
conditions all match the example training instance, and they all
specify the correct class of the instance.

While the majority of AF-UCS is equivalent to UCS, the dark
blue box in figure 1 highlights the mechanism unique to our
algorithm. Attribute tracking is a collective form of memory
designed to be applied to single-step supervised learning pro-
blems. Essentially this mechanism learns which attributes are
most important to the accurate classification of each individual
instance, storing and accumulating this knowledge independ-
ently of the rule population. Attribute feedback is a heuristic
that draws upon the knowledge learned in attribute tracking to
promote efficient generalization and improve learning in the
presence of noisy, complex, and heterogeneous data. Attribute
feedback probabilistically directs generalization pressures in the
GA based on relative attribute tracking scores. Specifically, attri-
bute feedback has been applied to the mutation and crossover
mechanisms.

Previously, AF-UCS was evaluated using only simulated data-
sets. In order to accommodate the nature of real-world datasets,
one minor modification was made to the algorithm. To address
the calculation of training and testing accuracy when the algo-
rithm is applied to unbalanced datasets we replaced the trad-
itional accuracy calculation with balanced accuracy as described
by Velez et al.48

We had previously implemented attribute tracking and
feedback into AF-UCS, a python encoding of the UCS algo-
rithm.36 41 We adopted mostly default M-LCS run parameters.
Parameters unique to this study include 200 000 learning
iterations, a rule population size of 1000, tournament selection,
uniform crossover, subsumption, attribute mutation probabil-
ity=0.04, crossover probability=0.8, and a ν of 1. ν has been
described as a ‘constant set by the user that determines the
strength (of) pressure toward accurate classifiers’49 and is typic-
ally set to 10 by default. A low ν was used to place less emphasis
on high accuracy in this type of noisy problem domain, where
100% accuracy is only indicative of over-fitting. Also, as in our
previous study,36 we employed a quaternary rule representation,
where for each SNP attribute, a rule can specify genotype or
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covariates as (0, 1, or 2), or instead generalize with ‘#’, a char-
acter that implies that the rule does not care about the state of
that particular attribute. Generally speaking, the use of larger
population sizes and a greater number of learning iterations can
improve the resulting performance of the evolved M-LCS rule
population. This study adopted modest values for these para-
meters. It is likely that optimization of these and other run para-
meters would further improve the performance of the AF-UCS
algorithm.

Statistical analysis
We adopted the analysis pipeline40 for the identification of sig-
nificant predictive attributes identified by the AF-UCS algo-
rithm. We extended this pipeline for the analysis of real data. In
summary, our analysis includes the following steps: (1) run the
AF-UCS algorithm on the dataset using 10-fold cross-validation
(CV), (2) run a permutation test with 1000 permutations, (3)
confirm significance of testing accuracy, (4) identify significant
attributes and significantly co-occurring pairs of attributes, (5)
train the AF-UCS algorithm on the whole dataset (no CV), (6)
generate visualization for pattern characterization, (7) repeat
steps 1–3 as a second pass on the dataset that only includes
attributes identified as significant from the first pass, (8) identify
significant, stable clusters of subjects using attribute tracking
scores, and (9) compare clinical variables between identified
subject clusters. Although we do not claim that this analysis
pipeline is necessarily optimal, we have attempted to assemble a
logical series of analytical steps that rely primarily on statistically
significant empirical observations. Indeed it is likely that there
are other reasonable ways to approach knowledge discovery and
hypothesis generation in this context.

Our first-pass analysis of the bladder cancer data (summarized
by steps 1–6) began by running AF-UCS on the dataset using
10-fold CV strategy in order to determine average testing accur-
acy and account for over-fitting. The dataset was randomly
partitioned into 10 equal parts and AF-UCS was run 10 separate
times during which 9/10 of the data was used to train the algo-
rithm, and the other 1/10 was set aside for testing. We averaged
training and testing accuracies over these 10 runs. Next we set
up our permutation test. We generated 1000 permuted versions
of the original dataset by randomly permuting the affection

status (class) of all samples, while preserving the number of
cases and controls. For each permuted dataset we ran UCS using
10-fold CV. In total, permutation testing required 10 000 runs
of AF-UCS. We performed this analysis using ‘Discovery’,
a 1576 processor Linux cluster.

Next, we confirmed that the average testing accuracy was sig-
nificantly higher than expected by random chance. If average
testing accuracy had not been significantly high, this would have
suggested that AF-UCS was unable to learn any useful generali-
zations from the data, excluding a need for further analysis. We
used a typical one-tailed permutation test with a significance
threshold of p<0.05. Once a significant testing accuracy was
confirmed, we used the permutation test to identify attributes in
the dataset that showed significant importance in making accur-
ate classifications. As detailed elsewhere,40 we used the follow-
ing statistics for making such an inference from the rule
population: (1) specificity sum (SpS) and (2) accuracy-weighted
specificity sum (AWSpS). Additionally, we used the permutation
test to evaluate attribute interactions and to help to discriminate
between interaction and heterogeneity. This was achieved by
evaluating a co-occurrence statistic (CoS) that examined all pair-
wise attribute co-occurrence within rules of the population.40

We calculated CoS for every non-redundant pairwise combin-
ation of attributes in the dataset. In this 10-attribute dataset we
calculated 45 CoSs. These CoSs were also used to generate
the co-occurrence network given in the results. To generate
the co-occurrence network we used Gephi (http://gephi.org/)—
open-source graph visualization software. With the 45 CoSs cal-
culated above, we generated an adjacency matrix in a format
consistent with Gephi requirements. Using Gephi, we generated
a fully connected, undirected network, where nodes represent
individual attributes, the diameter of a node is the SpS for that
attribute, edges represent co-occurrence, and the thickness of an
edge is the respective CoS. Gephi offers a built-in function to
filter edges from the network based on edge weight. We used
this feature to focus on significant co-occurrence attribute pairs.

Next we trained AF-UCS on the entire dataset with no CV.
This was for rule population visualization purposes (ie, the gen-
eration of a rule population heat-map). In another study40 we
detailed the re-encoding of the rule-population in preparation
for visualization. We employed agglomerative hierarchical

Figure 1 Outline of the AF-UCS (attribute feedback-sUpervised Classifier System) algorithm. (1) Learning occurs iteratively, focusing on a single
training instance from the dataset at a time. (2) Training instance passed to the population of rules (P). (3) Match set (M) is formed, including any
rule in (P) that that has a condition matching the attribute states of the instance. (4) Correct set (C) is formed, including any rule in (M) which
specifies the correct class of the instance. (5) If no rules are found for (C), randomly generate such a rule using the covering mechanism. (6) Update
rule parameters in (M) and (C) (eg, rule fitness). (7) Use rules in (C) to update attribute tracking scores for current instance. (8) The genetic
algorithm (GA) selects parent rules from (C) based on fitness and generates offspring rules which are added to (P). If attribute feedback is being
used, the attribute tracking scores for the current instance are applied as weights to guide the GA. (9) Deletion mechanism removes rules from (P)
based on fitness whenever the size of (P) is greater than the user-specified maximum population size.
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clustering using hamming distance as the distance metric
http://gephi.org/. Clustering was performed on both axes (ie,
across rules and attributes). Both clustering and 2D heat-map
visualization were performed in R using the hclust and gplots
packages, respectively.

We extended this analysis to a second pass over the data that
focused exclusively on those attributes identified as significant in
the first pass. We repeated steps 1–3 including CV, permutation
testing, and statistical evaluation of average testing accuracy.
Also, we ran AF-UCS without CV on a subset of the dataset that
included only these significant attributes in order to obtain a
matrix of attribute tracking scores for further investigation.

Attribute tracking keeps a record of which attributes are most
important for accurate classification for each subject in the
dataset. Therefore, by clustering subjects in the dataset by these
attribute tracking scores we aimed to identify homogeneous
groups of subjects defined by similar patterns of attributes deter-
mined to be important for accurate classification. As we dis-
cussed elsewhere,41 before clustering we normalized attribute
tracking scores within each instance such that they lay between
0 and 1. Normalization was achieved by dividing each tracking
score by the sum of all tracking scores for that instance. This
allowed us to compare relative attribute patterns between
instances in the dataset.

Our strategy for the selection of significant stable subject clus-
ters involved hierarchical clustering with an assessment of uncer-
tainty. We applied pvclust, an R package that calculated p values
for hierarchical clustering via multiscale bootstrap resampling.50

Significant clusters were identified using approximately unbiased
(AU) p values, where AU values >95% were deemed significant.
We applied the default ‘average’ method of agglomerative clus-
tering, and the default distance measure of ‘correlation’. One
thousand bootstrap replications were performed in determining
AU values. Once calculation of p values was complete we
assigned alphabetical group IDs to unique, significant clusters.
Note that clusters included both patients with bladder cancer
and healthy control subjects. Finally, we compared the clinical
variables between cases found in respective significant subject
clusters. The clinical variable data was only applicable to the
bladder cancer cases in our study group. Thus, control subjects
were not used for this portion of the analysis. All the following
statistical evaluations were also performed in R.

Next, we discuss our evaluation of the continuous clinical
variables (ie, age at diagnosis, survivorship, and time to recur-
rence). The non-parametric Kruskal–Wallis one-way analysis of
variance was used to determine whether these clinical variables

differ by cluster. Pairwise comparisons between subject clusters
were performed using the non-parametric Mann–Whitney test.
In addition, we performed ‘time-to-failure’ analyses (ie, survival
analysis) for age at diagnosis, survivorship, and time to recur-
rence including failure curves (ie, Kaplan–Meier curves) for
each. Since both survivorship and time to recurrence data
include censored values, we adopted a Cox proportional hazard
regression model (coxph), most widely used in medical studies.
Since age at diagnosis could logically affect survivorship or time
to recurrence we included it as a covariate in the covariance ana-
lysis model. We began with a Cox proportional hazard model
including the interaction between cluster ID and age at diagno-
sis. Next we used the step function to choose the best factors to
keep in the model by Akaike’s information criterion (AIC). AIC
takes into account the balance between goodness of fit, and the
number of parameters included in a model. Follow-up analysis
of variance between the best model identified by AIC, and a
similar model excluding group specification, indicates whether
there is a significant difference in our clinical outcome variable
based on group designation. Comparisons were considered to
be significant at p≤0.05. Since tumor stage and grade was a cat-
egorical variable, we adopted a χ2 test of homogeneity in order
to look for differences between the cases of different clusters.
Noting that certain cells of the table had very few counts, we
followed up with a Fisher’s exact test.

RESULTS AND DISCUSSION
After a first-pass analysis of the bladder cancer dataset with
AF-UCS we observed an average training accuracy of 0.6995
and a significant average testing accuracy of 0.6042 averaged
over 10-fold CV (p=0.001). Table 1 summarizes the SpS and
AWSpS statistics for each factor in the dataset. Note that signifi-
cantly larger SpS and AWSpS statistics were seen for XPD 751,
XPD 312, and pack-years than would be expected by chance.
This indicates that these attributes were predictive of disease
risk. This finding corresponds with the results obtained using
MDR in the study by Andrew et al.42 Although not statistically
significant, the next largest SpS or AWSpS was seen for XRCC1
194. Recall that the study by Andrew et al,42 a smoking-
conditional decreased risk was found for this SNP.

Table 1 also summarizes significant results for the CoS statis-
tic. Seven of the possible 45 attribute combinations were found
to occur more frequently than would be expected by chance. In
particular, notice that the largest CoS value was found for the
attribute combination (XPD 751 & XPD 312). This is in line
with the best two-attribute model identified by MDR in Andrew

Table 1 SpS, AWSpS, and significant CoS results

Attribute SpS p Value AWSpS p Value Attribute Pairs CoS p Value

XPD.751 5686 0.001* 4001.86 0.001* XPD.751 & XPD.312 3367 0.001*
XPD.312 5077 0.007* 3550.64 0.001* XPD.751 & pack.yr 2757 0.001*
pack.yr 4827 0.037* 3383.68 0.006* XPD.751 & XRCC1.194 2530 0.001*
XRCC1.194 4206 0.461 2818.81 0.179 XPD.312 & pack.yr 2375 0.006*
age.50 4151 0.721 2800.63 0.308 XPD.751 & age.50 2345 0.016*
male 4048 0.745 2752.61 0.358 XRCC1.194 & pack.yr 2120 0.04*
XRCC1.399 3797 0.729 2595.78 0.427 XPD.312 & XRCC1.194 2105 0.046*
APE1 3524 0.891 2418.03 0.667
XRCC3 3172 0.989 2166.09 0.91
XPC.PAT 2975 1.0 1994.75 0.98

AWSpS, accuracy-weighted specificity sum; CoS, co-occurrence statistic; SpS, specificity sum.
*p Value <0.05.
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et al.42 We also noted that the (XPD 751 & pack-year) CoS
value was the second most strongly observed pair. This seems to
correspond with the observation in Andrew et al42 that the
XPD 751 homozygote variant indicated a marginally significant
increase in risk among subjects who never smoked. In fact, all
pairwise combinations including XPD 751, XPD 312, and pack-
year were found to be significantly over-represented here,
including (XPD 312 & pack-year). However, the CoS value for
(XPD 751 & XPD 312) was about 1.5 times larger than that
for (XPD 312 & pack-year). The relative dissimilarity of the
CoSs for these pairwise combinations does not support a clear
three-way interaction to explain the dataset as a whole.40 If it
did, we would expect more similar CoS scores for all three
combinations.

Figure 2A presents a visualization of the rule population
evolved by AF-UCS when trained on the entire bladder cancer
dataset. Although somewhat noisy, couple trends can be seen
within the rule population. First, XPD 751 and XPD 312 clus-
tered together as columns indicating a tendency for both SNPs
to be specified in rules concurrently. Second, specification of
pack-years did not cluster together with XPD 751 and XPD
312, suggesting an independent, and potentially heterogeneous
relationship. Figure 2B,C give the co-occurrence network con-
structed using the CoS values from this analysis. It represents a
direct visualization of the results presented in table 1. Again we
observed evidence of interaction between XPD 751 and XPD
312, and somewhat less evidence for other attribute pairs.

Clustering of normalized attribute tracking scores with pvclust,
for the set of 10 attributes in the data yielded a total of 82 signifi-
cant stable clusters. The largest cluster included only 106 sub-
jects, with subject counts in subsequent clusters dropping off
quickly. The large number of clusters is the result of including
attribute patterns that are not necessarily useful in characterizing
the significant underlying associations with disease risk.

In the interest of exploring an analysis pathway that focuses
only on significant attributes, we performed a second-pass ana-
lysis of the data that included only attributes XPD 751, XPD
312, and pack-years. We expected that this would yield larger
clusters of subjects for comparison. After this secondary analysis
of the bladder cancer dataset, including only attributes (XPD
751, XPD 312, and pack-years), we observed an average train-
ing accuracy of 0.6989 and a significant average testing accuracy
of 0.6968 averaged over 10-fold CV (p=0.001). Recall that the
MDR model that included these attributes reported a testing
accuracy of 0.66, and an accuracy of 0.5 would be expected
by random chance. We trained AF-UCS on the entire
three-attribute dataset and used pvclust to identify significant,
stable clusters of samples as previously described. A visualization
of these clustered and normalized attribute tracking scores is
given in figure 3A. By far, the largest two clusters were B and D.
Cluster B indicated a strong pattern of high attribute tracking
scores in XPD 751 and XPD 312, while cluster D indicated a
strong pattern of high attribute tracking scores for pack-years.

Once clusters were identified we looked for differences in
clinical outcome variables for the cases in these groups. Cluster
G included no cases, and therefore was not included in our
subsequent analysis of clinical variables. Kruskal–Wallis analysis
between the cases of clusters A–F yielded a marginally signifi-
cant difference for age at diagnosis (p=0.076), a significant
difference for survival time (p<0.05), and a marginally signifi-
cant difference for time to first recurrence (p=0.094). For the
remainder of this analysis we focused on clusters B and D, as
they were by far the largest of the subject clusters. Mann–
Whitney tests comparing clusters B and D yielded a significant

difference for age at diagnosis, survival time, and recurrence
(p<0.05).

Figure 3B–D give Kaplan–Meier plots illustrating ‘time to
failure’ differences between clusters B and D. We supplemented
these curves by performing failure analysis for each, as previ-
ously described. Examination of age of diagnosis yielded no sig-
nificant difference between curves B and D as illustrated in
figure 3B. Our examination of survivorship included age of
diagnosis as a covariate. Stepwise regression analysis indicated no
significant interaction effect between diagnosis and cluster ID.
However, AIC suggested that the best model included both
factors as main effects. The final survival model indicated that
both age at diagnosis (HR=0.07, 95% CI 1.05 to 1.10) and
cluster ID (HR=0.63, 95% CI 0.44 to 0.91) were significant
(p<0.05). Follow-up analysis of variance comparing the model
with and without cluster ID indicated that there was indeed a
significant survivorship difference between clusters B and D
(p<0.05) even after correcting for age at diagnosis as a covariant.

A similar analysis of recurrence indicated no significant inter-
action effect between recurrence and cluster ID. AIC again sug-
gested that the best model included both factors as main effects.
However, subsequent analysis of the final model indicated that
while age of diagnosis (HR=1.03, 95% CI 1.01 to 1.05) was
significant (p<0.05), cluster ID (HR=0.71, 95% CI 0.50 to
1.00) was only marginally significant (p=0.054). Follow-up
analysis of variance comparing the model with and without
cluster ID confirmed that the difference in recurrence between
clusters B and D was only marginally significant after taking age
of diagnosis into account (p=0.052).

Lastly, we found that the data were too sparse to successfully
complete either a χ2 test or a Fisher’s exact test between all
clusters and all stage/grade categories. Examination of stage/
grade counts showed that the vast majority of cases included in
the study were characterized as non-invasive low grade (the least
severe of the categories). Comparisons of stage/grade between
clusters B and D alone yielded no significant findings.

CONCLUSION
This study explored the application of an M-LCS analysis
pathway to the investigation of bladder cancer susceptibility and
clinical outcome. Our approach employed an adaptive stochastic
search algorithm that makes no assumptions about the under-
lying patterns of association. We extended a previously
described analysis pipeline for knowledge discovery and an attri-
bute tracking strategy for the characterization of heterogeneity.
This extension affords us the potential to identify etiologically
heterogeneous patient subsets. This investigation successfully
replicated previous findings that implicate XPD 751, XPD 312,
and pack-years of smoking as significant predictors of bladder
cancer susceptibility.42

Additionally, we extended the characterization of these pre-
dictive factors, identifying evidence of interaction between XPD
751 and XPD 312, and evidence of heterogeneity between
smoking and these genetic factors. We identified two large sub-
groups of subjects, with unique underlying patterns of attributes
important for accurate classification. Statistical analyses compar-
ing clinical phenotypes between these groups yielded a signifi-
cant and dramatic difference in patient survival time, together
with a marginally significant difference in time to first bladder
tumor recurrence (each after correcting for age of diagnosis).
Closer inspection showed that patients within cluster B (within
which the two XPD SNPs were the most important factors for
accurate classification) tended to be diagnosed earlier, displayed
a significantly increased survivorship, and a marginally
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significant increase in time to recurrence. Alternatively, patients
in cluster D (within which pack-years smoking was the most
important factor for accurate classification) tended to be diag-
nosed later with a significantly shorter survivorship and a mar-
ginally significant decrease in time to recurrence.

Although it is certainly no revelation that smoking can nega-
tively influence patient health, we have uncovered evidence of
a potentially heterogeneous smoking effect (ie, phenocopy) not
previously characterized. These findings support our claim that
this proposed M-LCS analytic pathway can accommodate

Figure 2 Rule population visualizations. (A) Heat-map visualization of the evolved AF-UCS (attribute feedback-sUpervised Classifier System) rule
population. Each row in the heat-map is 1 of 1000 rules comprising the population. Each column is one of the 10 attributes. Yellow indicates
specification of a respective attribute within a rule, while blue indicates generalization (ie, ‘#’/‘don’t care’. The attribute ‘male’ refers to gender.
(B) Illustrates the co-occurrence network, appearing as a fully connected network before any filtering is applied. The diameter of a node is the SpS
for that attribute, edges represent co-occurrence, and the thickness of an edge is the respective CoS. (C) The network after filtering out all CoSs that
did not meet the significance cut-off point. CoS, co-occurrence statistic; SpS, specificity sum.
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Figure 3 Subgroup identification and analysis. (A) Heat-map of normalized AF-UCS (attribute feedback-sUpervised Classifier System) attribute
tracking scores for entire bladder cancer dataset (three significant attributes). Each row in the heat-map is one of 914 instances comprising the
dataset. Each column is one of three attributes. Yellow indicates higher normalized tracking scores, while blue indicates lower ones. Significant
subject clusters are delineated by the blocks on the y axis labeled alphabetically. Owing to their small size, clusters F and G are not labeled, but can
be seen between clusters A and B. Cluster G is adjacent to B, while cluster F is adjacent to A. In order to better highlight the attribute patterns
underlying these clusters, the normalized attribute tracking scores are further scaled by instance using the scale feature in pvclust. (B–D) Kaplan–
Meier plots comparing different clinical variables for clusters B and D. Plus signs in the curve indicate censoring.
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underlying heterogeneity and can also be used to characterize
it. This methodology was designed to guide the dissection of
disease heterogeneity, supporting the identification of patient
subgroups which may be indicative of disease subtypes.
Additionally, the ability to characterize a patient-specific
pattern of association is advantageous for the development of
personalized medicine. Specifically, this strategy could be
applied to enable targeting personalized screening and treat-
ment regimens to appropriate subsets of patients.

While the results presented in this study illustrate the
promise of our proposed methodology, we do not claim that it
has been optimized. However, this algorithm has the advantage
of making no assumptions about the underlying patterns of
association. It can uniquely identify predictive attributes in the
context of higher-order interactions while simultaneously iden-
tifying subject subsets with respect to heterogeneous patterns,
something no other established methodology can boast.
Alternative strategies for determining patient subsets from attri-
bute tracking scores will be considered in future work.

Additionally, the hypotheses generated by this work must be
followed up with laboratory validation. Perceived heterogeneous
patterns might alternatively be indicative of higher-order inter-
action, or the absence of other critically predictive factors.
Alternative algorithms that specialize in modeling epistatic inter-
actions (such as MDR) may subsequently be run independently
on subject subsets to better characterize the predictive attributes
involved in these ideally more homogeneous groups. This pro-
posed strategy should benefit the generation of a more targeted
hypothesis and help to identify patient subgroups based directly
on patterns of association as opposed to potentially inappropri-
ate or incomplete covariate-based data stratification.
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