
INTRODUCTION

Cerebral ischemia is a neuronal disease that occurs when the 
blockage of blood flow to the brain causes reperfusion injury and 
insufficient amount of oxygen induced by oxidative stress leads 
to neuronal cell death [1, 2]. It is well known that the high levels 

of oxidative stress critically increase neuronal cell death, whereas 
inhibition of oxidative stress by overexpression of antioxidant 
proteins reduced neuronal cell death [3]. Many studies have shown 
that high levels of oxidative stress destroy intracellular macromol-
ecules including DNA and proteins and finally leads to cell death 
[4, 5]. Conversely, natural products and proteins such as curcumin 
and caveolin-1/-3, which have antioxidant functions, have been 
shown to inhibit cell death including ischemic insults via the inhi-
bition of oxidative stress [6, 7]. 

Aldose reductase (AR; EC 1.1.1.21), a member of the NADPH-
dependent aldo-keto reductase family, reduces aldehydes detoxi-
fication during lipid peroxidation and several studies have dem-
onstrated that AR plays protective roles as an antioxidant protein 
against reactive oxygen species (ROS) [8-10]. Thus this protein 
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detoxifies ROS induced lipid aldehyde materials and protects 
against cell death via the inhibition of oxidative stress in a variety 
of cells such as SH-SY5Y cells [10]. Other studies also showed that 
AR protein enhanced cell survival by inhibiting cell toxicities in 
smooth muscle and lens epithelial cells [11].

Protein transduction domains (PTDs) carries not only proteins 
and peptides but also antisense, plasmids, microbeads, liposomes, 
and other molecules into cells without any special receptor [12]. 
Since PTD-fused proteins can pass through the membrane and 
enter into the inner part of cell, cell permeable PTD like Tat-pep-
tide can be useful tools in protein therapy when it fused with target 
protein [13, 14]. We have demonstrated that various PTD fusion 
proteins showed protective effect against cell damage in vitro and 
in vivo [15-22]. 

In this study, we fused AR with Tat PTD to transduce into cells 
and examined whether this Tat-AR fusion protein protects against 
oxidative stress-induced hippocampal HT-22 cell death and in an 
ischemic animal models.

MATERIALS AND METHODS

HT-22 cell culture and materials

Mouse hippocampal HT-22 cells were grown in Dulbecco’s mod-
ified Eagle’s medium (DMEM) containing 10% fetal bovine serum 
and antibiotics (100 μg/ml streptomycin, 100 μg /ml penicillin) at 
37℃ in a humidity chamber with 5% CO2 and 95% air. 

Ni2+-nitrilotriacetic acid Sepharose Superflow was purchased 
from Qiagen (Valencia, CA, USA). PD-10 columns were pur-
chased from Amersham (Braunschweig, Germany). The indicated 
primary and β-actin antibodies were obtained from Cell Signaling 
Technology (Beverly, MA, USA) and Santa Cruz Biotechnology 
(Santa Cruz, CA, USA). An enzyme-linked immunosorbent assay 
(ELISA) kit for hexa histidine was obtained from Cloud-Clone 
Corp. (Houstern, TX, USA). Unless otherwise stated, all other 
agents were of the highest grade available.

Purification and transduction of Tat-AR protein into HT-22 

cells

Preparation of the Tat expression vector has been described in a 
previous study [15]. Human AR was amplified by PCR with two 
primers. The sense primer 5ʹ-CTCGAGGCAAGCCGTCTCCT-
3ʹ contained an XhoI restriction site.

The antisense primer 5ʹ-GGATCCTCAAAACTCTTCAT-
GGAAGG-3ʹ contained a Bam HI restriction site. The resulting 
PCR products were ligated into a TA vector and digested with 
XhoI and BamHI restriction enzyme. Fragments were then ligated 
into the Tat expression vector to generate Tat-AR. Also, AR was 

prepared without the Tat peptide as a control. Recombinant Tat-
AR plasmid was transformed into Escherichia coli (Rosetta) and 
cultured in 0.5 mM isopropyl-β-D-thiogalactoside (IPTG; Duch-
efa, Haarlem, the Netherlands) at 18℃ for 24 h. Harvested cells 
were lysed by sonication and Tat-AR protein was purified using 
a Ni2+-nitrilotriacetic acid Sepharose affinity column and PD-10 
column chromatography. Bovine serum albumin was used as a 
standard and purified Tat-AR protein concentration was mea-
sured by Bradford assay [23]. 

To examine whether Tat-AR protein transduced efficiently in a 
time and concentration dependent, HT-22 cells were exposed to 
different concentrations (0.5~5 μM) of Tat-AR and AR protein for 
1 h. HT-22 cells were exposed 5 μM of Tat-AR and AR protein for 
various time periods (10~60 min). Cells were then washed with 
trypsin-EDTA and washed twice with PBS. The amounts of trans-
duced proteins were measured by Western blotting. We also de-
termined the intracellular stability of Tat-AR protein by culturing 
the cells (1~36 h) after transduction. Then transduced levels were 
measured by Western blotting using an anti-histidine antibody. 

Western blot analysis

Equal amounts of proteins were loaded into 12% SDS-PAGE and 
electrotransferred to a polyvinylidene difluoride (PVDF) mem-
brane. The membrane was blocked with TBS-T (25 mM Tris-HCl, 
140 mM NaCl, 0.1% Tween 20, pH 7.5) buffer containing 5% non-
fat dry milk for 1 h. After being washed with TBST, the membrane 
was incubated with the indicated primary and appropriate sec-
ondary antibodies recommended by the manufacturer. Then the 
membranes were washed with TBST buffer three times and the 
protein bands were identified using chemiluminescent reagents as 
recommended by the manufacturer (Amersham, Franklin Lakes, 
NJ, USA) [16]. 

Measurement of transduced Tat-AR protein levels

HT-22 cells (1×106) were pretreated with Tat-AR proteins and 
AR (0.5~5 μM for 1 h or 5 μM for 10~60 min). Cells were then 
washed with PBS and treated with trypsin-EDTA. Transduced 
Tat-AR protein levels were analyzed using an ELISA kit for hexa 
histidine (Cloud-Clone Corp.) according to the manufacture’s in-
struction. 

Confocal fluorescence microscopy analysis

To determine the intracellular distribution of transduced Tat-
AR protein in HT-22 cells, we performed confocal fluorescence 
microscopy as described previously [16, 17]. HT-22 cells were 
placed on coverslips and treated with 5 μM of Tat-AR protein for 
1 h. The cells were washed with PBS twice and fixed with 4% para-
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formaldehyde for 5 min. The cells were treated in PBS containing 
3% bovine serum albumin and 0.1% Triton X-100 (PBS-BT) at 
room temperature for 30 min and washed with PBS-BT. The histi-
dine primary antibody was diluted 1:1500 and incubated at room 
temperature for 3 h. The Alexa Fluor 488-conjugated secondary 
antibody (Invitrogen, Carlsbad, CA, USA) was diluted 1:1500 and 
incubated in the dark for 1 h. Nuclei were stained with 1 μg/ml 
DAPI (Roche Applied Science, Mannheim, Germany) for 2 min. 
Then stained cells were analyzed by confocal fluorescence mi-
croscopy using a confocal laser-scanning system (Bio-Rad MRC-
1024ES, 4BIOROD, CA, USA).

Cell viability assay

Cell viability was measured using a 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as described 
previously [19, 24]. HT-22 cells were seeded on a 96-well plate 
and treated with Tat-AR or AR protein for 1 h. Then the cells were 
incubated with 1 mM hydrogen peroxide (H2O2) for 8 h. The 
absorbance was determined at 540 nm using a microplate reader 
(Infinite 200 nanoquant, TECAN, Switzerland) and cell viability 
was defined as the percentage of untreated control cells.

DNA fragmentation staining

To examine whether transduced Tat-AR proteins protect against 
H2O2-induced DNA damage in cells, HT-22 cells were pretreated 
with 5 μM Tat-AR protein for 1 h and exposed to 1 mM H2O2 for 
6 h. Terminal deoxynucleotidyl transferase-mediated biotinylated 
dUTP nick end labeling (TUNEL) staining was performed using 
a Cell Death Detection kit (Roche Applied Science). Each fluores-
cent image was obtained using a fluorescence microscope (Nikon 
eclipse 80i, Tokyo, Japan). Fluorescence positive cells were counted 

under a phage-contrast microscopy (× 200 magnification) [16, 17].

Experimental animals and treatment

Male gerbils (65~75 g, 6 months) obtained from the Hallym Uni-
versity Experimental Animal Center, were housed at a temperature 
of 23ºC, with humidity of 60%, and exposed to 12 hour periods of 
light and dark with free access to food and water. All experimental 
procedures involving animals and their care conformed to the 
Guide for the Care and Use of Laboratory Animals of the National 
Veterinary Research & Quarantine Service of Korea and were ap-
proved by the Institutional Animal Care and Use Committee of 
Soonchunhyang University [SCH16-0009]. 

The transient forebrain ischemia model was performed as de-
scribed previously [16, 17]. Briefly, the animals were anesthetized, 
common carotid arteries were isolated, freed of nerve fibers, and 
occluded with non-traumatic aneurysm clips. Complete interrup-
tion of blood flow was confirmed by observing the retinal artery 
using an ophthalmoscope. After 5 min occlusion, the aneurysm 
clips were removed. The restoration of blood flow (reperfusion) 
was observed directly under the ophthalmoscope.

To explore the protective effects of Tat-AR protein against isch-
emic damage, the animals were divided into 4 groups (each n=10): 
control sham group, vehicle-treated group, AR-treated group, 
and Tat-AR-treated groups. The AR and Tat-AR proteins (2 mg/
kg) were administered intraperitoneally 30 min before ischemia-
reperfusion.

Immunohistochemistry

Immunohistochemistry was performed as described in previous 
studies [16-18]. Brain tissue samples were obtained at 7 days after 
ischemia-reperfusion. To examine the protective effects of trans-
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Fig. 1. Construction and purification of Tat-AR protein. Constructed map of Tat-AR based on the pET15b vector 

and diagrams of the expressed Tat-AR proteins (A). Purified recombinant Tat-AR and AR proteins were identified 

by 15% SDS-PAGE (B) and detected by Western blot analysis using an anti-histidine antibody (C). 
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duced Tat-AR protein against ischemic damage, the sections were 
incubated in 10% normal goat serum in PBS for 30 min and the 
sections were stained with a histidine antibody, Cresyl violet (CV), 

Fluoro-Jade B (FJB), ionized calcium-binding adapter molecule 1 
(Iba-1) and neuronal nuclei (NeuN). 

The positive neuronal cell number and intensity of immunore-
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Fig. 2. Transduction of Tat-AR proteins into HT-22 cells. HT-22 cell culture media were treated with Tat-AR 

protein at different doses (0.5-5 μM) or the AR protein for 1 h (A). The cell culture media were treated with Tat-AR 

protein (5 μM) or AR protein for different time periods (10-60 min) (B). Then, transduction of Tat-AR protein was 

measured by Western blotting and the intensity of the bands was measured by a densitometer. The localization of 

transduced Tat-AR protein was examined by confocal fluorescence microscopy (C). Scale bar = 5 μm. Intracellular 

stability of transduced Tat-AR protein. HT-22 cell culture media were incubated for 36 h after transduction of Tat-

AR protein for 1 h (D). Transduction of Tat-AR protein was measured by Western blotting and the intensity of the 

bands was measured by a densitometer. Quantitative analysis of transduced Tat-AR protein level in HT-22 cells. 

After HT-22 cells were treated with Tat-AR protein, transduced Tat-AR protein level determined using an ELISA 

kit (E). Data are repressed as mean ± SEM (n=3). 
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Fig. 2. Transduction of Tat-AR proteins into HT-22 cells. HT-22 cell culture media were treated with Tat-AR protein at different doses (0.5~5 μM) or 
the AR protein for 1 h (A). The cell culture media were treated with Tat-AR protein (5 μM) or AR protein for different time periods (10~60 min) (B). 
Then, transduction of Tat-AR protein was measured by Western blotting and the intensity of the bands was measured by a densitometer. The localiza-
tion of transduced Tat-AR protein was examined by confocal fluorescence microscopy (C). Scale bar=5 μm. Intracellular stability of transduced Tat-AR 
protein. HT-22 cell culture media were incubated for 36 h after transduction of Tat-AR protein for 1 h (D). Transduction of Tat-AR protein was mea-
sured by Western blotting and the intensity of the bands was measured by a densitometer. Quantitative analysis of transduced Tat-AR protein level in 
HT-22 cells. After HT-22 cells were treated with Tat-AR protein, transduced Tat-AR protein level determined using an ELISA kit (E). Data are repressed 
as mean±SEM (n=3).
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activity were calculated using an image analyzing system equipped 
with a computer based CCD camera (software: Optimas 6.5, Cy-
berMetrics, USA). The staining intensity of the immunoreactive 

structures was evaluated as the relative optical density (ROD). A 
ratio of the ROD was calibrated as % [16, 17].
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Fig. 2. Continued.
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Effects of Tat-AR protein against H2O2-induced HT-22 cell damages 

The protective effects of Tat-AR protein against H2O2-induced HT-22 cell damages were determined, as shown in 

Fig. 3. To examine the effect of Tat-AR protein on cell viability, we performed an MTT assay. Cell viability was 

about 60% in the cells treated with only H2O2 (1 mM, 8 h), whereas Tat-AR protein increased cell viability in an 

accordance with Tat-AR concentration up to 75% (Fig. 3A). 

To determine whether Tat-AR protein inhibits DNA fragmentation, TUNEL staining was performed. DNA 

fragmentation significantly increased in the cells treated with only H2O2 (1 mM, 3 h) treatment cells. Tat-AR protein 

markedly inhibited DNA fragmentation (Fig. 3B).  
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mM) for 3 h. Then, DNA fragmentation was detected by TUNEL staining and quantitative evaluation of TUNEL 

positive cells confirmed by cell counting under a phase-contrast microscopy (×200 magnification) (B). Scale bar = 

20 μm. **P < 0.01 compared with H2O2-treated cells. Data are repressed as mean ± SEM (n=3). 
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Statistical analysis 

Data are expressed as the mean±SEM of three experiments. Dif-
ferences between groups were analyzed by ANOVA followed by a 
Bonferroni’s post-hoc test. Statistical significance was considered 
at p<0.05.

RESULTS

Purification and transduction of Tat-AR protein into HT-22 

cells

A human AR gene was fused with a Tat PTD to produce cell-
permeable Tat-AR protein. Also, we constructed an AR protein 
expression vector as a control (Fig. 1A). As shown in Fig. 1B and 
1C, Tat-AR and AR proteins were purified and confirmed by SDS-
PAGE and Western blotting. Purified Tat-AR and AR proteins 
showed to the expected molecular weights of approximately 37 
and 36 kDa, respectively.

To investigate whether Tat-AR and AR protein possesses the 
capacity to transduce into HT-22 cells, the cells were treated with 
various concentrations of Tat-AR proteins (0.5~5 μM) protein 
for 1 h or various time periods (10~60 min) of Tat-AR proteins 
(5 μM). Then, cells were washed with PBS and cell lysates were 

analyzed by Western blotting. Tat-AR proteins were detected in the 
cell lysates from transduced HT-22 cells both a concentration- and 
time-dependently (Fig. 2A and 2B). Also, we determined the dis-
tribution of transduced proteins in HT-22 cells using Alexa Fluor 
488 and DAPI immunostaining. As expected, the transduced Tat-
AR proteins were detected in the cytoplasm and nucleus of the 
cells. In contrast, AR protein was not transduced under the same 
conditions (Fig. 2C). Furthermore, we assessed the stability of 
transduced Tat-AR protein. HT-22 cells were incubated with dif-
ferent time periods (1~36 h) after transduction of Tat-AR protein 
to persist in the cells. Tat-AR protein was observed in the cells up 
to 36 h (Fig. 2D). We also examined the transduced Tat-AR protein 
levels using an ELISA kit. As shown in Fig. 2E, transduced Tat-AR 
protein levels were increased concentration- and time-dependent-
ly.

Effects of Tat-AR protein against H2O2-induced HT-22 cell 

damages

The protective effects of Tat-AR protein against H2O2-induced 
HT-22 cell damages were determined, as shown in Fig. 3. To exam-
ine the effect of Tat-AR protein on cell viability, we performed an 
MTT assay. Cell viability was about 60% in the cells treated with 
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only H2O2 (1 mM, 8 h), whereas Tat-AR protein increased cell vi-
ability in an accordance with Tat-AR concentration up to 75% (Fig. 
3A).

To determine whether Tat-AR protein inhibits DNA fragmenta-
tion, TUNEL staining was performed. DNA fragmentation signifi-
cantly increased in the cells treated with only H2O2 (1 mM, 3 h) 
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treatment cells. Tat-AR protein markedly inhibited DNA fragmen-
tation (Fig. 3B). 

Effects of Tat-AR proteins on H2O2-induced signaling  

pathways in HT-22 cells

The mitogen-activated protein kinases (MAPKs) signaling path-
ways, such as extracellular signal regulating kinase 1/2 (ERK1/2 
or p44/42), c-Jun N-terminal kinase (JNK), and p38, are highly 
associated with ROS and finally lead to cell death [25]. We found 
that Tat-AR protein markedly and concentration-dependently re-
duced the expression of MAPKs phosphorylation in cells treated 
with H2O2 (1 mM). However, AR protein displayed no change in 
expression levels compared to the cells treated with H2O2 alone 
(Fig. 4). 

Next, we examined whether Tat-AR protein inhibits H2O2-
induced apoptosis because H2O2 is known to induce apoptosis. 
Phosphorylation p53 expression levels cause apoptosis [26, 27]. 
As shown in Fig. 5A, Tat-AR protein markedly inhibited the 
phosphorylated p53 expression concentration-dependently com-
pared to the only H2O2 treated cells. Bax, Bcl-2, and Caspase-3 
protein expression are associated with the oxidative stress induced 
apoptotic processes [28-30]. We showed that Tat-AR protein 
concentration-dependently elevated the Bcl-2 expression in the 
H2O2 treated cells, whereas the expression of Bax showed the op-

posite effect compared to the Bcl-2 (Fig. 5B). Further, we showed 
that Caspase-3 expression reduced in the H2O2 only treated cells. 
However, Tat-AR protein drastically increased the Caspase-3 ex-
pression and cleaved Caspase-3 expression showed the opposite 
effect compared to Caspase-3 (Fig. 5C). However, AR protein did 
not show the same changes of expression of apoptotic related pro-
teins under the same experimental conditions. 

Protective effect of Tat-AR protein on ischemic injury

To investigate the protective effects of transduced Tat-AR protein 
on ischemic injury in an animal model, we performed immuno-
histochemistry using a histidine antibody and NeuN staining. 
NeuN is known as a marker for neurons generally used to detect 
neurons. As shown in Fig. 6A, we observed that Tat-AR protein 
transduced into the hippocampal CA1 region, crossing the blood-
brain barrier (BBB), where it markedly protected against neuronal 
cell death compared to the vehicle- and AR protein treated groups. 
We also showed that transduced Tat-AR protein significantly in-
creased hippocampal neuronal cell survival. However, the AR pro-
tein treated group showed a similar pattern compared with vehicle 
treated group. To investigate the endogenous levels of AR protein 
in gerbil brain, gerbils treated with Tat-AR protein were sacrificed 
and obtained brain tissue. Then, endogenous AR protein levels 
were confirmed by Western blotting with AR antibody. As shown 
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in Fig. 6B, transduced Tat-AR protein doesn’t affect the level of en-
dogenous AR protein significantly.

Furthermore, we examined whether transduced Tat-AR protein 
inhibits neuronal cell injury and activation of microglia and astro-
cytes using FJB, Iba-1, and GFAP staining (Fig. 7). In the vehicle- 
and AR protein-treated groups, FJB, Iba-1, and GFAP fluorescence 
signals were intensively detected in the hippocampal CA1 region. 
In contrast, intensively fluorescence signals were markedly re-
duced in the Tat-AR treated group. These results indicate that Tat-
AR protein transduced into hippocampal CA1 region, traversing 
the BBB, and protected against neuronal cell damage resulting 
from ischemic injury by decreasing microglia and astrocyte activa-
tion. 

DISCUSSION

The generation of ROS induced by oxidative stress is involved 
in the pathogenesis of neurodegenerative disorders, cancers, and 
inflammatory diseases. Since excessive oxidative stress induces 
serious cell damage and finally leads to cell death, the inhibition of 
excessive oxidative stress may prevent various disorders [31-33]. 
The role of AR protein in a variety of disorders has been widely in-
vestigated. Several studies have shown that expression of AR pro-
tein protects against ROS formation and plays an important role 
as an antioxidant in neuronal cell [9-11]. On the other hand, some 
studies have demonstrated that inhibition of AR dramatically 
prevents production of LPS-induced cytokines, and inflammatory 
mediator proteins in Raw 264.7 cells, suggesting that inhibitors 
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of AR could be used for therapeutic agent in inflammation [34]. 
Thus, the AR protein shows contradictory effects depending on 
cell type or disease. Therefore, we examined whether AR protein 
has a protective effect against oxidative stress-induced HT-22 cell 
death and in an ischemic injury animal model.

Many studies have demonstrated that PTD fusion proteins trans-
duce into cells and tissues suggesting that PTD fusion proteins 
can be attractive therapeutic tools for various diseases [12-14, 35]. 
Tat, human immunodeficiency virus transactivator of transcript, 
is identified as the 11 amino acid sequence YGRKKRRQRRR 
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and Tat fusion protein has ability to deliver a variety of proteins 
crossing the cell membranes and the BBB. Thus, transduction of 
Tat PTD fusion protein can represent a novel strategy for treating 
a majority of neuronal disorders [36, 37]. In previous studies, we 
reported that transduced Tat fused proteins have protective effects 
against oxidative stress induced cell deaths and in animal models 
of various diseases [15-22]. 

It is well known that excessive cellular ROS generation leads to 
cell death and macromolecules damage including DNA [4, 5]. 
Therefore we investigated the cell viability and TUNEL staining 
assay to show the protective effect of Tat-AR against ROS. The data 
showed that Tat-AR protein inhibits cell death and DNA fragmen-
tation induced by oxidative stress. Several studies have shown that 
AR protein inhibits ROS toxicity. Overexpression of AR protein 
increased human lens epithelial cell survival in aldehyde-induced 
toxic condition and inhibited UVB-induced cell death and intra-
cellular ROS generation in HaCaT cell. Thus, they suggested that 
AR proteins inhibit the oxidative stress by sequestering ROS [11, 
38]. Our results showed same patterns as those reports suggesting 
Tat-AR protein protected H2O2-induced cell death and ROS gen-
eration in HT-22 cells. 

Next, we investigated the effect of Tat-AR protein against oxida-
tive stress-induced MAPKs signaling pathways. We showed that 
transduced Tat-AR protein inhibited the activation of MAPKs in 
the HT-22 cells. Increased ROS generation is known highly associ-
ated with cell signaling pathways by stimulation of redox-sensitive 
transcription factors and MAPKs (JNK, ERK1/2 and p38), which 
are known as a superfamily of serine/threonine kinases [25]. 
In smooth muscle cells (SMC), overexpression of AR protein is 
involved in the methylglyoxal (MG)- and hydrogen peroxide-
induced p38 and ERK signaling pathways [39]. Another study also 
showed that transfection of AR gene reduced the ultraviolet-B 
(UVB)-mediated activation of MAPKs (p38 and JNK) in HaCaT 
cells while the ERK was not affected in HaCaT cells [38]. Those 
studies showed coincidence with our data suggesting that AR pro-
tein inhibits the activation of MAPKs signaling pathways. 

In a previous studies have shown that excessive ROS genera-
tion leads to DNA damage and cell death by mediating apoptotic 
signaling pathways [40, 41]. Thus, we examined the effect of Tat-
AR protein on apoptotic-related protein expression including p53, 
Bax, Bcl-2, and Caspase-3 under oxidative stress condition. Our 
data showed that transduced Tat-AR protein reduced the phos-
phorylation of p53, Bax, and cleaved Caspase-3 expression, while 
Bcl-2 expression were significantly increased in the oxidative 
stress-induced HT-22 cells. Kang et al (2011) demonstrated that 
AR protein prevents activation of p53 expression levels in kerati-
nocytes which are exposed to UVB. This protein also suppressed 

the activation of Caspase-3 expression levels and markedly attenu-
ated Bax and Bcl-2 expression in UV-B treated cells, suggesting 
that overexpression of AR protein inhibits UVB-induced apoptot-
ic cell death via the regulation of apoptotic protein expression [38]. 
Although further studies are necessary to clarify the precise role of 
AR in MAPK and apoptotic signaling pathways, those results sug-
gested that AR protein plays a detoxification role and increases cell 
survival via regulation of MAPKs and apoptotic signaling path-
ways under oxidative stress conditions.

Oxidative stress-induced ROS plays a crucial role in brain injury 
following ischemia-reperfusion [42-45]. It has been reported that 
oxidative stress induced accumulation of 4-hydroxy-2-nonenal 
(4-HNE) and malondialdehyde (MDA) during ischemic injury 
[46, 47]. Thus, these authors suggest that the balance between 
antioxidant and oxidative stress in organism might be the best ap-
proach for protection against ischemic damage. As in vivo study, 
we examined whether transduced Tat-AR protein protects against 
oxidative stress-induced brain damage and attenuates ischemic 
injury. Our results showed that Tat-AR protein transduced into 
the hippocampal CA1 region, passing through the BBB. In addi-
tion, transduced Tat-AR protein markedly increased hippocampal 
neuronal cell survival and suggest that transduced Tat-AR protein 
protected neuronal cell damage during ischemic injury. It has been 
reported that overexpression of AR in cardiac myocytes prevents 
damage caused by ischemia-reperfusion via  the inhibition of lipid 
peroxidation derived aldehydes such as 4-HNE [48]. Some PTD-
fused antioxidant proteins have been shown to transduce into the 
brain and significantly reduce ischemic injury by reducing MDA 
and 4-HNE levels in the hippocampus [18, 49]. 4-HNE is metabo-
lized by AR and aldehyde dehydrogenase (ALDH) and ALDH and 
decreasing of 4-HNE prevented PC12 cell death [50-53]. Thus, AR 
is responsible for the beneficial effects of the late phase of ischemic 
preconditioning by inhibition of 4-HNE accumulation [54]. In 
agreement with these results, we showed that transduced Tat-AR 
protein inhibited hippocampal neuronal cell death and respon-
sible for beneficial effects in ischemic injury. 

In a previous study, Cho et al (2008) have demonstrated that cell 
permeable PTD-GFP fusion protein transduced into ischemic 
hippocampal neurons and transduced PTD-GFP fusion protein 
levels were persisted over 4 days in ischemic animal model [55]. 
Usually the stability of most transduced proteins in the cells is 
about 24~72 hours depending on the cell types or proteins, how-
ever the stability of transduced proteins in brain tissues is about 
4~7 days [17, 55-58]. The differences of stability between in vitro 
and in vivo are not understood yet. However, as you see in Fig.6A, 
the protein remains lower level at 7 days compared to 4 days which 
means the transduced protein degrades very slowly. 
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It is known that Iba-1 and GFAP are generally expressed in mi-
croglia and astrocytes of the intact brain and its expression under 
ischemic injury is increased. Thus, the enhanced expressional pat-
terns of Iba-1 and GFAP in the brain are considered as markers of 
microglia and astrocyte activities under ischemic injury [59, 60]. 
In previous studies we have demonstrated that the changes of glia’s 
activation after administration of various proteins were observed 
in ischemic animal model [17, 18, 57]. 

Other studies have shown that activation of microglia protects 
neuronal cell death by inhibition of inflammation at early stage 
of neuronal diseases [61-63]. Microglia are the principal immune 
cells in the central nervous system and microglial activation has 
dual effects (pro-inflammatory; M1-like or anti-inflammatory/
protective; M2-like) by the release of a number of inflammatory 
mediators in neuronal diseases including ischemic injury [64, 
65]. In the mild activated microglial cells contributes to restore 
the tissue homeostasis by clearing pathogens, necrotic cells and 
suppressing the inflammation, and facilitating the brain repair 
[66, 67]. However, over-activated microglial cells may exacerbate 
tissue damage and neuronal cell death by excessive production 
of neurotoxic substances including cytokines, nitric oxide (NO), 
and ROS [68, 69]. Thus, since microglial activation has the dual 
roles like promoting beneficial and detrimental effects on neurons, 
regulation of balance between beneficial and detrimental effects of 
microglial responses may be important in ischemic injury. 

NF-κB and MAPK signaling pathways considered to be one of 
critical regulators and plays a major role in the inflammatory re-
sponses by controlling the activation of microglia [70, 71]. In the 
inactivated state of microglia, NF-κB is present in the cytoplasm 
in inactive form. However, NF-κB translocates into the nucleus 
when microglia are activated and regulates the gene expression 
of pro-inflammatory mediators. Some studies have shown that 
the expression of pro-inflammatory cytokines increases within 
hours and elevates at several weeks later in ischemic stroke [72-74]. 
MAPK is a crucial signaling pathway that mediates inflammation 
and participates in cytokine control [75]. Dong et al. (2019) have 
shown that oxymatrine (OMT) alleviates neuronal damage and 
improves hippocampal neuronal states by inhibition of microglia 
activation and MAPK signal pathways activation in rat brain tis-
sues and primary microglia cells [76]. Furthermore, there are many 
evidences suggest that inhibition of microglia activation is impor-
tant for neuroprotection in ischemic injury [77-80], therefore how 
to reduce of pro-inflammatory mediators from activated microg-
lia is one of factors to find out the therapeutic molecules against 
ischemic injury [81-86].

In this study, after treatment of Tat-AR protein to ischemic ani-
mal model, the patterns of the changes of microglia and astrocyte 

activation showed coincidence with the protection of the hip-
pocampal neuronal cells obtained by CV and FJB staining experi-
ments. These our results indicate that transduced Tat-AR protein 
play an important role for hippocampal neuronal cell survival as 
an antioxidant function. However, further studies are necessary 
to understand the precise protective molecular mechanisms and 
functions of AR protein during ischemic injury.

In summary, we demonstrated that Tat-AR protein transduced 
into HT-22 cells and significantly protected cell death caused by 
oxidative stress via inhibition of DNA fragmentation and regula-
tion of MAPK and apoptotic signaling pathways. In addition, Tat-
AR protein transduced into hippocampal neuronal cell and pre-
vents cell death in an ischemic animal model. Thus, we suggested 
that Tat-AR protein can be a potential therapeutic protein agent 
for ischemic injury.
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