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In this work fMRI BOLD datasets are shown to contain slice-dependent

non-stationarities. A model containing slice-dependent, non-stationary signal power

is proposed to address time-varying signal power during BOLD data acquisition.

The impact of non-stationary power on functional MRI connectivity is analytically

derived, establishing that pairwise connectivity estimates are scaled by a function

of the time-varying signal power, with magnitude upper bound by 1, and that the

variance of sample correlation is increased, thereby inducing spurious connectivity.

Consequently, we make the observation that time-varying power during acquisition of

BOLD timeseries has the propensity to diminish connectivity estimates. To ameliorate

the impact of non-stationary signal power, a simple correction for slice-dependent

non-stationarity is proposed. Our correction is analytically shown to restore both signal

stationarity and, subsequently, the integrity of connectivity estimates. Theoretical results

are corroborated with empirical evidence demonstrating the utility of our correction.

In addition, slice-dependent non-stationary variance is experimentally determined to

be optimally characterized by an inverse Gamma distribution. The resulting distribution

of a voxel’s signal intensity is analytically derived to be a generalized Student’s-t

distribution, providing support for the Gaussianity assumption typically imposed by fMRI

connectivity methods.

Keywords: fMRI, non-stationarity, correlation, connectivity, resting-state, power

1. INTRODUCTION

Functional MRI (fMRI) connectivity analysis utilizes blood oxygen level dependent (BOLD)
data to determine how spatially remote brain regions cooperate when a subject is completing a
task or is simply at rest. BOLD data is noisy, being impacted by both equipment-related noise,
such as coil interference (Bandettini et al., 1998) and scanner drift (Bianciardi et al., 2009), and
subject noise, such as physiological interference (Biswal et al., 1995) and subject movement (Barry
et al., 2010). Both equipment and subject noise can be irregular and, therefore, non-stationary.
Scanners can generate non-stationary signal variance from inhomogeneous radio-frequency (RF)
amplification (Tanase et al., 2011), coil resistance (Gudbjartsson and Patz, 1995), disparities in
scanner performance over time (Weisskoff, 1996), and signal attenuation from diffusion and
dissemination amongst surrounding voxels (Ojemann et al., 1997). B0 fluctuations exhibit slice
dependence due to factors such as respiration effects and cardiac effects (de Moortele et al., 2002),
and the slice-dependence of susceptibility-induced signal loss has been recognized and attempts
made at compensation (Rick et al., 2010; Anderson et al., 2014). Delay between slice acquisitions
can render the introduced non-stationarity slice dependent, which is significant for connectivity in
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which comparison between voxels is key, in contrast to an
activation analysis in which voxels are typically analyzed
independently (Kimberg, 2008).

Connectivity analyses in fMRI frequently employ a linear
Gaussian model (LGM) to estimate dependence between a seed
timeseries and brain voxels (Goebel et al., 2003; Marrelec et al.,
2005; Wang and Xia, 2007; Tana et al., 2008). A core assumption
of the LGM class is weak stationarity of the constituent
timeseries, requiring the mean and variance of the timeseries
to be constant over time. Violation of this assumption has
implications for the integrity of connectivity results since the
distribution of the test statistic is altered (Granger and Newbold,
1974). Linear dependence estimates may also be affected as
time-varying variance is analogous to applying a (non-constant)
weight to each sample; samples associated with higher variance
receive a greater weighting and are consequently more significant
in the correlation estimate (Cohen et al., 2003). Random noise
occurring at samples accompanied by large variance can alter
results and even induce spurious connectivity (Granger and
Newbold, 1974). Therefore, if the non-stationarity remains
uncorrected, connectivity results may not be reflective of the
underlying linear dependence between voxels.

Non-stationarity of BOLD timeseries has been modeled in an
effort to resolve the loss of integrity associated with a stationarity
assumption imposed on non-stationary data. Lund et al.
(2006) modeled non-stationarity of noise via nuisance variable
regression in an fMRI activation analysis. They incorporated
cosine regressors for low-frequency drift resulting from hardware
instabilities, first order Volterra expansion regressors to model
rigid subject movement, and harmonic regressors to model
aliased physiological noise. This approach restricts removal of
non-stationary effects to noise processes explicitly modeled in
the regressors. Diedrichsen and Shadmehr (2005) addressed

Abbreviations: ACF, autocorrelation function; AIC, Akaike’s information
criterion; AR, autoregressive; ARX, autoregressive exogenous input; BIC, Bayesian
information criterion; BOLD, blood oxygen level dependent; CDGC, conditional
directed Granger causality; CGGC, conditional Geweke’s Granger causality;
CIGC, conditional instantaneous Granger causality; CSF, cerebrospinal fluid;
DCM, dynamic causal modeling; DGC, directed Granger causality; EEG,
electroencephalography; EPI, echo-planar imaging; FIR, finite impulse response;
fMRI, Functional MRI; FDR, false discovery rate; FPE, final prediction error;
FWER, family-wise error rate; GC, Granger causality; GGC, Geweke’s Granger
causality; GLM, general linear model; GOF, goodness of fit; HQC, Hannan
and Quinn’s information criterion; HRF, hemodynamic response function; iid,
independent and identically distributed; ICA, independent component analysis;
IGC, instantaneous Granger causality; IIR, infinite impulse response; LFP, local
field potential; LGM, linear Gaussian model; LISREL, linear structural relations;
LMC, left hemisphere primary motor cortex; LSE, least squares estimation;
MATLAB, matrix laboratory; MC, multiple correlation; MDL, minimum
description length; MEG, magnetoencephalography; MLE, maximum likelihood
estimation; MRI, magnetic resonance imaging; OSC, order selection criteria;
PACF, partial autocorrelation function; PC, partial correlation; PCA, principal
component analysis; PET, positron emission tomography; pdf, probability density
function; PDGC, partial directed Granger causality; PET, positron emission
tomography; RF, radio-frequency; RMC, right hemisphere primary motor cortex;
ROC, receiver operating characteristic; ROI, region of interest; RSS, residual
sum of squares; SEM, structural equation modeling; sICA, spatial ICA; sMRI,
structural MRI; SNR, signal to noise ratio; SVD, singular value decomposition;
tICA, temporal ICA; TR, repetition time; tSNR, temporal SNR; VAR, vector
autoregressive; WGN, white Gaussian noise.

time-varying volume variance in a fMRI activation study by
employing a linear model with Gaussian noise characterized by
time dependent variance. The non-stationary variance process
was empirically determined to apply globally, so that sample
variance was estimated for each image volume, and employed as
a weight in a least squares estimate of regression coefficients. Luo
and Puthusserypady (2007) consider the noise model proposed
by Diedrichsen and Shadmehr (2005), addressing robustness
concerns regarding estimation of the noise covariance matrix by
employing a Bayesian framework to estimate the time-varying
weights. Oikonomou et al. (2010) introduced a model of non-
stationary noise for BOLD activation analyses that assumed that
image slices contained unique stationary variance, applied as
weights to the non-stationary noise variance of each voxel; the
spatial extent of the non-stationary noise was not explored.

The necessity for modeling non-stationarity of BOLD
timeseries has often been argued with visual evidence (Calhoun
et al., 1999; Diedrichsen and Shadmehr, 2005; Lund et al.,
2006) or otherwise assumed (Long et al., 2005; Oikonomou
et al., 2009, 2010), so that there has been a notable absence
of statistical evidence demonstrating non-stationarity (Park
et al., 2010). Turner and Twieg (2005) established the temporal
non-stationarity of independent component analysis (ICA)
components derived from fMRI noise and found evidence for
the persistence of the spatial components, although what these
components represented is not stated. Furthermore, modeling of
non-stationary processes has historically been limited to fMRI
activation data; until recently there had been few investigations
into non-stationarity in resting state fMRI and existent studies
focussed on addressing the non-stationarity of noise processes
(Calhoun et al., 1999; Diedrichsen and Shadmehr, 2005; Lund
et al., 2006).

More recently, there has been increased interest in examining
the non-stationarity of functional connectivity in resting state
fMRI, such as Hindriks et al. (2016), Long et al. (2005),
Chang and Glover (2010), Niazy et al. (2011), and Park
et al. (2010), with a corresponding attempt to discern if the
evident time variance is of neural or physiological origin.
Handwerker et al. (2012) examined the non-stationarity of brain
correlations, demonstrating the existence of periodic fluctuations
in correlation at distinct frequencies, noting that the origin of
the fluctuations remains unclear, which limits the basis for neural
interpretation. Lindquist et al. (2014) examine the use of sliding
window correlation as a means to reveal non-stationarity in
underlying BOLD connectivity. Cribben et al. (2014) present a
method for identifying distinct periods with respect to changing
connectivity patterns. Allen et al. (2012) employ both sliding
window correlation and spatial ICA to identify time-varying
correlation, and a k-means clustering technique to isolate
reoccurring connectivity patterns, though spatial stationarity is
assumed. Hutchison et al. (2013) review recent the literature
discussing non-stationarity of functional connectivity in resting-
state fMRI, specifically examining sliding-window correlation
and the non-stationarity of spatial ICA components. Despite the
recent interest in time-varying connectivity, there has been an
absence of discussion regarding the potential impacts of time-
varying signal power.
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In this paper, we correct fMRI connectivity estimates for
non-stationarity induced by time-varying signal power during
BOLD data acquisition. Experimental fMRI data is empirically
shown to contain time-varying slice variance that is optimally
characterized by an inverse gamma distribution. The resulting
distribution of voxel intensity values is analytically determined
to be a generalization of Student’s-t distribution. On the basis
of these empirical results, a model of slice-dependent non-
stationarity is introduced, and an analytic derivation of sample
correlation between non-stationary timeseries is presented. It
should be noted that the proposed model captures non-
stationarity induced by slice-dependent, time-varying signal
power, and is not intended to be a universal model of all
sources of non-stationarity in the data. We demonstrate the
capacity for time-varying weights to alter both the magnitude
and, in specific cases, the sign of correlation estimates. A
straightforward correction to voxel timeseries affected by time-
varying signal power is proposed, and is analytically shown to
both restore signal stationarity, and to ameliorate the impact of
non-stationary signal power on subsequent linear dependence
estimates. Theoretical results are corroborated with empirical
evidence that demonstrates the utility of our correction in
restoring stationarity and the integrity of connectivity results.

This paper is organized as follows. Theoretical results are
detailed in section 3.1, incorporating a description of the non-
stationary signal model, with a derivation for the distribution of
voxel intensity for signals with time-varying variance (subsection
3.1.1), and the consequent expression for correlation between
non-stationary timeseries with proposed correction (subsection
3.1.2). Empirical and experimental methods are described in
section 2, followed by a description of results in section 3 and
discussion in section 4.

2. METHODS

We examine the impact of non-stationary signal power
multiplicatively applied to underlying stationary signals during
acquisition. In order to avoid confusion, we introduce a
nomenclature to describe the multiple sources of signal variance.
Underlying stationary timeseries are associated with a constant
variance, which will be referred to as stationary signal variance.
Time-varying signal power, modeled as a slice-dependent, non-
stationary variance, will be referred to as slice dependent non-
stationary variance or, equivalently, as time-varying signal power.
Sample variance of voxel intensities within a slice will be referred
to as sample slice variance and, similarly, sample variance of
voxels within a specific tissue type will be referred to as sample
tissue variance. Finally, variance of sample correlation will be
explicitly identified as such.

2.1. Simulated Data
MATLAB was used to generate simulation datasets of 2, 000
timeseries pairs. Denote the constituent timeseries in each pair

by x
(st)
m,t and y

(st)
n,t , where m and n index slice number. Each pair

was generated from a bivariate normal distribution characterized
by: timeseries length, T = 500; underlying correlation, ρ = 0.3;

mean values of x(st)m,t and y
(st)
n,t , denoted µx and µy, respectively,

and drawn from the range [−100, 100]; and stationary signal

variance of x(st)m,t and y
(st)
n,t , denoted σx and σy, respectively, both

randomly selected from the range (0, 10]. For each dataset, a
slice dependent non-stationary variance was randomly generated

for timeseries in slice m, i.e., x(st)m,t , and another for timeseries in

slice n, y(st)n,t , to emulate the time-varying signal power associated
with acquisition of voxels within a slice, and denoted σ 2

m,t
and

σ 2
n,t
, respectively. Samples for each time point of the time-

varying power processes were randomly drawn from an inverse
gamma distribution, which was characterized by two parameters
randomly drawn from the range [1, 10]. Each timeseries in
the dataset slice was then weighted by the square root of the
appropriate time-varying signal power according to whether it

was designated x
(st)
m,t or y

(st)
n,t , within the pair, to generate the

non-stationary signals xm,t , and yn,t , respectively.
Slice dependent non-stationary variance was estimated for

each slice by calculating sample variance spatially, across the

2, 000 x
(st)
m,t signals, and separately for the 2, 000 y

(st)
n,t signals, to

emulate the number of voxels that would typically be available
in a fMRI dataset. The precision correction, Equation (12), was
applied to generate timeseries corrected for non-stationarity of
the form proposed in Equation (2). Correlation was calculated
between each timeseries pair before being weighted by time-
varying signal power, after being weighted, and after the precision
correction was applied.

In order to determine the impact of both time-varying signal
power, and our subsequent correction, on autocorrelated signals,
we followed the same technique as for the white signals above, but
generated the signals using a vector autoregression (VAR) model.
In this case,

[

x
(st)
m,t

y
(st)
n,t

]

=

[

νx
νy

]

+ A1

[

x
(st)
m,t−1

y
(st)
n,t−1

]

+ · · · + Ap

[

x
(st)
m,t−p

y
(st)
n,t−p

]

+ ǫ,

ǫ ∼ N

(

0,

[

σ 2
x ρσxσy

ρσxσy σ 2
x

]

,

)

(1)

where νx and νy allow for timeseries with non-zero mean, Ap are

the 2 × 2 matrices of coefficients at the designated lag, p, x(st)m,t−p

is the value of the stationary timeseries at lag p and ǫ is a noise
vector with Gaussian distribution as specified.

We generated random VAR models using randomly selected
model order, p ∈ [1, 3], and all other values the same as for
the white signals above, including σ 2

x and σ 2
y randomly drawn

from the range (0, 10], and both νx and νy randomly set so
that µx and µy are in the range [−100, 100], where µ =
(

I− A1 − · · · − Ap

)−1
[

νx
νy

]

, forµ = [µx,µy]′. TheAp matrices

were specified via random generation of the poles of each VAR(p)
model with magnitude <1, and each model tested for stability.

We followed the same precision correction as for the white
signals, in weighting the timeseries with time-varying variance
according to whether the signal was allocated to slicem or n, and
applying the precision correction to generate timeseries corrected
for non-stationarity in signal power.
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2.2. Experimental Data
Two distinct datasets were collected. For the first dataset, two
healthy subjects were scanned on a 3T Siemens Tim TRIO MRI
scanner using two different procedures: (1) resting state BOLD
echo planar imaging, and (2) a motor task performance BOLD
EPI. For both procedures, we collected 219 volumes for each
participant (repetition time = 1, 600 ms; echo time = 20 ms; flip
angle = 90◦; 24 trans-axial slices, each 5.5mm thick, matrix =
64× 64, field of view [FOV] = 200× 200 mm2; acquisition voxel
size=3.125 × 3.125 × 5.5 mm3). The motor task was a block
design containing alternating periods of 30s each. During the
active period, the subjects were instructed to press either the left
or right button, according to an arrow displayed on the screen
that changed randomly every second. During the baseline period,
subjects were instructed to focus on a crosshair at the screen’s
center point. This dataset will be referred to as dataset 1.

For the second dataset three additional subjects were scanned
on a 3T Siemens Tim TRIO MRI scanner using resting state
BOLD echo planar imaging. We collected 240 volumes for each
subject (repetition time = 2, 000 ms; echo time = 20 ms; flip
angle = 90◦; 91 trans-axial slices, each 5 mm thick, matrix =
91×109, field of view [FOV] = 200×200 mm2; acquisition voxel
size=3.125 × 3.125 × 5.5 mm3). This dataset will be referred to
as dataset 2.

All images were motion corrected and smoothed using a
2D isotropic Gaussian 6mm kernel, applied using MATLAB.
A conventional general linear model (GLM) activation analysis
(Friston et al., 1994) was applied to the motor task data; the
maximum t-statistic in the right hemisphere primary motor
cortex (RMC) region was used to identify the RMC. An average
hemodynamic timeseries was created for the RMC of each subject
by averaging across voxels in the region of interest (ROI).

For each subject, slice dependent non-stationary variance
was estimated by calculating the sample slice variance of
voxel intensities in each slice at each time point. The
best-fit distribution for the sample slice variance of each
slice was determined by calculating the maximum likelihood
estimates (MLEs) for distribution parameters and identifying the
distribution that attained the minimum negative log-likelihood
amongst the set of Weibull, Gaussian, Gamma, Inverse Gamma,
Student’s-t, Exponential, Log-normal, Laplace, and Rayleigh
distributions. The Wilcoxon signed-rank test was used to
determine if sample slice variances of different slices were drawn
from distributions with equal mean (Wilcoxon, 1945). This
choice was motivated by the non-normal distribution of slice
variance. The test was applied pairwise between all slices. The
null hypothesis was that the median difference when comparing
sample slice variances between two slices, is zero, while the
alternative hypothesis was that the median difference is non zero.
If the null hypothesis was rejected, the samples for the two slice
variances being examined could be considered to be drawn from
different distributions. Sample slice variance was also tested for
stationarity, for which the augmented Dickey Fuller test was
employed (Said and Dickey, 1984). In both cases, the results were
significance tested with α = 0.01.

To establish whether tissue type is a significant determinant of
slice dependent variance, tissue masks were generated for each

subject using the FSL software suite. For each image volume,
the sample tissue variance across all voxels associated with a
specific tissue type was calculated, yielding a timeseries of volume
dependent variance for each tissue, including gray matter, white
matter, and cerebrospinal fluid (CSF). Given that sample tissue
variance and sample slice variance were necessarily generated
from a common set of voxels, to establish whether tissue
type is a significant determinant of slice-dependent variance,
whole-volume variance was calculated at each time point and
regressed out from both the tissue variance timeseries and the
slice variance timeseries. The resulting tissue variance timeseries
were correlated with slice variance timeseries, and tested for
significance using a Student’s t-test. Additionally, to establish
whether the ratios of tissue types within each slice impacted the
sample slice variance, the optimal inverse gamma parameters for
each slice variance process were correlated with the proportion
of each specific tissue type in each slice, and tested for significant
using a Fisher’s-z transform.

Corrected voxel timeseries were formed by weighting voxel
samples using the slice dependent variance, as an estimate
of time-varying signal power. Seed-voxel correlation maps
were generated with a RMC seed for datasets with and
without applying the correction for time-varying signal power.
Correlation estimates were significance tested using Fisher’s z-
transformation (Fisher, 1915), with degrees of freedom corrected
for dependent samples (Davey et al., 2013), and the resulting
maps thresholded (α = 0.01, Bonferroni corrected).

3. RESULTS

3.1. Theoretical Results
In the acquisition of EPI BOLD data, two-dimensional slices
are usually obtained serially, on a millisecond time scale.
This can result in changes in the equipment and subject
environment, ultimatelymodifying signal characteristics between
slices, resulting in non-stationarity of voxel timeseries (Calhoun
et al., 1999). The slice dependence of the non-stationary processes
impacting fMRI data is verified experimentally in section 2.2.
Voxels within the same slice are acquired simultaneously and
hence signal power within a slice is constant.

fMRI analyses typically assume stationarity of voxel timeseries
and therefore it is desirable to determine a correction to restore
stationarity. We propose a model of non-stationarity for resting
state BOLD data in which each two-dimensional slice variance
is characterized by a distinct time-varying signal power. The
distribution of voxel intensity is analytically derived for this
model and the impact of the non-stationarity on correlation is
determined. Crucially, a simple correction is proposed that is
analytically shown to restore stationarity and correct correlation
values so that they reflect the underlying linear dependence
between voxel timeseries.

3.1.1. A Non-stationary Model of Resting State

Timeseries
We begin by proposing a model for the measured, non-stationary
signal in a voxel x situated in slice n. The form of the model
was motivated by the need to account for slice-dependent signal
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power in conjunction with the experimental results detailed in
section 3. The signal model decomposes the voxel intensity into
stationary and non-stationary components,

xm,t = x
(st)
m,tσm,t , t = 1, . . . ,T, (2)

where x(st)m,t denotes the stationary signal component at time t, and
σm,t is a time-varying multiplicative variance process associated
with slice m, and distributed across time according to an inverse
gamma distribution,

σ 2
m,t

∼ IG

(

αm,
1

βm

)

. (3)

Here αm and βm are slice specific shape and scale parameters,
respectively. Consequently, slice dependent non-stationary
variance has a mean of 1

βm(αm−1) , for βm > 0, αm > 2.

We now determine the distribution of non-stationary voxel
intensity, xm,t , when σm,t is unknown (Equation 2). The resting

state stationary component, x(st)m,t , is assumed to be Gaussian
distributed (Wink and Roerdink, 2006),

x
(st)
m,t ∼ N

(

0, σ 2
x

)

. (4)

As x(st)m,t and σm,t are independent random variables, at each time
point a voxel in slicem has distribution

xm,t ∼ N

(

0, σ 2
x σ 2

m,t

)

. (5)

The distribution of voxel intensity as derived in Appendix A is
given by

p
(

xm,t

)

=
Ŵ
(

α + 1
2

)

Ŵ(α)

(

1

2πβσ 2
x

)
1
2

(

1+
xm,t

2

2σ 2
x β

)−
(

α+ 1
2

)

. (6)

The voxel intensity distribution (Equation 6), is an instance
of the generalized Student’s-t distribution (Härdle and Simar,
2007, p.129) with parameterization µt = 0, νt = 2α, and
σ 2
t =

β
α
σ 2
x , where subscript t denotes a Student’s-t distribution

parameter. Consequently, the voxel intensity of sampled non-
stationary resting state BOLD data described by the proposed
model in Equations (2)–(3) is characterized by a generalized
Student’s-t distribution.

3.1.2. Impact of Non-stationary Signal Power on fMRI

Connectivity
Correlation-based measures assume stationarity of timeseries
and are known to be susceptible to spurious significance if
the stationarity assumption is violated (Granger and Newbold,
1974). We derive expressions for both correlation between non-
stationary timeseries to determine the impact of time-varying
noise on estimates of connectivity. In Appendix B sample
correlation was derived as

corr
(

xm,t , yn,t
)

= κ corr
(

x
(st)
m,t , y

(st)
n,t

)

, (7)

where

κ =
µσm,tσn,t

√

µσ 2
m,t

µσ 2
n,t

, (8)

and by the Cauchy-Schwarz inequality (Cauchy, 1921),

|κ| ≤ 1. (9)

Consequently, time-varying signal weights necessarily reduce the
magnitude of correlation between non-stationary signals, where
the extent of the reduction depends on the similarity of the
time-varying weight processes. It is important to note that it is
feasible for the time-varying processes to modify the sign of the
correlation in the event that the weights are drawn from the
set of real numbers. In such a case, correlation may appear as
anti-correlation and vice-versa.

The variance of sample correlation was found in Appendix B

to be

var
(

corr
(

xm,t , yn,t
))

≈
1− κ2corr

(

x
(st)
m,t , y

(st)
n,t

)2

T − 2
. (10)

Since κ ≤ 1, the variance of sample correlation between non-
stationary timeseries will be larger than that of stationary signals.
Consequently, estimates of correlation will be more prone to
spurious significance.

3.1.3. Correcting fMRI Connectivity for

Non-stationary Signal Power
Several fMRI connectivity methods, such as correlation-based
measures (Friston et al., 1994; Wang and Xia, 2007), Granger
causality methods (Goebel et al., 2003; Chen et al., 2006; Guo
et al., 2008), and structural equation modeling (McIntosh and
Gonzalez-Lima, 1994), assume stationarity of voxel timeseries.
If BOLD data is acquired with non-stationary signal power, this
assumption is violated. We now propose a correction to apply
to voxel timeseries generated from time-varying signal power of
the form proposed in our model (Equation 2). The correction
is analytically shown to restore stationarity in the event of such
time-varying power during image acquisition.

Let x(c)m,t denote a corrected voxel timeseries given by

x
(c)
m,t =

xm,t

σ̂n,t
, (11)

where σ̂ 2
n,t is the sample slice variance of voxel intensities within

slice m at time t. It is assumed that this sample slice variance
will include both the time-varying signal power of interest, σ 2

m,t ,
and a stationary signal variance component, or scale factor, σm,
such that

x
(c)
m,t =

x
(st)
m,tσm,t

σm,tσm

=
x
(st)
m,t

σm
. (12)
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FIGURE 1 | (A) Histogram of correlation estimates between stationary timeseries pairs with underlying correlation, ρ = 0.3. (B) Histogram of correlation estimates

acquired from non-stationary timeseries pairs, with time-varying signal power for each timeseries within a pair randomly derived from IG(2, 2) or IG(3, 2). (C) Histogram

of correlation between timeseries pairs corrected for non-stationarity. (D) Scatter plots between original correlation estimates drawn from stationary timeseries against

correlation estimates of weighted, non-stationary timeseries (crosses) and correlation estimates derived from timeseries corrected to restore stationarity (dots).

Observe that the corrected voxel timeseries is now stationary, but
with a variance that differs by a constant factor from that of the

underlying stationary signal variance component, x(st)m,t (Equation
4). Consequently,

x
(c)
m,t ∼ N

(

0,
σ 2
x

σ 2
m

)

. (13)

Correlation between corrected timeseries is given by

corr
(

x
(c)
m,t , y

(c)
n,t

)

=
1

T

T
∑

t=1

(

x
(st)
m,t
σx
σm

)(

y
(st)
n,t
σy
σn

)

= corr
(

x(st)m , y(st)n

)

,

(14)

where the first line is a direct result of the definition of corrected
timeseries in Equation (12). This demonstrates that correlation
between timeseries with time-varying signal power, corrected
for this source of non-stationarity, is equivalent to correlation
between the underlying stationary voxel timeseries. The impact

of the non-stationary signal weighting has been removed and the
intrinsic linear dependence has been recovered, as required.

3.2. Simulation Results
Simulated datasets were used to examine the impact of spatially
dependent non-stationary variance on sample correlation, as
well as the utility of the timeseries correction proposed in
Equation (12). Pairs of correlated, stationary timeseries were
generated using the methods described in section 2.1, and
sample correlation calculated between each pair. A histogram of
the correlation estimates is shown in Figure 1A, in which the
expected value of sample correlation matches the underlying true
correlation value of 0.3. Each stationary timeseries in a pair was
weighted by one of two time-varying inverse Gamma variance
processes, simulating time-varying signal power, depending on
whether the timeseries was designated as coming from slice
m, or slice n. A histogram of correlation estimates acquired
for the non-stationary pairs is shown in Figure 1B. The
expected value of sample correlation between the non-stationary
timeseries is clearly diminished, having a value of 0.48, in precise
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agreement with the analytic expression derived in Equation
(7). Furthermore, the variance of the correlation estimates for
the weighted, non-stationary timeseries is increased, thereby
reducing confidence in the estimates. Consequently, if left
uncorrected, the non-stationarity has the propensity to induce
spurious correlation.

The non-stationary timeseries were corrected by an estimate
of slice variance at each time point, according to the simple
correction proposed in Equation (12). Sample correlation was
calculated between corrected timeseries pairs (Figure 1C). The
results clearly demonstrate the efficacy of our correction in
restoring stationarity to the timeseries, and re-establishing the
expected value of correlation estimates to the true, underlying
correlation of 0.3.

Figure 1D contains a scatterplot between sample correlation
values calculated between the stationary timeseries, against
both sample correlation estimates between the non-stationary
timeseries, and those between the corrected timeseries. While
the histograms are indicative of changes in the distribution
of sample correlation, the scatterplots depict changes in
individual correlation estimates as a consequence of the
time-varying weighting and subsequent correction. Correlation
estimates of weighted timeseries differ by up to 0.25 from
the correlation contained in the original, stationary timeseries.
Conversely, the scatterplot between correlation estimates from
the stationary timeseries, and those derived from timeseries
corrected by estimates of the time-varying weights, are
almost indistinguishable.

The impact of the autocorrelation of fMRI timeseries on
our proposed correction was examined. Pairs of stationary VAR
timeseries were generated according to Equation (1), and one
timeseries within each pair allocated to slice m or n. Each VAR
timeseries within a slice was weighted with a time-varying signal
power, generated according to an inverse gamma distribution.
The non-stationary variance was estimated for each slice, the
VAR timeseries precision corrected, and sample correlation
recalculated for each VAR timeseries pair.

As shown in Figure 2, the distribution of sample correlation
for the stationary VAR timeseries is larger than that of the white
timeseries (Figure 1A), as expected due to the impact of the
autocorrelation. The coefficients determining autocorrelation in
the VAR timeseries were randomly generated, and hence had a
variable impact on instantaneous correlation. Sample correlation
between the non-stationary VAR timeseries (Figure 2B) is shown
to be significantly impacted by the weighting of time-varying
signal power. The mean correlation is reduced, showing that
the slice dependent non-stationary variance has a destructive
effect on correlation. After applying the precision correction
the distribution of sample correlation is restored to that of the
original stationary VAR timeseries (Figure 2C).

Figure 2D depicts a scatterplot of the correlation between the
underlying stationary timeseries, and that estimated between the
non-stationary VAR timeseries pairs, and the VAR timeseries
pairs corrected using our proposed precision correction. The
scatterplot shows that correlation between the non-stationary
VAR timeseries almost always has magnitude less than that from
which the stationary timeseries were generated. There are also

many cases in which the sign of correlation between the non-
stationary VAR timeseries has changed, from positive to negative
or vice-versa. Importantly, sample correlation between the
corrected timeseries has recovered to agree with the underlying
correlation between the stationary VAR timeseries.

3.3. Experimental Results
3.3.1. Non-stationarity of Resting State Data
For each subject, and for all slices within each subject’s
experimental dataset, the inverse gamma distribution best
characterized the distribution of sample slice variance estimates
of voxel intensities within the slice, as shown in Figure 3. For all
slices, Figure 4 displays the distribution of sample slice variance,
in addition to the MLE fit of the inverse gamma distribution
to this experimental data. Despite significant variation in
slice mean and variance, in each case the distribution of the
sample slice variance is accurately characterized by an inverse
gamma distribution.

The probability distribution of Gaussian intensity values with
an inverse gamma, non-stationary variance was analytically
derived to be a generalization of a Student’s-t distribution
(Equation 6). Experimental intensity values corroborate this
theoretical result; for each subject, the temporal distribution
of voxel intensity values within a slice, as well as the
distribution of individual voxel intensities, were optimally
characterized by a three parameter Student’s-t distribution.
The resulting distributions for the slice and voxel are similar,
although the voxel distribution has significantly reduced degrees
of freedom (Figure 5). Since a Student’s-t distribution is
asymptotically Gaussian with degrees of freedom, our empirical
results support the Gaussianity assumption inherent in a
linear Gaussian model (LGM).

Our theoretical results in section 3.1.1 were derived using
a model of slice dependent, time-varying variance. This model
differs to that of Diedrichsen and Shadmehr (2005), in which
a global time-varying variance was assumed so that all voxels
within a 3D image were associated with a single non-stationary
weighting. We verify the applicability of our model of slice
dependent, non-stationary signal power using an experimental
fMRI dataset. Figures 6A,C depicts the sample slice variance for
two exemplar slices, demonstrating both the non-stationarity and
the dissimilarity of the time-varying processes, and Figures 6B,D
displays the mean slice variance for each slice across two
different subjects.

A more formal examination of dissimilarity was performed
using the Wilcoxin rank-sum test to assess the equality of sample
slice variance distributions. The test was applied to each slice
pair; Figure 7 shows the result in matrix form. Black indicates
that the null hypothesis of identical means was supported while
white designates a rejection of the null hypothesis, indicating
that sample slice variances for the pair were drawn from
different distributions. The result clearly shows that slice variance
distributions are dissimilar in most cases (93%), supporting our
model of slice dependent non-stationary variance.

To determine if the slice dependence of the non-stationary
weights was induced by differing ratios of tissue types in each
slice, the linear association between slice time-varying weights,
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FIGURE 2 | (A) Histogram of correlation estimates between stationary VAR timeseries pairs with underlying noise correlation, ρ = 0.3, according to Equation (1).

(B) Histogram of correlation estimates acquired from non-stationary VAR timeseries pairs, with time-varying signal power for each timeseries within a pair randomly

derived from IG(2, 5) or IG(3, 7). (C) Histogram of correlation between VAR timeseries pairs corrected for non-stationarity. (D) Scatter plots between original correlation

estimates drawn from stationary VAR timeseries against correlation estimates of weighted, non-stationary VAR timeseries (crosses) and correlation estimates derived

from timeseries corrected to restore stationarity (dots).

and each sample tissue variance timeseries, was examined. For all
subjects, <10% of slices showed significant correlation with the
sample tissue variance timeseries, and none of the inverse gamma
parameters were significantly associated with the proportion of
tissue type within each slice.

Stationarity of slices was evaluated by applying the augmented
Dickey-Fuller (ADF) stationarity test to each slice. For all
subjects, more than 70% of the sample slice variance timeseries
were found to be non-stationary. None of the inverse gamma
parameters were significantly associated with the proportion of
tissue type within each slice.

3.3.2. Impact on Connectivity
Non-stationary slice variance is problematic when methods
that assume stationarity are employed to estimate brain
connectivity. The theoretical results detailed in section 3.1.1
model non-stationarity derived from temporal changes in

signal power. The impact of non-stationarity on correlation
was analytically established in section 3.1.2, in which it was
shown that a non-stationary weighting alters the expected
value of sample correlation, which is a critical result for fMRI
connectivity research. In this section, the theoretical results are
corroborated with empirical evidence from both simulated and
experimental data.

The simple timeseries correction (Equation 12), was applied
to the experimental resting state dataset introduced in section
2.2 to examine its ability to restore stationarity of fMRI data.
The weighting of correlation anticipated by the theory as
a consequence of the non-stationary signal power (Equation
8), was found to be in close agreement with those found
experimentally. For example, for voxels co-located with the
RMC, the weighting anticipated by the sample slice variance
was 0.8 for subject 1, while experimentally the change was 0.81.
Furthermore, the scatterplot between experimental correlation
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FIGURE 3 | Comparison of MLE distribution fits to sample slice variance. Goodness of fit was evaluated using negative log likehood. The optimal fit is identified by a

solid circle. (A) Shows results for dataset 1, while (B) shows results for dataset 2. In all cases, for both datasets, the inverse gamma distribution fits the data optimally.
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FIGURE 4 | Distribution of sample slice variance of voxel intensities within each slice. Distribution of sample slice variance values within each slice (dashed) and MLE

inverse gamma distribution fit to slice variance (solid), across slices. (A) Shows results for dataset 1, while (B) shows results for dataset 2.

estimates before and after correction, Figure 8 is reminiscent
of the scatterplot generated using simulated data, Figure 1D.
Although the spread of correlation in Figure 8 is greater,

reflecting a more diverse range in underlying true correlation
values, the principal eigenvector in the transformation of
correlation between uncorrected timeseries, to correlation
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FIGURE 5 | Three parameter Student’s-t distribution (solid) fit to experimental data values (dashed) for a single subject, drawn from (A) all voxels within a slice, z = 16,

and across time, (B) a single voxel timeseries within a slice (z = 16, x = 32, y = 32).

between corrected timeseries, clearly shows a size dependent
amplification of correlation. This is highlighted by inclusion
of the identity line in Figure 8, which designates where the
eigenvector would lie if there was no change in the expected value
of sample correlation between corrected timeseries. Note that the
gradient of the eigenvector depends on the time-varying weights.

The utility of our correction is demonstrated in Figure 9,
in which seed-voxel correlation maps with a RMC seed are
shown prior, and subsequent, to applying the correction for time-
varying signal power (Equation 12), for two different subjects.
The z-maps for both subjects show a visible difference in
connectivity to the RMC as a result of applying the correction.
Uncorrected z-maps contain a higher number of outliers than
z-maps acquired using corrected timeseries, suggesting that
uncorrected maps contain some connectivity artificially induced
by the time-varying nature of voxel variance. This result agrees
with the increased variance of sample correlation between
non-stationary timeseries. If the significance tests of sample
correlation are not altered to allow for this increased variance,
spurious correlation will be erroneously identified as significant.
Note that removal of non-stationarity changes both themean and
variance of sample correlation, as demonstrated in Figure 1, and
thus the correction may appear as a change in threshold when
applied to experimental data.

4. DISCUSSION

Connectivity analyses of resting state fMRI data typically
require stationarity of timeseries. However, this assumption is
violated by non-stationarity derived from noise sources such as
head movement, or by variable signal power originating from
sources such as inhomogeneous RF amplification (Tanase et al.,
2011) and signal attenuation (Stejskal, 1965). Violation of the

stationarity assumption impacts connectivity results by implicitly
applying a time-varying weight to timeseries elements. Random
noise occurring at a sample associated with high variance
may contribute more to a correlation estimate than a sample
containing signal of interest but located in a region of low signal
variance. Consequently, correcting for such time-varying signal
power is not only desirable but necessary (Cohen et al., 2003).

We propose a model of non-stationarity motivated by time-
varying signal power during acquisition. Since voxels within a
slice are acquired simultaneously in 2D EPI acquisitions, we
examined sample slice variance, describing temporal changes in
the variance of voxel intensities within a slice. We established
empirically that sample slice variance is non-stationary and can
be well modeled by an inverse gamma distribution, in agreement
with Hansen et al. (2003). Importantly, each sample slice variance
process was found to be particular to that slice, contrary to the
global assumption made by Diedrichsen and Shadmehr (2005).
Incorrectly assuming an identical non-stationary process for
all slices adversely affects connectivity results because signal of
interest may be ignored based on an increase in noise variance in
the overall image volume.

While signal non-stationarity can come from many potential
sources, each impacting a different spatial extent, we chose to
focus on slice specific variance due to striking observations of this
in experimental results. Conversely, a voxelwise model of non-
stationarity is difficult to substantiate and implement due to the
need for sample variance to be calculated from multiple samples
over space or time. Further, there is an infinite number of ways
to separate the voxel’s signal variance into spatial and temporal
origins, that in the absence of prior or secondary information
renders the approach intractable.

Our slice-specific method does not preclude the removal
of regionally specific non-stationarity as a subsequent pre-
processing step. The combination of the two would be
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FIGURE 6 | (A) Example sample slice variance from each resting state dataset. (A) (Dataset 1) and (C) (dataset 2) show calculated slice variance for exemplar slices

from subject 1 of each dataset. (B) (Dataset 1) and (D) (dataset 2) show the mean sample slice variance across all slices of subject 1 and 2 in each dataset.
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FIGURE 7 | Test of distribution dependence between sample slice variance processes. The Wilcoxon signed-rank test was applied to each slice pair for each subject

to identify dependence between sample slice variance distributions. (A) (Subject 1 from dataset 1) and (B) (subject 1 from dataset 2) show the results of each pairwise

assessment. Black indicates that the null hypothesis of equivalence was supported whilst white indicates rejection of the null hypothesis (α = 0.01).

FIGURE 8 | Scatterplot of correlation estimates between the RMC and brain

voxels (slice 19), before correcting for non-stationarity, against correlation

estimates acquired after applying the correction to restore stationarity. A line of

best fit of pre-correction correlation, to post-correction correlation, values is

shown (dashed), as well as the identity line denoting no change, to aid

comparison (solid).

confounded, as a given brain regionmay crossmultiple slices, and
would then contain voxels acquired with varying levels of signal
power that should be removed first. The secondary analysis and
removal of regional non-stationarity is beyond the scope of this
paper, and research we intend to pursue in the future.

In establishing that the non-stationarity of voxel timeseries
has a spatial dependence, it was shown that the time-varying

weights for each slice are drawn from statistically significant
distributions. We further established that there does not appear
to be evidence for tissue specificity. Given that the slice
dependence is dispersed across all tissue types, scaling timeseries
by sample slice variance will not destroy dynamic connectivity.
Consequently, additional methods can be employed to model
time-varying connectivity.

Non-stationary signal power applied to voxel signals during
acquisition has the propensity to change the distribution of the
intensity values (Granger and Newbold, 1974). We have derived
an analytic expression for the distribution of normally distributed
voxel intensity, with non-stationary variance described by
an inverse gamma distribution. The resulting distribution
of voxel intensity was shown to be a generalization of a
Student’s-t distribution, which was further validated using an
experimental resting state dataset. This result extends support
to the normality assumption typically imposed by linear fMRI
connectivity measures.

Having modeled the non-stationary distribution of fMRI
voxel intensities, we subsequently considered the impact of non-
stationary slice variance in the context of connectivity analyses,
obtaining an analytic expression for correlation between non-
stationary signals. Sample correlation between non-stationary
timeseries was shown to derive from correlation between the
underlying stationary signals, scaled by a function of the time-
varying processes. Importantly, the scale factor was shown
to have an absolute value less than unity. Consequently,
slice dependent non-stationary variance processes diminish the
strength of linear association between voxels. Furthermore, in
the case where time-varying weights are drawn from the set of
real numbers, the non-stationary process has the propensity to
change the sign of association so that a positive correlation can
become negative and vice-versa.

We derived the variance of sample correlation estimates
between non-stationary timeseries. We demonstrated that
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FIGURE 9 | Slice maps of significant RMC-seed voxel correlation for uncorrected timeseries, and timeseries corrected for non-stationary signal power, tested using

Fisher’s z-transformation. (A,B) Show subjects 1 and 2 from dataset 1 while (C,D) show subjects 1 and 2 from dataset 2, before (above) and after (below) correcting

for non-stationary signal power. For each subject, the number of outliers for corrected datasets is reduced. Spatial smoothing can cause clusters of outliers, which are

visibly reduced after correction, creating significance maps in closer conformance with expected results.

time-varying power increases the variance. The theoretical results
were corroborated with empirical results, which demonstrated
a discernible change in the variance of sample correlation
between non-stationary timeseries. This is significant as, if not
accounted for, it will result in an increase in the incidence
of spurious correlation. This may explain the large amount of
correlation found in some fMRI datasets before correction, and
the reduced amount of activation following correcting for time-
varying signal power.

While this paper considers non-stationary signal power in
resting state data, the result can equally be applied to activation
data. The correction procedure has the propensity to change the
signal means, however relative differences between signal means

both spatially, in different brain regions, and temporally, will be
preserved, and the linear relationship between the signal and the
task will be preserved as the signal mean is an offset factor. This
is the subject of our current work, and our preliminary testing
confirms this supposition.

To address the impact of non-stationarity signal power
on fMRI connectivity, a simple precision correction was
proposed, which was analytically demonstrated to restore signal
stationarity. The correction generated stationary signals that
differ in value from the underlying stationary signals by a
constant scale factor, which is inconsequential for correlation
since it is insensitive to scale. The efficacy of our correction
was validated using simulation data; after applying our proposed
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correction the mean value of sample correlation coincided
with the underlying correlation between the stationary signals.
Experimental data showed reduced outlier connectivity and
the number of significant connections reduced in accordance
with the smaller variance of stationary signals. Furthermore,
the change in mean correlation agreed with that anticipated
by the analytically derived expression for correlation between
non-stationary signals. Note that removal of time-varying signal
power will increase estimates of underlying linear connectivity
since the time-varying weights diminish sample correlation
estimates between timeseries.

The scope of current work has been to identify slice dependent
non-stationary variance and propose a statistical correction for
its presence in fMRI connectivity analyses. The 2D EPI datasets
examined were both acquired in the standard axial slice direction.
In order to probe the physical origins of non-stationarity, it
will be of interest in future work to alter the slice direction to
coronal, sagittal, or oblique slices.With B0 inhomogeneities more
concentrated at the base of the frontal lobe, this is expected to
change the signal power distributions when distributed across
slices rather than confined within certain slices. Investigation into
slice ordering, contiguous vs interleaved, and a comparison with
3D acquisitions are all potential ways in which the origins of
the non-stationarity can be scrutinized. Further, it is of interest
to explore Simultaneous Multi-Slice fMRI approaches that are
increasingly popular for the increased temporal resolution they
offer. The concurrent acquisition of multiple slices and un-
aliasing of the slices via the receive array coils will likely render
this a challenging statistical inference problem, but as with the
current work, this is vital for the statistical integrity of the
resultant brain connectivity maps.

5. CONCLUSION

Linear fMRI connectivity methods typically require stationarity
of timeseries. We have demonstrated that resting state fMRI
data do not meet this requirement but rather have time-varying,
slice-dependent, variance that is well-modeled by an inverse
gamma distribution. The resulting voxel intensity distribution
under this model is a generalization of a Student’s-t distribution.

The impact of non-stationary signal power on connectivity was
established by analytically deriving an expression for correlation
between timeseries with time-varying variance. Subsequently, a
correction was proposed and validated using both simulated and
experimental datasets.
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