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Abstract

Background: Environmental enteric dysfunction (EED), frequently seen in rural Malawian children,

causes chronic inflammation and increases the risk of stunting. Legumes may be beneficial for

improving nutrition and reducing the risk of developing EED in weaning children.

Objective: The objectives of this study were to determine the nutritional value, verify the food

safety, and identify metabolite profiles of 3 legume-based complementary foods: common bean

(CB), cowpea (CP), and traditional corn-soy blend (CSB).

Methods: Foods were prepared by using local ingredients and analyzed for nutrient composition

with the use of Association of Official Analytical Chemists (AOAC) standards (950.46, 991.43,

992.15, 996.06, and 991.36) for macro- andmicronutrient proximate analysis. Food safety analysis

was conducted in accordance with the Environmental Protection Agency (7471B) and AOAC
(2008.02) standards. The metabolite composition of foods was determined with nontargeted

ultra-performance LC–tandem mass spectrometry metabolomics.

Results: All foods provided similar energy; CB and CP foods contained higher protein and dietary

fiber contents than did the CSB food. Iron and zinc were highest in the CSB and CP foods,

whereas CB and CP foods contained higher amounts of magnesium, phosphorus, and potassium.

A total of 652 distinct metabolites were identified across the 3 foods, and 23, 14, and 36

metabolites were specific to the CSB, CB, and CP foods, respectively. Among the potential

dietary biomarkers of intake to distinguish legume foods were pipecolic acid and oleanolic acid

for CB; arabinose and serotonin for CSB; and quercetin and a- and g-tocopherol acid for CP. No

heavy metals were detected, and aflatoxin was measured only in the CSB (5.2 parts per billion).

Conclusions: Legumes in the diet provide a rich source of protein, dietary fiber, essential

micronutrients, and phytochemicals that may reduce EED. These food metabolite analyses

identified potential dietary biomarkers of legume intake for stool, urine, and blood detection that
can be used in future studies to assess the relation between the distinct legumes consumed and

health outcomes. This trial was registered at clinicaltrials.gov as NCT02472262 and

NCT02472301. Curr Dev Nutr 2017;1:e001610.

Introduction

Environmental enteric dysfunction (EED) is generalized subclinical upper small bowel in-
flammation and is common among young children living in impoverished settings (1–4).
EED is associated with increased intestinal permeability, alterations in gut microbial popu-
lations, nutrient malabsorption, poor weight gain, stunting, frequent enteric infections, and
decreased response to enteric vaccines (1–4). EED predisposes children to clinically manifest
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forms of malnutrition, including wasting and stunting, and develops
during the first 3 y of life, which is a high-risk period marked by the
transition from exclusive breastfeeding, to mixed feeding with com-
plementary foods, to an adult diet (1, 2, 4). In sub-Saharan Africa,
common complementary foods include maize, cassava, and sor-
ghum, all of which are staples in an unvaried diet that is high in
starch and deficient in protein and micronutrients (5). Alternative
and culturally acceptable complementary foods that can supply a
better balance of nutrients and can provide anti-inflammatory and
other gut barrier–protective effects have the potential to reduce
EED and its nutritional comorbidities and might also be of benefit
to child health and development.

Legumes are a source of essential amino acids, dietary fiber,
lipids, micronutrients, and a myriad of phytochemicals, including
multiple antioxidants (6, 7). Corn-soybean blends (CSBs) have
been used as complementary foods for decades in food-aid and
school feeding programs in an effort to deliver higher-quality pro-
tein in comparison to a cereal alone (8, 9). Additional evidence
supports that other nonsoy legumes, when compared with CSBs,
are a rich source of macronutrients, micronutrients, phytochemi-
cals, and prebiotics that can promote gut health (6, 10–14). These
include common beans (Phaseolus vulgaris), which are digestible
and well tolerated in young populations (14) and have been shown
to reduce markers of inflammation (15, 16). Furthermore, cowpeas
(CPs; Vigna unguiculata) are commonly grown in sub-Saharan
Africa, where they are considered a staple crop rich in protein, vi-
tamins, and trace minerals including iron and zinc (17, 18). The nu-
trient profiles of the common bean (CB) and CP, especially their
high protein and fiber content, show their potential to improve
food and nutrition security in this vulnerable population (13, 19).

Although the CB and CP are readily cultivated in Malawi, they
are not commonly utilized as complementary foods. Understand-
ing the nutritional composition and small-molecule profile of
foods is crucial in nutrition-based interventions in which this
composition will help identify potential dietary biomarkers of in-
take and disease prevention mechanisms and promote food safety.
This methodology, known as food-omics, applies advanced “omics”
technologies to identify small compounds in food that can assist in
the development of dietary preventive measures against human
diseases. The food-omics approach is multifaceted and represents
a largely unexploited source in which to identify novel dietary in-
take biomarkers (20). There have been several studies that re-
ported on the legume metabolome, with a primary focus on
improving legume breeding programs (12, 21–24). This includes
the Soybean Knowledge Base, an all-inclusive source for soybean
translational genomics that provides the integrations of gene, ge-
nomics, transcriptomics, proteomics, metabolomics, and pheno-
type data (22); an investigation on how temperature influences
the soybean seed metabolome (23); and an evaluation of diversity
among uncooked common beans from 2 centers of domestication
(25). In addition, metabolomics has been completed on 17 CP va-
rieties to assess phenolic variations (12).

We conducted a comparative food macro- and micronutrient
analysis, a safety assessment, and a metabolomics analysis of 3
legume-based complementary foods—CB, CP, and CSB—collected
from Malawi. This analysis will help us assess the future utility of

using legume foods as complementary foods for children. We hy-
pothesized that the CB and CP foods would have higher amounts
of protein, dietary fiber, and essential micronutrients and FAs than
the CSB. In addition, we used our food metabolomics approach to
assist in identifying candidate metabolites for use as future dietary
biomarkers of intake that are specific to each legume type.

Methods

Identification and preparation of legume foods

Approximately 10 metric tons of CBs and CPs each were purchased
from local Malawian markets and wholesalers, generally in 25- or
50-kg sacks. It is estimated that these are aggregates from ;15
farms. CBs and CPs were prepared by dry-roasting the entire lot
of hand-sorted beans between 1208C and 1308C for 45–50 min
with the use of local Malawian facilities. After dry-roasting, the
beans were milled into flour, and the flour was thoroughly mixed.
One-kilogram samples of CBs and CPs were taken from this mixture
for analysis. TheCSBwas prepared commercially by extrusion cook-
ing (RiceMilling). The CSB flour for analysis was taken as a compos-
ite sample from 20 sacks of CSB that were prepared locally. These
milled legume flours were designed to be consumed by adding
them in small quantities to the traditional maize porridges, which
have been previously and successfully used for legumes in infant
and children dietary feeding trials in Malawi and elsewhere (5,
26–28).

Comparative nutrient analysis

The dietary composition of the foods wasmeasured atMidwest Lab-
oratories. Briefly, 225 g of each legume food was used for proximate
analysis (moisture, protein, fat, ash, carbohydrates, and kilocalories),
dietary fiber, FA profile, and micronutrient measurements. The
methods were based on the Association of Official Analytical Chem-
ists (AOAC) standards as follows: AOAC 950.46 (moisture), AOAC
992.15 (protein), AOAC 996.06 (FA profile), and AOAC 991.36
(fat). For moisture determination, samples were dried in an air
oven for 16–18 h at 100–1028C. For protein, samples were digested
and distilled to determine total Kjeldahl nitrogen, which was con-
verted into total protein by using a standardized Kjeldahl factor.
For fat determination, samples were desiccated and homogenized
and fat was extracted by using a solution of petroleum ether, anhy-
drous sodium sulfate, and defatted cotton. The ash analysis was
completed by weighing the sample, heating it to 5508C, and
then re-weighing the remaining residue. Carbohydrates and kilocal-
ories were calculated on the basis of the proximate analysis results.

Dietary fiber (soluble and insoluble) was analyzed by using
AOAC 991.43. For insoluble dietary fiber, the legume foods were
dried and digested with 3 enzymes (protease, amylase, and amylo-
glycosidase) to break down starch and protein. Ethanol (78% and
95%) was used to precipitate soluble fiber, and insoluble residues
were removed with filtration. Residues were weighed to deter-
mine insoluble and soluble fiber amounts. Total dietary fiber
was the sum of these 2 amounts.

The AOAC 996.06 method was used to analyze the FA profile.
Briefly, the methyl ester extracts were injected into a gas
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chromatograph that used a flame ionization detector. Thirty-nine
FAs were screened for and included butyric (4:0), caproic (6:0),
caprylic (8:0), capric (10:0), lauric (12:0), tridecanoic (13:0), myris-
tic (14:0), myristoledic (14:1), myristoleic (14:1n–5), pentadecanoic
(15:0), palmitic (16:0), palmitelaidic (trans 16:1n–9), palmitoleic
(cis 16:1n–9), heptadecanoic (17:0), 10-heptadecanoic (17:1n–10),
stearic (18:0), elaidic (trans 18:1n–9), oleic (cis 18:1n–9), linolelaidic
(all-trans 18:2n–6,9), linoleic (all-cis 18:2n–9,12), g-linolenic (all-
cis 18:3n–6,9,12), nonadecanoic (19:0), a-linolenic (all-cis
18:3n–9,12,15), arachidic (20:0), 11-eicosenoic (20:1n–11), 11-
14-eicosadienoic (20:2n–11,14), homo-g-linolenic (all-cis
20:3n–8,11,14), 11-14-17-eicosatrienoic (20:3n–11,14,17), arachi-
donic (20:4n–5,8,11,14), eicosapentaenoic (20:5n–5,8,11,14,17),
heneicosanoic (21:0), behenic (21:0), erucic (cis 21:1n–9), doco-
sadienoic (22:2n–13,16), docosapentaenoic (22:5n–4,7,10,13,16),
docosahexaenoic (22:6n–4,7,10,13,16,19), tricosanoic (23:0),
lignoceric (24:0), and nervonic (24:1n–9) acids. The fat in the
legume foods was extracted and saponified, and the FAs were
derivatized into FA methyl esters. To quantitate amounts of the
identified FAs, the raw chromatographic abundances of each FA
in each food sample were comparedwith those of known standards.
Saturated fat, polyunsaturated fat, and monounsaturated fat were
totaled and their relative percentages were based on the FA amount
measured.

Inductively coupled plasma MS was completed for the follow-
ing micronutrients: calcium, iron, magnesium, manganese, phos-
phorus, potassium, sodium, and zinc. Briefly, prepared extracts
of each of the legume foods were injected into high-energy plasma
that forced the elements in the injected sample to emit light wave-
lengths that were specific to each micronutrient present. The light
intensity was detected and correlated to the amounts of micronu-
trients in the original legume food sample.

Calculating daily nutrients delivered by 3 legume

complementary foods

The daily nutrient intakes for each food were calculated on the basis
of serving sizes for weaning children to consume at different ages.
The recommendations for the CSB were as follows: 20 g/d (6–
8 mo), 30 g/d (9–11 mo), 40 g/d (12–23 mo), and 50 g/d (24–35 mo).
The recommendations for CB or CP foods were 21 g/d (6–8 mo),
31.5 g/d (9–11 mo), 42 g/d (12–23 mo), and 52.5 g/d (24–35 mo). The
trial registry numbers for clinical trials associated with this research
are NCT02472262 and NCT02472301.

Heavy metal and aflatoxin analyses

Heavymetal and aflatoxin analyses were completed byMidwest Lab-
oratories by using methods described previously (29) and included
heavy metal (arsenic, cadmium, lead, and mercury) and aflatoxin
contents. The heavy metals analysis was based on the Environmental
Protection Agency 7471B method (30). Briefly, samples were dis-
solved in water, digested with potassium permanganate, and then
mixed with water, SSC-hydroxyethyl amine sulfate, and stannous
sulfate. The resulting solutionwas subjected to cold-vapor atomic ab-
sorption, where concentration values of heavy metals were based on
interpolation to a standard curve of absorbance compared with con-
centration. Amounts of heavy metals detected in the legume food

were compared with those defined by the USDA as acceptable for
human consumption in bean-family foods (31).

Aflatoxin methods were based on AOAC 2008.02. Briefly, le-
gume foods were finely ground and aflatoxins extracted by using
a solution of SSC, methanol, and sodium bicarbonate. The result-
ing extract was centrifuged and filtered to remove contamination,
and aflatoxins were separated by using immunoaffinity column
isolation. The presence and concentration of aflatoxins in the
column-separated filtrate were determined with targeted LC-MS.
Amounts of aflatoxins detected in the legume food were com-
pared with those defined by the FDA as acceptable for human
consumption (32).

Comparative nontargeted food metabolomics

The nontargeted foodmetabolome profile was completed byMetab-
olon, Inc., as previously published for other whole foods (33). Briefly,
each legume food was extracted by using ice-cold 80%methanol for
separation andmetabolite detection via ultraperformance LC–tandem
MS in positive- and negative-ion mode in which samples were
quality-controlled within and across assays for individual samples
with the use of internal standards. Raw data were extracted and
peak-identified by using the Metabolon internal library, and quality-
control processed. For each metabolite, peak raw count abundance
values were quantified by using AUC analysis, and each metabolite
raw abundance was median-scaled by dividing its median raw abun-
dance across the data set into its raw abundance in each legume food.
Median-scaled relative abundance z score was further used to visual-
ize specific metabolites in a given chemical class. z Scores are ex-
pressed as SDs from the mean of the scaled abundance for each
metabolite, and data were calculated by using the following formula:
z = (x2 m)/s, where x was the relative scaled abundance of the me-
tabolite, m was mean of the scaled relative abundance for the metab-
olite across the 3 legumes, and s was the scaled relative abundance
SD of the same metabolite across the 3 legume foods. For each
food, metabolite profiles were screened for compounds that could
serve as biomarkers of legume intake. To be considered a potential
biomarker in a given legume food, compounds needed to meet the
following criteria: 1) be detected in only one legume food (no others)
or 2) have a higher abundance in 1 legume food than in the 2 others,
defined as having a z score of $1 with the other 2 foods having a z
score of #21.

Results

Comparison of targeted nutrients across legume foods

Table 1 provides details on themacronutrient energy content, which
was measured in kilocalories per 100 g, and the micronutrient con-
tent, whichwasmeasured in parts permillion (ppm). All of the legume
foods provided similar total energy content (374–391 kcal/100 g).
Protein content was higher in CP and CB foods (26 and 23 g/100 g,
respectively) than in the CSB (13 g/100 g). Similarly, dietary fiber
was higher in CP and CB foods (21 and 28 g/100 g, respectively)
than in the CSB (8 g/100 g). Insoluble fiber made up the majority
of total dietary fiber. The CSB had twice as much fat (4 g/100 g) as
CP and CB foods (2 g/100 g each).
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Micronutrient analysis showed that potassium was higher in
CP and CB foods (15,900 and 15,800 ppm, respectively) than in
the CSB (6230 ppm) food. Phosphorus was also higher in CP
and CB foods (4380 and 4840 ppm) than in the CSB (3950 ppm)
food. Iron was similar across the 3 groups (CP, CB, and CSB:

152, 117, and 133 ppm, respectively). The CSB food had the highest
amounts of calcium (2230 ppm) and zinc (39 ppm) compared with
the CP and CB foods. Furthermore, CP and CB foods had more
magnesium (CP and CB: 1960 and 1870 ppm, respectively), phos-
phorus (4380 and 4840 ppm), and potassium (15,900 and 15,800
ppm) than the CSB food (magnesium, phosphorus, and potassium:
1000, 3950, and 6230 ppm, respectively).

An analysis of relative percentages for FA profiles, presented in
Table 1, showed that the CP food had the highest amount of satu-
rated fat, at 36%, followed by the CB (21%) and CSB (16%) foods.
The SFAs that were highest in the CP food were palmitic acid
(25%), stearic acid (4%), behenic acid (3%), and lignoceric acid
(2%). The CSB food had the highest amount of MUFAs at 27%,
with CB and CP foods both containing 9%. In each legume flour,
oleic acid was the largest contributor to MUFA content and repre-
sented 8%, 8%, and 27% of total MUFA contents in CP, CB, and
CSB foods, respectively. The CB food had the highest amount of
PUFAs at 70%, with CSB and CP foods at 57% and 55%, respec-
tively. Among PUFAs, linoleic acid (an n–6 FA) was highest in the
CSB food at 52% of the total polyunsaturated fat content (compared
with 34% and 29% in CP and CB foods, respectively) and a-linolenic
(an n–3 FA) was highest in the CB food at 41% (compared with
21% and 5% in CP and CSB foods, respectively). Butyric, caproic,
caprylic, capric, tridecanoic, myristoledic, elaidic, linolelaidic,
g-linolenic, nonadecanoic, 11-14-eicosadienoic, homo-g-linolenic,
11-14-17-eicosatrienoic, arachidonic, eicosapentaenoic, heneicosa-
noic, erucic, docosadienoic, docosapentaenoic, docosahexaenoic,
and nervonic acids were not detected in the foods.

Comparison of daily nutrient intakes provided by legume

foods for children

To evaluate how legumes may provide nutrition as complementary
foods, Table 2 estimates the essential nutrients for children during
weaning across the 3 legume foods, in grams per day, on the basis
of their age in months, as well as the recommended levels of intake
from theWHO and the National Academy of Medicine (34, 35). The
energy needs from complementary foods for children receiving an
average amount of breast milk range between 200 and 550 kcal/d
(34). By using these energy recommendations, all of the legume
foods provided ;40% of daily energy requirements for children
aged 6–9 mo (78–118 kcal/d) and ;30–35% for children aged 12–
24 mo (156–197 kcal/d).

The CB food provided 45–95% of recommended protein intake
(5–12 g/d), 1–5% of recommended fat intake (0.4–1 g/d), and 60–
80% of recommended total dietary fiber intake (6–15 g/d). The
CP food provided 50–105% of recommended protein intake (5–
14 g/d), 1–5% of recommended fat intake (0.4–1.1 g/d), and 45–
55% of recommended total dietary fiber intake (4.3–10.8 g/d).
The CSB food provided 25–50% of recommended protein intake
(3–7 g/d), 3–10% of recommended fat intake (0.9–2.2 g/d), and
20% of recommended total dietary fiber intake (1.7–4.2 g/d).

The total amounts of iron provided by the legume foods were
;20–45% of the recommended level of 11 mg/d (6–9 mo of age)
and increased to .70% of the recommended level of 7 mg/d
(12–23 mo of age). At 24 mo, the amount of CP food provided reached
the recommended levels of iron (8.0 g/d), with CSB and CB foods at

TABLE 1 Quantified macronutrients, micronutrients, FAs, and
food safety profile for each legume food fed to children aged
6–36 mo1

Nutrient

Corn-
soybean
blend

Common
bean Cowpea

Macronutrients
Energy, kcal/100 g 391 375 374
Carbohydrate, g/100 g 75 66 63
Protein, g/100 g 13 23 26
Fat, g/100 g 4 2 2

Dietary fiber, g/100 g
Total 8 28 21
Insoluble 8 28 20
Soluble ND ND 1

Micronutrients, ppm
Calcium 2230 2030 1040
Iron 133 117 152
Magnesium 1000 1870 1960
Manganese 10 21 17
Phosphorus 3950 4840 4380
Potassium 6230 15,800 15,900
Sodium 32 12 38
Zinc 39 27 31

FAs,2 %
SFAs 16 21 36
Lauric (12:0) ND 0.03 0.03
Myristic (14:0) 0.1 0.15 0.2
Pentadecanoic (15:0) 0.02 0.15 0.1
Palmitic (16:0) 12 16 25
Heptadecanoic (17:0) 0.1 0.2 0.1
Stearic (18:0) 3 2 4
Arachidic (20:0) 0.5 0.5 1
Behenic (22:0) 0.3 0.7 3
Tricosanoic (23:0) ND 0.2 0.3
Lignoceric (24:0) 0.2 1 2

MUFAs, % 27 9 9
Palmitoleic (16:1 cis) 0.1 0.2 0.1
10-Heptadecanoic (17:1) 0.05 0.07 n.d.
Oleic (18:1 cis) 27 8 8
11-Eicosenoic (20:1) 0.2 0.15 0.4

PUFAs, % 57 70 55
Linoleic (18:2 cis) 52 29 34
a-Linolenic (18:3) 5 41 21

Heavy metals, ppm
Arsenic ND ND ND
Cadmium ND ND ND
Lead ND ND ND
Mercury ND ND ND

Aflatoxin, ppb
Aflatoxin B1 2.50 ND ND
Aflatoxin B2 ND ND ND
Aflatoxin G1 2.67 ND ND
Aflatoxin G2 ND ND ND
Total aflatoxin 5.17 ND ND

1ND, not detected; ppb, parts per billion; ppm, parts per million.
2Percentages represent the amount of individual FAs detected in the total
amount of FAs identified.
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90% (6.7 and 6.1 g/d, respectively). The intake of zinc between the
ages of 6 and 9 mo was ;20–40% of the recommended level of
3 mg/d and increased to 40–65% between ages 12 and 24 mo.
The CSB food provided the highest amount of zinc at 24 mo (1.9 g/d).

Food safety analysis

Table 1 shows amounts of heavy metals and aflatoxins detected in
the legume foods. Arsenic, cadmium, lead, andmercury were not de-
tected in any of the legume foods. Aflatoxin was only detected in the
CSB food at a cumulative concentration of 5.2 parts per billion (ppb).

Nontargeted food metabolome of legume foods

A total of 652 metabolites were identified collectively across all 3 le-
gume foods and were further organized across 8 classifications, in-
cluding amino acids, carbohydrates, cofactors and vitamins, energy
metabolism, lipids, nucleotides, peptides, and xenobiotics (benzoate
metabolism, chemical, drug, and food and plant component). Of
the total food metabolome, there were 509 food metabolites identi-
fied from CP food, 483 metabolites identified from CB food, and
443 metabolites identified from CSB food (Table 3). Most food me-
tabolites came from amino acid and lipid metabolic pathways (25%
and 37%, respectively), and 46–56metabolites were classified as phy-
tochemicals, indicating they were previously documented as being
plant-derived. profile, listing individual metabolites, their associated
metabolic pathways, relative abundance, and detection methods, is
reported for the 3 foods in Supplemental Table 1.

The Venn diagram shown in Figure 1 illustrates the 396 metab-
olites out of the 652 total metabolites that were identified in all 3
legume-based foods. This figure also shows the number of metab-
olites detected between 2 foods or that were present only in a sin-
gle legume food. This included 23 metabolites identified only in
CSB food, 14 metabolites distinctly present in CB food, and 36
uniquely present in CP food. The food metabolites unique to
each dietary legume are listed inTable 4, which presents potential
biomarkers of intake for each food and are clustered by their re-
spective metabolic pathways. For example, arabinose was only
identified from the CSB food. Of the metabolites listed in Table
4, those that had evidence of anti-inflammatory activity included
putrescine, ribose, riboflavin (vitamin B-2), a-tocotrienol, and
g-tocotrienol in the CSB food; serotonin, dimethylglycine, and ole-
anolic acid in the CB food; and hypotaurine, dihydroquercetin (taxi-
folin), eriodictyol, quercetin 3-galactoside, quercetin 3-glucoside,
and quercetin in the CP food (36–42, 44–48).

Figure 2 shows the standard distributions of select metabolites
across the amino acid, cofactor and vitamin, FA, and phytochem-
ical pathways. A distinct profile of amino acids across the 3 foods is
shown in Figure 2A. CB and CP foods had relative abundance z
scores above the mean abundance across all legumes for all 9 es-
sential amino acids (histidine, isoleucine, leucine, lysine, methio-
nine, phenylalanine, threonine, tryptophan, and valine), whereas
the CSB relative abundance z scores were all below the mean.
In addition, pipecolic acid and S-methylcysteine, common non-
protein nitrogen components of Phaseolus and Vigna species
(42), were detected in all 3 foods and had the highest scaled rela-
tive abundance in the CB food compared with the CSB and CP
foods (Figure 2A).T
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Figure 2B shows the distinct profile of FAs identified from the
nontargeted metabolomic analysis. Similar to the amino acid me-
tabolite profile, CB and CP foods had relative abundance z scores
above the mean scaled abundance across all legumes for a majority
of the FAs. Caprylic acid, capric acid, nonadecanoic acid, and eru-
cic acid were not included in the standard targeted FA analysis, yet
were identified by using the nontargeted food metabolome ap-
proach. SFAs, including palmitic, stearic, and behenic acids, had
the highest relative abundance z scores in the CP food, which
was confirmed to match results from the targeted FA analysis (Ta-
ble 1). Further targeted metabolomic analyses will be needed to
quantify FA amounts in these foods for comparison with the FA
amounts reported in Tables 1 and 2.

There were 19 cofactor and vitamin metabolites identified by
using metabolomics in the 3 foods. The distinct profile of cofactors
and vitamins inherent to each food is highlighted in Figure 2C.
When compared with CS and CSB foods, the CP food showed
the highest relative abundance z scores for the B-vitamin metabo-
lites nicotinate (vitamin B-3), trigonelline, and pantothenate (vita-
min B-5). The CSB food had the highest relative abundance
z scores for the vitamin B metabolites nicotinamide (vitamin
B-3), thiamin (vitamin B-1), and pyridoxine (vitamin B-6) when
compared with CP and CB foods. The CSB food also had the high-
est relative abundance z scores for ascorbate (vitamin C) and
a-tocopherol (vitamin E) when compared with CP and CB foods.
Other vitaminE components, including d-tocopherol andg-tocopherol
or b-tocopherol, showed the highest relative abundance z scores in
the CP food compared with the CS and CSB foods.

Figure 2D shows the distinct profile of all 34 phytochemicals
from all 3 foods. Genistein, an isoflavone found primarily in soy-
beans, was detected in all 3 foods, and the CSB food had the high-
est relative abundance z score for genistein compared with the CP
and CS foods. Ferulic acid, another abundant phenolic acid in var-
ious legumes (12, 49), had the highest relative abundance z score
in the CP food when compared with the CB and CSB foods. Across

all foods, no additional biomarkers were identified as having a
z score $1 in 1 food while having a z score of 21 or lower in the
other 2 foods.

Discussion

This study assessed the potential nutritional value of 3 dry-roasted,
legume-based complementary foods available to children living in
rural Malawi via the integration of targeted nutrient and food safety
assessments and global, nontargeted food metabolite profiling. Al-
though a CSB is the traditional complementary food recommended
to treat childhood malnutrition inMalawi (50, 51), the nutrient, food
safety screening, and metabolite analysis presented herein supports
future investigation of alternative legumes, specifically CPs and CBs,
as complementary foods.

This targeted nutrient analysis showed that all diets provided
similar total energy contents, yet CB and CP foods had higher
amounts of dietary fiber and protein (Table 1). The CB and CP foods
contributed an estimated 45–80% of the DRI for dietary fiber for
these children, compared with 20% in the CSB (Table 2). This find-
ing is similar to a previous report on dietary fiber in legumes (11),
which supports that CB and CP foods could serve as high-quality
sources of dietary fiber in weaning children. Dietary fibermodulates
nutrient absorption and increases fermentation by the beneficial co-
lonic microflora, which can lead to improved gut barrier function
and decreased inflammation to reduce the risk of developing EED
(10). The high amounts of dietary fiber in CB and CP foods, when
compared with the CSB food, support their future potential as ad-
ditional fiber-rich complementary foods to promote gut health in
weaning children.

Table 2 further showed how much the 3 legume foods contrib-
uted to recommended daily intakes for key nutrients based on the
weaning child’s age and needs for complementary foods (34, 35).
CB and CP foods provided a higher amount of protein per serving
than did the CSB food and provided ;50–75% of the recommen-
ded intake in children aged 6–9 mo and 80–100% in children aged
12–24 mo (Table 2). Nontargeted metabolite profiling further
showed that the CB and CP foods contained a higher abundance
of multiple essential amino acids than the CSB food, including

FIGURE 1 Venn diagram of the total number of metabolites
detected across the 3 legume foods.

TABLE 3 The 652 food metabolites identified from 3
complementary legume foods classified by metabolic pathways

Number of identified metabolites

Corn-soybean
blend

Common
bean Cowpea

Metabolic pathways
Amino acid 114 121 128
Carbohydrate 26 26 26
Cofactors and vitamins 24 19 20
Energy 12 12 13
Lipid 164 179 183
Nucleotide 32 49 47
Peptide 12 16 22
Xenobiotic
Benzoate metabolism 3 4 4
Chemical 7 7 7
Drug 3 3 3
Food and plant
components

46 47 56

Total number of
metabolites

443 483 509
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histidine, isoleucine, leucine, methionine, phenylalanine, threo-
nine, tryptophan, and threonine, which supports its utility in bal-
anced nutrition approaches. High-quality proteins with balanced
amino acid profiles, such as those found in CB and CP foods, are
important for proper gut barrier and immune system development
(52). Given that EED both derives from and contributes to a dis-
turbed microbiome and a dysfunctional gut immune system (53),
the high protein content of dry-roasted CB and CP proteins merits
further investigation for their use as alternative complementary
foods in rural Malawian infants.

Micronutrient analyses confirmed that all of the legume foods
naturally provided many essential micronutrients that are impor-
tant to overall child nutritional status and growth. The CSB and
CP foods provided a rich source of both iron and zinc compared
with the CB food (Table 1) without being additionally fortified.
Iron intake is essential for redox reactions, gene regulation, oxy-
gen delivery to tissues, and cell growth (54, 55), and Malawian
children and pregnant and breastfeeding mothers are commonly
deficient (56). Efforts have been put forth to increase iron intake
in rural Malawian children (57), but elemental iron supplementa-
tion increased diarrhea risk and did not reduce EED risk or
growth stunting (58). Legume foods, such as CSB and CP foods,

could potentially serve as novel food-based strategies that can be
investigated for their effectiveness in increasing total iron intake.
Zinc is an essential micronutrient that is also commonly deficient
in rural Malawian children (57). Evidence supports a role for zinc
to reduce the duration and severity of diarrhea episodes, and it
may protect against EED by restoring gut mucosal barrier integrity
and by bolstering antibody production against enteric pathogens
(59). Consequently, CP and CSB foods may additionally merit at-
tention as a rich source of zinc to improve deficiencies.

Trypsin inhibitors, amylase inhibitors, phytates, and phytoes-
trogens are traditionally regarded as antinutrients that naturally
occur in legumes (60, 61), and concern has been raised that their
presence in the diets of young children may reduce micronutrient
absorption (62), interfere with protein and carbohydrate diges-
tion, and disrupt estrogen metabolism (63, 64). However, boiling
of whole legume seeds, the most common method of preparation
for consumption, reduces the activity of these enzymes by ;20-
fold to amounts below nutritional significance (65). Decreases in
these antinutrient enzymes, as well as in phytoestrogens, were
also observed during dry-roasting (66), which was performed lo-
cally during food preparation. Moreover, a growing body of re-
search supports that chronic exposure by Malawian children to

TABLE 4 Potential dietary biomarkers of intake by metabolic pathway for 3 complementary legume foods1

Metabolic
pathways

Dietary biomarker

Corn-soybean blend Common bean Cowpea

Amino acid Putrescine2 (36), argininosuccinate 3-Methoxytyramine, serotonin2 (37),
tryptophan betaine,
dimethylglycine2 (38)

Ophthalmate, S-methylglutathione,
2-methylbutyrylcarnitine (C5),
3-hydroxy-2-ethylpropionate,
3-hydroxyisobutyrate, 3-methyl-
2-oxovalerate, hypotaurine2 (39),
N-acetyltaurine

Carbohydrate N-acetylglucosamine/N-
acetylgalactosamine, arabinose,3

ribose2 (40), ribulose/xylulose

— N-acetyl-glucosamine-1-phosphate

Cofactors and
vitamins

Dehydroascorbate, riboflavin (vitamin
B-2)2 (41), a-tocopherol acetate,
a-tocotrienol2,3 (42, 43),
g-tocotrienol2,3 (42, 43)

— FMN

Energy Succinylcarnitine — —

Lipid Caproate (6:0),
glycerophosphoserine, valerate (5:0)

Diacylglycerol (12:0/18:1, 14:0/16:1,
16:0/14:1), propionylcarnitine (C3),
1-pentadecanoylglycerol (15:0)

Palmitoyl-oleoyl-glycerol (16:0/18:1),
adipate, nervonate (24:1n–9), 1-
myristoylglycerol (14:0), 1-palmitoyl-
2-arachidonoyl-GPE (16:0/20:4),
docosadienoate (22:2n–6), N-palmitoyl-
sphingosine (d18:1/16:0), stearoyl
sphingomyelin (d18:1/18:0)

Nucleotide — 29-GMP, 39-CMP, thymine 39-UMP 39-GMP, N2,N2-dimethylguanosine
Peptide — Leucylalanine, phenylalanylalanine Alanylleucine, glycylleucine, lysylleucine,

valylglutamine, valylleucine, g-glutamyl-
a-lysine, g-glutamylglycine

Xenobiotic 1,1-Kestotetraose, 2-oxindole-3-acetate,
chlorogenate, coumaroylquinates
2–5, feruloylputrescine

Oleanolic acid2,3 (44) Benzoate, dihydroquercetin (taxifolin)2

(45), eriocitrin, eriodictyol2 (46),
galacturonate, quercetin 3-
galactoside2,3 (47, 48), quercetin
3-glucoside2,3 (48), quercetin2,3

(48), secoisolariciresinol
1A total of 24 metabolites were solely detected in the corn-soybean blend, 14 metabolites were unique in the common bean, and 36 metabolites in the cowpea.
2Metabolite with evidence of anti-inflammatory activity.
3Metabolite that has been previously identified in soybean, common bean, or cowpea and considered a strong potential dietary biomarker for these legume foods.
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dietary phytic acid does not appreciably alter zinc fecal excretion
(67–69), suggesting that when legume diets are appropriately
boiled or dry-roasted, other gastrointestinal and dietary factors
may be drivers of micronutrient deficiency that can be explored
to manage micronutrient deficiencies. In light of these consider-
ations, the high natural amounts of iron and zinc in dry-roasted
CSBs and CPs warrant further investigation as accessible and
valuable micronutrient sources for complementary feeding.

The targeted FA profile of legume foods showed differences in
amounts of bioactive lipids across foods. Specifically, a-linoleic
acid, which was higher in CP and CB foods than in the CSB
food, has been implicated in reducing colonic inflammation (70),
a major contributor to EED pathogenesis. Other bioactive lipids
higher in CP and CB foods than in the CSB food included myristic
acid, which has been associated with beneficially modulating gut
microflora to reduce diarrhea in weaning piglets (71). The natu-
rally high abundance and diversity of these bioactive lipids in
CPs and CBs compared with CSBs (72) merit future investigation

of their lipid profiles for health promotion as alternative comple-
mentary foods in child populations at risk of EED.

Along with macronutrient, micronutrient, and small bioactive
compounds, food safety analysis did not detect any heavy metals
(arsenic, cadmium, lead, or mercury) in the foods (Table 1). These
heavy metals, which are becoming more prevalent in food, con-
tinue to have adverse health effects in humans, including gut dys-
biosis, mucosal immune dysregulation, and chronic inflammation
(73). If individuals are exposed during childhood and develop-
ment, these risk factors may contribute to EED pathogenesis. Fur-
thermore, aflatoxin was only detected in the CSB at 5.2 ppb (Table
1) and is likely coming from the maize, because this is a known,
common aflatoxin source (74). Although there are a number of
health risks involved in aflatoxin exposure, including growth fal-
tering and immune suppression in children (74), the FDA has re-
ported acceptable amounts of aflatoxins in human food to be
,20 ppb (75). This is ;4 times more than what was detected in
the CSB, which supports that it can be safely consumed by children.

FIGURE 2 Relative abundance z score distributions of selected metabolites detected in all 3 legume foods to visualize the distinct profiles.
These include essential amino acids and common nonprotein nitrogen components in the amino acid pathway (A), FAs in the lipid pathway
(B), the cofactors and vitamins pathway (C), and phytochemicals in the xenobiotic pathway (D). Dotted lines represent a relative abundance z
score of 0. CB, common bean; CP, cowpea; CSB, corn-soybean blend.
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Given that these legume foods were harvested and prepared lo-
cally, the lack of high amounts of heavy metals and aflatoxins in
all of the foods supports their future use as safe complementary
foods.

Metabolomic analysis provided an opportunity to quantify,
identify, and compare food components and metabolites from
the 3 different legume-based foods (Supplemental Table 1, Table
4). Our nontargeted food metabolomics approach successfully
identified lipids, amino acids, and other phytochemicals that are
established biomarkers or that merit further examination as po-
tential dietary biomarkers of human dietary legume consumption.
In all legumes, many of these biomarkers were also associated
with intestinal health benefits. Among the 14 potential and identi-
fied biomarkers in the CB food was pipecolic acid (Table 4), an es-
tablished biomarker of legume intake (76). The CB food also
contained the potential biomarker oleanolic acid (Table 4), Olea-
nolic acid, which is the primary MUFA in all legume foods, was
isolated in numerous food and medicinal plants and is known to
exert anti-inflammatory actions (77). EED is marked by increased
oxidative damage to the gut, and by contributing bioactive lipids
such as oleanolic acid, CBs may function as a complementary
food that could compensate for EED-associated dietary defi-
ciencies and oxidative damage and protect infants against further
pathogenesis.

The CP food contained 36 food biomarkers, and among these
were quercetin and serotonin (Table 4), which both have estab-
lished bioactivities in the gut. Quercetin, which was 1 of 14 com-
pounds uniquely detected in the CP food, is a flavonol with
natural immunomodulatory and antioxidative properties (78).
Quercetin has been shown to control intestinal inflammation via
modulation of leukocytes (79) and could therefore be useful in
supporting a healthy immune system to lower EED risk. Similarly,
serotonin acts on receptors along the intestinal tract to modulate
inflammatory responses (37) and thus may be important for main-
taining a normal, healthy gut barrier.

Of the 23 biomarkers identified in the CSB, arabinose and
a- and g-tocopherol (Table 4) have been previously reported in
soybean literature (43). Arabinose may be converted into short-
chain FAs by bacteria to support healthy enterocyte metabolism,
bolster gut mucosal immunity, and beneficially modulate the micro-
biome (80–82). a- and g-Tocopherol possess broad-spectrum anti-
oxidant and immunomodulatory activities (42). As antioxidants,
these compounds scavenge free radicals and help prevent cell mem-
brane oxidation (83). Furthermore, as immune-modulators, a- and
g-tocopherols have been shown to be protective against chronic in-
flammation, in part via modulation of T helper 2–lymphocyte pop-
ulations and also by the reduction of the inflammatory mediator
PGE2 and the associated enzyme cyclo-oxygenase 2 (42), support-
ing their use as beneficial immune-modulators in EED protection.

Findings reported herein establish that CP, CB, and CSB
legume-based complementary foods are rich in macro- and micro-
nutrients, are safe, and have profiles abundant in bioactive small
compounds that may have utility as alternative complementary
foods for use during weaning. Incorporating a food-omics ap-
proach allowed for an in-depth understanding of the variability
between metabolites present in the 3 legume foods, especially in

amounts of metabolites that are associated with potential EED
prevention in children. This approach also assisted in identifying
dietary biomarkers associated with legume foods, which will be
useful to assess compliance to different legume food interventions
in future dietary clinical trials with these diets. In conclusion, this
legume food analysis can guide the future selection of locally
available, whole staple foods that are nutritionally adequate and
rich in micronutrients and bioactive metabolites that improve
health in a population at high risk of EED and stunting.
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