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Abstract

Chemical exposure assessments are based on information collected via different methods,

such as biomonitoring, personal monitoring, environmental monitoring and questionnaires.

The vast amount of chemical-specific exposure information available from web-based data-

bases, such as PubMed, is undoubtedly a great asset to the scientific community. However,

manual retrieval of relevant published information is an extremely time consuming task and

overviewing the data is nearly impossible. Here, we present the development of an automatic

classifier for chemical exposure information. First, nearly 3700 abstracts were manually anno-

tated by an expert in exposure sciences according to a taxonomy exclusively created for

exposure information. Natural Language Processing (NLP) techniques were used to extract

semantic and syntactic features relevant to chemical exposure text. Using these features, we

trained a supervised machine learning algorithm to automatically classify PubMed abstracts

according to the exposure taxonomy. The resulting classifier demonstrates good performance

in the intrinsic evaluation. We also show that the classifier improves information retrieval of

chemical exposure data compared to keyword-based PubMed searches. Case studies dem-

onstrate that the classifier can be used to assist researchers by facilitating information retrieval

and classification, enabling data gap recognition and overviewing available scientific literature

using chemical-specific publication profiles. Finally, we identify challenges to be addressed in

future development of the system.

1. Introduction

Humans are constantly exposed to a large number of chemicals present in food, water, air,

dust, soil and consumer products via ingestion, inhalation and dermal absorption. Many of

these chemicals have known or suspected toxic effects that can cause disorders and diseases at

certain exposure levels. Aiming to estimate whether a population may be at risk at the current

levels of exposure, risk assessments of chemicals are performed (Fig 1). One cornerstone in the

risk assessment process is the exposure assessment in which the magnitude, frequency and

duration of exposure are estimated or measured (WHO/IPCS 2004).
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Exposure assessment methods include both indirect methods, such as exposure modeling

and exposure calculations based on environmental measurements and questionnaire data, and

direct measurements, such as human biomonitoring (HBM) and personal monitoring. HBM

is the measurement of exposure biomarkers (chemicals or chemical metabolites) and effect

biomarkers (indicators of effects caused by chemical exposure) in human body tissues or flu-

ids, such as blood, hair and urine [3].

To assess the total exposure to a chemical and evaluate the importance of different exposure

routes, all available data should be considered. In recent years, published biomedical literature

available from web-based databases (such as PubMed) has grown with double-exponential rate

[4]. Thus, manual collection of relevant published exposure information on one or several

chemicals is an extremely time consuming task. Furthermore, due to the broad variety of

methods used for exposure estimations and the large amount of studied exposure routes and

sources, manual searches in commonly used search engines e.g. Google Scholar (http://

scholar.google.com) or PubMed (http://www.ncbi.nlm.nih.gov/PubMed) require a large num-

ber of search terms, and still articles will be missed due to unsuitable or lack of search terms.

Text mining (TM) is the process of acquiring refined information by analyzing correlations

and statistical patterns in unstructured text. Over recent years, TM techniques have enabled

large-scale information extraction and knowledge discovery [5], and have been successfully

applied in real life tasks. For example, TM techniques have been applied in cancer research [6,

7] and cancer chemical risk assessment [8, 9], toxicogenomics [10], and drug effects/safety [11,

12].

In this paper, we describe the first steps towards developing a semantic text classifier for

text mining human exposure information. A classifier for exposure data can be used to rapidly

retrieve and categorize exposure data, map chemical-specific exposure information, identify

research gaps and create new research ideas. We apply proven Natural Language Processing

methodology and evaluate the performance using both intrinsic evaluation and case studies.

2. Methods

2.1. The exposure information corpus

2.1.1. Taxonomy. An exposure taxonomy was developed by experts in biomonitoring and

exposure sciences to categorize data into relevant classes. The taxonomy only regards human

exposure data, thus animal and in vitro data are not included. The taxonomy includes a total of

32 nodes divided under two main branches of exposure information; biomonitoring and expo-
sure routes. The first main branch categorises for biomonitoring data and is further divided

into exposure biomarkers (i.e. chemicals or chemical metabolites measured in human tissues to

assess exposure) and effect biomarkers (i.e. markers of effects caused by chemical exposures).

The exposure biomarker branch is further structured based on the biological matrix (e.g. blood,

urine, hair/nail) in which the biomarker has been measured. The effect biomarker branch is

further structured based on the character of the marker (i.e. molecule, gene, oxidative stress
marker, other effect biomarker and physiological parameter).

The second main branch contains data about the studied exposure routes, i.e. oral intake,
inhalation, dermal exposure and combined exposure routes. These nodes are further structured

into specific types of studied exposure. The information in the exposure routes branch

includes e.g. mathematical models of exposure (dietary intake assessments, physiologically

based pharmacokinetic (PBPK) modeling, etc.) and information obtained via questionnaires

(consumption frequency of certain foods, use of consumer products, etc.). If chemicals were

measured in an exposure media (e.g. food or water) without any exposure estimate on individ-

ual or population level, the abstract was regarded as irrelevant. However, if chemicals were
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measured in indoor air or dust in homes or workplaces without exposure estimates, the infor-

mation was still considered relevant because the exposure levels regard an indoor environment

specific for a group of residents or workers. See Table 1 for examples of information consid-

ered relevant for different nodes.

2.1.2. Literature retrieval and annotated corpus. The development of the classifier

requires a training data set consisting of a selection (i.e. corpus) of PubMed abstracts manually

annotated according to the exposure taxonomy. The selection of the annotated text material

Table 1. Examples of information considered relevant for different nodes in the exposure taxonomy.

Node Relevant information

BIOMONITORING

Exposure biomarker

- Blood, urine, hair/nail, adipose tissue, mother’s

milk, placenta, other tissue

Measurements of exposure biomarkers (chemicals or metabolites) in corresponding human

matrix (blood, urine, etc).

Effect biomarker

- Gene, molecule, oxidative stress marker, other

effect biomarker

Measurements of effect biomarkers in human matrices.

- Physiological parameter Measurements of physiological markers of effect, such as blood pressure, lung function, birth

weight, etc.

EXPOSURE ROUTES

Combined Intake calculations derived from biomonitoring data. Exposure modelling (e.g. PBPK) of multiple

exposure routes simultaneously. Job exposure matrix.

Dermal exposure Tape strip samples, hand wipes, hand washing samples, dermal wipes, dermal exposure

modelling.

Inhalation

- Outdoor air Data from ambient air monitoring stations used in exposure assessments or epidemiological

studies.

- Indoor air Air in indoor microenvironments (homes, workplaces, schools, cars, etc). Environmental tobacco

smoke. Inhalation from showers, cooking fuel, etc.

- Personal air Personal air monitoring, breathing zone measurements.

Oral intake

- Drinking water Exposure estimates from drinking water, bottled water, well water, etc.

- Dust Dust in indoor microenvironments (homes, workplaces, schools, cars, etc).

- Food Exposure estimates from food (e.g. intake assessments based on food concentration data and

ingested amount of food, total diet studies, double portions, etc).

- Products Exposure estimates from toys, cosmetics, personal care products, dental fillings, drugs and

vaccines, household pesticides, etc.

- Soil Exposure estimates from playground soil or residential garden soil, etc.

doi:10.1371/journal.pone.0173132.t001

Fig 1. Chemical risk assessment. The process of a chemical risk assessment includes exposure assessment, hazard

identification, hazard characterization and risk characterization [1, 2].

doi:10.1371/journal.pone.0173132.g001
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included abstracts in scientific journals representing a variety of research fields, and published

over a long time period. Seventeen well studied compounds or groups of compounds repre-

senting different exposure routes and sources were selected for the first annotation round.

These compounds were bisphenol A, phthalates, polychlorinated biphenyls (PCB), polybromi-

nated diphenyl ethers (PBDE), perfluorooctanesulfonic acid (PFOS), chlordane, cadmium,

arsenic, mercury, acrylamide, triclosan, naphthalene, benzene, styrene, toluene, particulate

matter 2.5 and chlorpyrifos.

First, abstracts published between 1993 and 2013 were selected using a search term includ-

ing the 17 chemicals mentioned above and 24 journals within in the fields of epidemiology,

toxicology, exposure and environmental sciences. Because the exposure taxonomy only con-

cerns human exposure data and not in vitro and animal studies, only abstracts indexed with

the Medical Subject Heading (MeSH) “humans” in PubMed were included in the annotated

corpus. The search generated 5014 abstracts that were reviewed by an expert in exposure sci-

ences and classified according to the taxonomy. The abstracts were only annotated if consid-

ered relevant for the taxonomy and consequently 2098 abstracts were annotated.

After the initial broad search and annotations, several sub-nodes contained an insufficient

number of annotated abstracts. Thus, additional searches using targeted keywords were per-

formed. Some of these additional search strings included other journals and chemicals than

the ones used the initial searches. The targeted searches generated 2748 abstracts, out of which

1588 abstracts were relevant and annotated.

In total, the annotated text corpus included 3686 annotated abstracts. In addition, 4076

abstracts were reviewed but considered irrelevant and were not annotated. Table 2 shows the

number of annotated abstracts for each node in the taxonomy.

The annotation was conducted by an expert with 5 years of experience in exposure assess-

ment. The XUL-based annotation tool described in Guo et al., 2012 [13] was used with its

menu items customized to our exposure information classification task. To investigate the

accuracy of annotations, we performed inter-annotator agreement analysis where a second

expert annotator was asked to annotate a subset of 200 abstracts. The annotation was com-

pared against that of the annotator who annotated the whole corpus. Near excellent agreement

was found between the two annotators with the average Cohen’s Kappa of 0.79 across the

whole taxonomy.

2.2. Natural language processing

In this section, we describe our Natural Language Processing (NLP) methodology used in the

automatic classification. We applied proven NLP techniques and tools that have achieved state

of the art results when trained with biomedical domain data. Fig 2 illustrates our handcrafted

NLP pipeline.

The workflow of the NLP methodology is described below:

1. Data Cleaning: We first pre-process data retrieved from PubMed by extracting text

appearing in the abstract, automatically cleaning the text from possible encoding errors.

2. Tokenization: We segment the text by words and then by sentences. We use BioTokeni-

zer [14] to tokenize words and then Natural Language Tool Kit (NLTK) [15] for sentences.

BioTokenizer achieves 96% Mean Average Precision, and is considered state of the art [14].

3. Metadata Extraction: Documents from PubMed are often accompanied with metadata

that capture additional descriptive categorization information about the document. We extract

two types of information: (i) the Medical Subject Headings (MeSH) that are used to tag bio-

medical documents with subject categories which are assigned by professional annotators [16],

and (ii) a list of chemicals (Chem) that are referred to in the article.

Text mining for improved exposure assessment
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4. POS Tagging: Part of Speech (POS) tagging is the process of labelling each word in the

text with a lexical category label, such as “noun”, “verb”, and “adjective”. These labels are

needed in subsequent stages in the pipeline. We use the C&C tagger [17, 18] which uses the

Penn Treebank grammatical categories, and is trained on biomedical texts [19].

5. Named Entity Recognition: We identify and extract named entities that are typically dis-

cussed in the biomedical literature. We extract five named entity types that are common in

biomedical text: DNA, RNA, proteins, cell line and type. We store in the feature a pair of the

entity type and the associated words or phrases. We use the Named Entity Recognition (NER)

tool ABNER [20], which is trained on the NLPBA and BioCreative corpora and achieves an F-

score accuracy of 70.5% and 69.9% on these two corpora respectively [21]. By the end of this

step, we extract Named Entities (NE) feature type.

6. Dependency Parsing: In this stage, we extract syntactic structures (trees) that encode

grammatical dependency relations between words in the sentence. For example: direct object,

non-clausal subject, and indirect object relations in parsed data taking into account their head

Table 2. Number of annotated abstracts for each node in the taxonomy.

Node # abstracts

BIOMONITORING 8

Exposure biomarker 106

Adipose tissue 88

Blood 744

Hair/nail 418

Mother’s milk 177

Other tissue 143

Placenta 60

Urine 784

Effect biomarker 78

Biomarker 27

Gene 141

Molecule 52

Lipid 94

Other molecule 168

Protein 300

Other effect biomarker 65

Oxidative stress marker 62

Physiological parameter 777

EXPOSURE ROUTES 168

Combined 165

Dermal exposure 153

Inhalation 356

Outdoor air 247

Indoor air 254

Personal air 174

Oral intake 63

Drinking water 424

Dust 256

Food 647

Products 164

Soil 131

doi:10.1371/journal.pone.0173132.t002
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and dependent words. We use the C&C parser to extract these grammatical relations. We

trained the C&C Parser using available annotated biomedical annotated corpus [19]. We

stored each arc in the tree (for all sentences in the given abstract) in a list. This list was used to

generate the lexicalized GR features, which were essentially template “pattern” that we used to

match during the feature encoding process. For example, a generated pattern could be (“sub-

ject<x>”, “affects”, “hemoglobin”) for a simple nsubj relationship. If an abstract has this pat-

tern, 1 is assigned for the corresponding index for this feature.

7. Lemmatization: The goal of this stage of the pipeline is to produce Lemmatized Bag of

Words (LBOW) features. Bag of words capture whether a word appears or not in a given

abstract against all of the words that appear in the corpus. We lemmatize (stem) the text in

order to reduce sparsity of the words occurring. We use the BioLemmatizer, which is trained

on biomedical texts [22].

8. N-gram Extraction: We extract noun compound bigrams such as “blood sample”, or

“breast milk”, as they can represent a concept in the text. We do not lemmatize the bigrams, as

that could result in losing concept information, for example “drinking water”.
9. Verb class Clustering: We group semantically similar verb predicates together for exam-

ple, verbs like “stimulate” and “activate” would be clustered together, compared to verbs like

“halt” and “slow”. This allows us to generalize away from individual verbs and reduce data

sparsity. We used the hierarchical classification of 399 verbs used in biomedicine by Sun and

Fig 2. The NLP pipeline for automatic classification of document abstracts. Chem: Chemical lists, MeSH: Medical Subject

Headings, GR: Grammatical Relations, LBOW: Lemmatized Bag of Words, N.Bigrams: Noun Bigrams, VC: Verb Clusters, NE:

Named Entities.

doi:10.1371/journal.pone.0173132.g002
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Korhonen [23]. We use three levels of abstraction by allocating 3 bits in our feature representa-

tion for each concrete class (1 bit for each level of the abstraction hierarchy). By the end of this

stage, we extract the verb clusters (VC) feature type.

10. Feature Selection: Features that are too rare or too common in the annotated corpus

are removed, so that only the most discriminating features are used by the classifiers. The

thresholds are set for each node by a process of trial and error, typically a minimum threshold

value of 5 occurrences are selected, while the maximum threshold varies greatly depending on

the feature type; usually a value larger than 100. This improves both accuracy and reduces

training time. This procedure is applied separately for each node in the taxonomy. Therefore,

each classifier has a unique set of selected features. Table 3 details the number of features for

each node after feature selection step. An additional feature ablation analysis (leaving one type

Table 3. Feature selection. The number of features for each node in the taxonomy after the feature selection step.

Node LBOW GR NE VC N Bigram MeSH Chem Total

BIOMONITORING 4785 3544 352 128 1395 754 253 11211

Exposure biomarker 4244 2965 312 127 1177 626 216 9667

Adipose tissue 361 66 23 67 38 56 19 630

Blood 2453 1300 141 122 521 355 111 5003

Hair/nail 1390 532 47 109 266 186 34 2564

Mother’s milk 668 197 43 91 85 86 35 1205

Other tissue 612 106 14 92 66 82 21 993

Placenta 307 52 13 80 32 37 13 534

Urine 2310 1164 124 120 482 314 120 4634

Effect biomarker 2889 1678 190 122 715 508 164 6266

Biomarker 1743 733 146 116 363 313 129 3543

Gene 637 141 39 96 79 96 25 1113

Molecule 1461 555 121 115 271 248 103 2874

Lipid 447 84 19 88 54 69 30 791

Other molecule 724 181 37 97 99 106 40 1284

Protein 1167 352 99 112 200 179 74 2183

Other effect biomarker 357 44 16 73 35 38 11 574

Oxidative stress marker 316 48 16 80 30 39 14 543

Physiological parameter 2100 1018 78 121 434 347 77 4175

EXPOSURE ROUTES 4574 3356 248 130 1297 694 211 10510

Combined 715 156 18 98 91 98 31 1207

Dermal exposure 773 142 15 99 94 79 29 1231

Inhalation 2607 1349 89 123 525 379 111 5183

Outdoor air 1064 407 30 109 159 136 14 1919

Indoor air 1308 369 35 107 191 178 58 2246

Personal air 974 221 25 99 124 104 32 1579

Oral intake 3216 2067 171 126 830 461 127 6998

Drinking water 1338 501 44 117 250 191 45 2486

Dust 1057 293 43 97 163 145 53 1851

Food 1932 997 87 117 411 270 78 3892

Products 803 193 18 97 117 99 29 1356

Soil 652 124 5 84 86 80 24 1055

Average: 1328 624 67 100 271 193 61 2645

LBOW: Lemmatized Bag of Words, GR: Grammatical Relations, NE: Named Entities, VC: Verb Clusters, N.Bigrams: Noun Bigrams, MeSH: Medical

Subject Headings, Chem: Chemical lists.

The corpus of annotated PubMed abstracts and the software for classification are available at: https://figshare.com/articles/Corpus_and_Software/4668229

doi:10.1371/journal.pone.0173132.t003
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of features out) allows a better understanding of which features are most informative for expo-

sure information classification, as reported section 3.1.1.

11. Feature Encoding: The features are represented in a sparse binary format, with a value

of 1 indicating that the given abstract contains this feature. The feature itself can be as simple as

a bag of words, or as complex as carefully engineered grammatical relations (if there’s a certain

dependency between specific word pairs), verb clusters (if there’s a verb instance belonging to a

given verb class), NER (if there’s a specific word tagged with a specific named entity), etc.

12. Classifier: The binary features are then put into 32 classifiers (support vector machines

with radial basis function kernels) that label each abstract with a binary label indicating its rele-

vance for one of the 32 nodes in the taxonomy. Each of the classifiers are trained and executed

independently in order to have mutually non-exclusive multi-label classification.

Each of the classifiers is trained with entire corpus data (unless we are evaluating the perfor-

mance of the classifiers, where cross-validation is used). Abstracts that contain sentences annotated

with its associated label, are counted as a positive example for the training, otherwise, it would be a

negative example. We use the hypernym/hyponymy relationships in our taxonomy to determine

whether an example should be labelled positively or negatively for a given node, i.e., we count sub-

nodes labels as positive examples when we are classifying abstracts under their parent node.

2.3. Evaluation methodology

We evaluate the performance of our NLP methodology using an intrinsic evaluation (evaluat-

ing the NLP system’s performance with respect to our annotated data, i.e. gold data).

We use standard cross-validation setup, where the annotated gold dataset is split into four

folds, the classifiers are trained on three of four folds and the system is tested on the remaining

fold. We rotate the split until the entire annotated gold dataset is covered. We also apply

another level of five-fold cross-validation for kernel hyper parameter tuning within the train-

ing split. The following standard measurements are used to ascertain the performance accu-

racy of our system:

precision ¼
true postives

true postivesþ false postives

recall ¼
true postives

true postivesþ false negatives

accuracy ¼
true postivesþ true negatives

total

F score ¼ 2
precision� recall
precisionþ recall

3. Results

3.1. Intrinsic evaluation

Table 4 shows the results of the intrinsic evaluation using 3-fold cross validation.

The intrinsic evaluation is also graphically presented in Fig 3 with color coding based on

F-scores. The F-scores were generally high for the three top levels in the taxonomy. However,

subdivision of effect biomarkers into distinct markers (i.e. gene, molecule and oxidative stress

marker) generally resulted in lower F-scores. In addition, the nodes concerning indoor air,
other effect biomarker and other tissue for exposure biomarker measurements performed

Text mining for improved exposure assessment
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poorly. Initially, the branches for exposure routes and exposure biomarkers were further classi-

fied into studied subpopulations (i.e. children, pregnant women and workers). However, due

to the low number of abstracts relevant for these very specific sub-nodes, the resulting F-scores

(range 11–78%) were not satisfactory and are therefore not reported in this paper.

3.1.1. Feature analysis. In this section, we investigate the influence of each feature type

on the classification accuracy. We conduct a leave-one-out feature analysis, where we repeat

the experiment setup (described in the previous section), but with the removal of one of the

seven feature types in order to ascertain its influence on the classification decision boundary

for each node in the taxonomy. Table 5 summarizes the results of this analysis.

On average, LBOW features have the most significant influence on the classification accu-

racy as it results in the largest drop (6.9%) on the averaged F-score. With the exception of only

one category (other effect biomarker), all nodes benefit from the inclusion of LBOW features.

On the other hand, the analysis shows that the removal of NE features marks the lowest drop

(1.8%) in accuracy, with 6 out of the 32 categories showing an improvement in F-score. When

Table 4. Results of intrinsic evaluation using 3-fold cross validation. All scores are percentages.

Node Precision Recall Accuracy F-score

BIOMONITORING 94.9 95.5 93.1 95.2

Exposure biomarker 93.8 95.0 93.2 94.4

Adipose tissue 93.9 87.5 99.6 90.6

Blood 87.2 82.4 92.1 84.7

Hair/nail 97.7 89.9 98.4 93.6

Mother’s milk 91.6 86.4 99.0 89.0

Other tissue 86.0 25.9 96.9 39.8

Placenta 93.3 70.0 99.4 80.0

Urine 95.7 91.9 97.1 93.8

Effect biomarker 89.0 81.8 90.7 85.3

Biomarker 89.4 69.2 94.2 78.0

Gene 92.6 61.7 98.3 74.0

Molecule 85.4 63.1 94.5 72.6

Lipid 87.5 37.2 98.3 52.2

Other molecule 80.0 42.9 96.9 55.8

Protein 84.8 56.0 95.6 67.5

Other effect biomarker 91.7 33.8 98.8 49.4

Oxidative stress marker 82.1 51.6 99.0 63.4

Physiological parameter 84.0 70.1 90.8 76.4

EXPOSURE ROUTES 89.0 92.3 87.4 90.6

Combined 80.9 43.9 97.0 56.9

Dermal exposure 83.9 72.6 98.0 77.8

Inhalation 92.4 81.5 93.3 86.6

Outdoor air 91.1 83.1 98.0 86.9

Indoor air 78.6 30.4 92.3 43.8

Personal air 90.5 74.8 97.9 81.9

Oral intake 87.7 82.1 88.1 84.8

Drinking water 83.4 81.3 95.7 82.3

Dust 90.4 75.1 97.4 82.0

Food 88.4 75.8 93.2 81.6

Products 80.4 42.3 96.4 55.4

Soil 78.5 62.5 97.7 69.6

doi:10.1371/journal.pone.0173132.t004
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considering only the count of nodes that show an improvement in F-score accuracy, VC fea-

tures are the least beneficial overall, as 12 of the 32 categories improve in F-score when VC fea-

tures are removed.

Overall, the analysis shows that all feature types benefit our classification methodology, as

they all result in reduction of F-score when they are removed.

3.2. Case studies

The classifier was applied in a number of case studies demonstrating how the classifier can be

used to assist researchers by facilitating information retrieval and classification, enabling data

gap recognition and overviewing available scientific literature using chemical-specific publica-

tion profiles.

3.2.1. Manual versus automatic search for data selection. One of the authors had previ-

ously performed an extensive manual search for articles that report levels of persistent organic

pollutants (POPs) in human blood and breast milk. The manual search was performed while

preparing for a report [24], in which a study was considered relevant for inclusion only if it ful-

filled a set of criteria regarding sampling population, sampling year, methodical quality, etc.

After applying these strict criteria, only a fraction of all articles reporting blood and milk mea-

surements were included in the final report. However, in the initial stage it was crucial to find all

potentially relevant articles for further manual evaluation, even if they did not meet the criteria

for inclusion in the final report. Thus, the initial manual search was extremely time consuming.

This real life example was used to evaluate the applicability of the automatic classifier for

the initial literature gathering and classification. Here, we compare the manual search with an

automatic search performed by our classifier.

First, abstracts about the chemicals of concern published between 1 Jan 2000 and 1 July

2014 were retrieved from PubMed and classified by the automatic classifier. The comparison

in Table 6 describes the recall of the classifier (i.e., was it able to retrieve most of the relevant

abstracts), as shown in column “Automatic/Manual”. For measurements in blood, the auto-

matic classifier found all articles that had been included in the report, with exception for one

article. For measurements in milk, all except three articles were found by the automatic classi-

fier. Table 6 also describes and the number of irrelevant abstracts that were successfully filtered

out by the classifier (i.e., was it useful for reducing the amount of literature to be further manu-

ally reviewed by a researcher), as indicated by the difference between columns “Abstracts

found with manual PubMed search” and “Abstracts automatically classified as . . .”. While

there could be false positives in the abstracts automatically classified as relevant, meaning that

the researcher still have to exclude some abstracts manually, the current case study does sug-

gest that the automatic classifier offers a much better starting point for exposure assessment

than traditional PubMed searches.

3.2.2. Publication profiles of chemicals. Three chemicals (hexachlorobenzene, lead and

4-nonylphenol) with different properties, exposure routes and sources were selected to evalu-

ate if publication profiles obtained from the automatic classification reflect expected exposure

information profiles.

Hexachlorobenzene (HCB) is a persistent organic pollutant which was used as a fungicide

until the 1970s. Although it is now globally banned, HCB is still present in the environment

and humans are exposed primarily via food [25, 26]. Fig 4 clearly illustrates that ingestion of

food is the most studied exposure route, whereas other routes are poorly studied. HCB is a

lipid-soluble compound predominantly measured in blood as well as in the body’s fat contain-

ing tissues, such as adipose tissues and mother’s milk, which is reflected by the publication

profile.

Text mining for improved exposure assessment
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Lead is a naturally occurring toxic metal used in e.g. mining and smelting activities and his-

torically used in products such as paint and gasoline. Humans are mainly exposed to lead via

ingestion of contaminated food or water and children can also be exposed via ingestion of dust

and soil [27]. For occupationally exposed individuals, inhalation is an important exposure

route. According to Fig 4, ingestion of food, dust, soil as well as inhalation are almost equally

studied exposure routes. According to the publication profile, lead is predominantly measured

in blood, followed by other tissues and urine, which is in accordance with current knowledge

Fig 3. Results of the intrinsic evaluation. The color coding is based on F-scores (Green = >75%, yellow = 50–75%, red = <50%).

doi:10.1371/journal.pone.0173132.g003
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[28]. The high number of measurements in other tissues mostly considers lead in bones and

teeth, which are established matrices for lead measurements.

A surprisingly high number of abstracts about lead and HCB were classified into the expo-

sure biomarker sub-node urine. The reason for this is that other chemicals have been mea-

sured in urine in the same articles in which HCB or lead have been measured in blood.

Likewise, articles about HCB and lead have been classified into the exposure route sub-node

products because another chemical (mercury) has been measured in amalgam fillings (consid-

ered as a product) while exposure to HCB or lead has been assessed from other exposure

Table 5. Analysis of the influence of each feature type on the classification accuracy. The classification accuracy is described as the F-score for each

node after removal of respective feature type. The column “all” describes the F-scores when all feature types are used. F-scores that decreased after removal

of respective feature type are presented in bold script.

Node All LBOW GR NE VC N Bigram MeSH Chem

BIOMONITORING 95.2 85.3 92.4 91.6 92.3 93.9 88.9 94.3

Exposure biomarker 94.4 89.6 89.2 93.4 93.9 93.4 92.6 93.3

Adipose tissue 90.6 80.6 84.0 87.2 79.5 83.7 79.1 84.3

Blood 84.7 80.1 83.9 78.6 82.6 85.2 84.5 82.4

Hair/nail 93.6 84.2 91.6 91.7 95.3 91.9 92.3 97.0

Mother’s milk 89.0 72.0 85.4 88.9 83.1 78.6 76.8 76.2

Other tissue 39.8 25.6 36.2 36.9 28.5 28.4 27.9 26.6

Placenta 80.0 55.0 75.3 75.6 62.4 59.3 56.7 56.4

Urine 93.8 88.8 90.1 93.3 94.5 96.0 95.4 92.0

Effect biomarker 85.3 83.2 84.6 82.9 83.1 83.1 79.6 80.1

Biomarker 78.0 72.3 80.4 73.9 76.9 73.2 70.0 71.7

Gene 74.0 65.6 73.9 70.0 71.5 72.9 69.0 72.3

Molecule 72.6 66.4 76.7 70.4 68.0 68.2 64.8 65.7

Lipid 52.2 47.7 47.3 48.4 53.2 53.4 50.1 53.3

Other molecule 55.8 46.6 53.6 55.1 45.4 47.5 49.4 46.0

Protein 67.5 54.2 67.3 62.6 63.6 60.2 58.3 57.2

Other effect biomarker 49.4 51.5 45.3 46.4 54.8 54.7 54.7 53.3

Oxidative stress marker 63.4 62.7 62.7 59.2 72.7 69.4 66.5 66.1

Physiological parameter 76.4 70.2 75.3 80.4 70.5 71.2 69.6 68.6

EXPOSURE ROUTES 90.6 89.2 85.6 84.5 86.4 89.7 85.0 88.9

Combined 56.9 51.7 53.6 57.2 55.1 54.0 56.2 51.5

Dermal exposure 77.8 71.2 71.9 83.0 74.9 74.8 73.6 71.4

Inhalation 86.6 78.9 78.0 88.5 85.2 85.7 86.5 83.2

Outdoor air 86.9 83.8 80.5 84.6 87.3 83.9 78.9 80.5

Indoor air 43.8 43.6 47.0 43.2 45.6 44.4 45.1 43.6

Personal air 81.9 77.8 74.8 87.8 85.6 81.5 76.8 82.1

Oral intake 84.8 76.2 78.7 81.1 87.2 82.8 81.4 82.0

Drinking water 82.3 73.8 76.1 80.9 85.0 80.9 80.2 78.7

Dust 82.0 80.1 80.2 77.3 82.4 80.8 79.0 79.7

Food 81.6 79.6 79.5 78.3 77.5 80.2 79.5 78.3

Products 55.4 50.4 54.2 54.8 56.0 52.7 52.2 51.6

Soil 69.6 58.0 68.8 70.6 62.2 65.2 61.0 64.8

Average: 75.5 68.6 72.6 73.7 73.2 72.5 70.7 71.0

LBOW: Lemmatized Bag of Words, GR: Grammatical Relations, NE: Named Entities, VC: Verb Clusters, N.Bigrams: Noun Bigrams, MeSH: Medical

Subject Headings, Chem: Chemical lists.

doi:10.1371/journal.pone.0173132.t005
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sources than products in the same abstracts. The classifier has not misclassified the abstract in

these cases, however it was not able to distinguish between different chemicals presented in

the same abstract.

4-nonylphenol (4-NP) is an endocrine disrupting chemical that has been used as a surfactant

in e.g. industrial and household cleaning products and in the production of e.g. paints and pes-

ticides [29, 30]. Available human exposure information about 4-NP was found to be very

scarce. Due to the low number of abstracts in each node for 4-NP, it is difficult to draw conclu-

sions about the publication profile. However, Fig 4 shows that urine and blood are the most

studied matrices for measuring exposure biomarkers, which is expected [31]. The low number

of abstracts allowed manual evaluation of the classification precision of all abstracts about

4-NP included in Fig 4. With few exceptions, the abstracts were classified correctly (96% true

positives, 4% false positives).

3.2.3. Differences in exposure data within a group of chemicals. Phthalates are a group

of industrial chemicals mainly used as plasticizers in PVC, but also in non-plastic products

such as personal care products, paints and glues [32, 33]. Humans are exposed primarily via

the diet, but also from dust, air and direct contact with consumer products [34–36].

This case study aims to map the distribution and amount of published exposure informa-

tion available for six different phthalates; di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate

(DBP), butylbenzyl phthalate (BBzP), diisobutyl phthalate (DiBP), diisononyl phthalate

(DiNP) and diisodecyl phthalate (DiDP). Due to their toxic effects, the use of DEHP, DBP,

BBzP and DiBP is prohibited within the EU since 2015, whereas DiNP and DiDP are still in

use and now substitute the banned phthalates. In this case study, we investigate if the amount

of available exposure data differs between the banned phthalates and the phthalates still in use.

All available abstracts in PubMed about these six phthalates were automatically classified to

create publication distribution profiles. In Fig 5, publication profiles for exposure biomarker

measurements and exposure routes are presented. The figure shows that the levels of

Table 6. Comparison between manual and automatic classification of articles describing measurements of nine chemicals/chemical groups in

human blood and milk.

Compound Abstracts found with manual

PubMed search1
Measurements in blood Measurements in mother’s milk

Abstracts automatically

classified as blood2
Automatic/

Manual3
Abstracts automatically

classified as milk2
Automatic/

Manual3

DDT/DDE 2050 604 28/28 137 5/5

α-, β- & γ-

HCH

699 203 14/15 70 3/3

Mirex 86 46 2/2 11 0/0

PCB 3331 1152 30/30 232 10/10

PCDD/F 2886 480 5/5 162 5/5

PFOS 561 285 16/16 25 6/8

PBDE 905 251 23/23 130 13/14

Aldrin/

dieldrin

282 59 2/2 28 2/2

Endosulfan 257 37 2/2 13 1/1

1Number of abstracts found with a PubMed search using the chemical name as search term, applying time restriction 1 Jan 2000–1 July 2014 and only

including abstracts indexed with the MeSH term “humans”.
2Number of abstracts automatically classified under respective node (blood or milk) regardless if they met the criteria for inclusion in the report.
3Number of manually selected abstracts that met the criteria for inclusion in the report (manual), and the number out of these manually selected abstracts

that were found also among the abstracts automatically classified under each relevant node (automatic).

doi:10.1371/journal.pone.0173132.t006
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phthalates in humans are measured predominantly in urine as phthalate metabolites, whereas

measurements in blood are less common, which is expected. Measurements in adipose tissue,

hair/nail and placenta are scarce or lacking for all phthalates. The publication profiles also

reflect that we are mainly exposed to phthalates via food. Publication distribution profiles for

effect biomarkers are presented in Fig 6.

This case study shows that the banned phthalates (DEHP, DBP, BBzP) are the most studied

compounds, whereas there are considerable data gaps for the phthalates still in use (DiNP and

DiDP). However, there are little available data also for the banned phthalate DiBP. The rela-

tively larger amount of data for the banned compounds may be due to that these compounds

have more established toxic properties and have historically been the most commonly used

phthalates. However, DiNP and DiDP are among the most used phthalates in Europe today

[33, 37], which is a reason to request more exposure data for these compounds. The overall

pattern of phthalates may reflect general lack of exposure data for substituting compounds,

whereas ample exposure data are available for compounds used for a long time. These findings

raise concern that the research is not up-to-date with the current use of chemicals.

Fig 4. Publication profiles of exposure information about 4-NP, HCB and lead. The percentages of the total number of abstracts retrieved

from PubMed and considered relevant for the full taxonomy are presented. The total number of abstracts was 130 for 4-NP, 722 for HCB and 7753

for lead.

doi:10.1371/journal.pone.0173132.g004
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3.2.4. Information retrieval. Automatic classification of abstract text can be shown to

improve information retrieval compared to manual PubMed searches. The aim of this case

study was to show whether using our classification system we can improve the recall of

abstracts while at least keeping the same precision of results retrieved by PubMed search

queries.

In this case study, we considered search queries that utilize our classification taxonomy. We

selected the pollutant lead (CAS number 7439-92-1) as the chemical of interest and we then

retrieved abstracts from PubMed that are relevant to a certain type of exposure, for example

inhalation, i.e. the search query would typically be formulated as “7439-92-1AND inhalation”

which retrieves abstracts from PubMed that should in theory be both relevant to lead and inha-

lation. This particular search query yielded 149 results. However, when using our system in

conjunction, i.e. by classifying all lead related documents according to the taxonomy, and then

observe how many were classified under the inhalation node in the taxonomy, we identified

337 abstracts, which is more than double the number identified by PubMed. This large differ-

ence is due to the fact that our NLP pipeline considers far more factors than search term occur-

rences in the text.

Fig 5. Publication profiles for exposure biomarkers and exposure routes for different phthalate esters.

doi:10.1371/journal.pone.0173132.g005
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In this case study, we show how this works by running this experiment on the five search

queries shown in Table 7, along with automatic classification into the corresponding nodes in

our taxonomy. Table 7 details the improvement in recall for the five queries when using our

automatic classifier in comparison to the corresponding search query in PubMed.

We can see that our system was able to identify far more abstracts than what was retrieved

by PubMed, in some cases by an order of magnitude. However, improving recall alone is not

sufficient, as we also need to at least keep the same level of precision currently achieved by

PubMed. In order to approximate this, the top 20 abstracts retrieved from each PubMed search

query were reviewed to ascertain whether each abstract is relevant for the given query. From

this relevance judgment, we can approximate the precision and therefore percentage of false

positive abstracts from the PubMed search as well as our system’s classification. Table 8 details

the precision performance according to the top 20 retrieved abstracts.

Fig 6. Publication profiles for effect biomarkers related to exposure to different phthalate esters.

doi:10.1371/journal.pone.0173132.g006

Table 7. The number of abstracts retrieved by PubMed using a search query VS the number of abstracts classified into the corresponding node in

our system.

PubMed search query Node in the taxonomy # of abstracts retrieved by

PubMed1
# of abstracts classified by

our system1

7439-92-1 AND inhalation Exposure routes➔ Inhalation 149 337

7439-92-1 AND (DNA OR gene)

AND biomarker

Biomonitoring➔ Effect biomarker➔ Biomarker➔
Gene

65 120

7439-92-1 AND protein AND

biomarker

Biomonitoring➔ Effect biomarker➔ Biomarker➔
Molecule➔ Protein

149 357

7439-92-1 AND blood AND

biomarker

Biomonitoring➔ Exposure biomarker➔ Blood 407 3784

7439-92-1 AND (hair OR nail) AND

biomarker

Biomonitoring➔ Exposure biomarker➔ Hair/nail 24 257

1These numbers include both true and false positive abstracts.

doi:10.1371/journal.pone.0173132.t007
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From the results in Table 8, we observe that our model’s performance is substantially more

precise and has far fewer false positives than the keyword based search in PubMed. We believe

that in the cases where search queries have correspondence to our taxonomy, we can improve

both recall and precision by a substantial margin. This is due to the fact that our classification

system considers far more factors when judging for relevance according to the exposure

domain than PubMed keyword searches. Therefore, our specialised system can provide supe-

rior information retrieval for exposure science researchers.

4. Discussion

In this paper, we introduce a new application of text mining technology in the scenario of

exposure research. We have evaluated the performance of the system and presented a number

of case studies showing the usefulness of an automatic classifier for retrieving and classifying

exposure information when e.g. preparing for reports, reviews or exposure assessments and

for overviewing publication distribution profiles and identifying data gaps.

This project benefits from the collaboration between experts in exposure sciences, who have

developed a relevant taxonomy and performed the annotations applying their knowledge in the

field, and scientists in computational linguistics. Although text mining approaches have been

developed and used for several biomedical fields [5], this is the first automatic classifier for chemi-

cal exposure information. We used traditional, but still top-performing feature extraction and

machine learning algorithms for semantic classification of biomedical literature [38–40]. The SVM

classifier used in our study has important advantages for text classification, being fairly robust to

overfitting and easy to scale up to considerable feature dimensionalities [40]. Even the state-of-the-

art document classification technology is built on top of standard classifiers such as a logistic classi-

fier or SVM [41]. Recent advances in representation learning enable words, sentences, and docu-

ments to be represented by a dense vector which, on certain datasets, outperforms n-grams and

alike obtained through traditional feature engineering. However, counterexamples also exist espe-

cially in similar classification tasks on biomedical literature data. For instance, as reported in [42],

without the assistance of handcrafted features, the performance of the more fancy distributed rep-

resentations of documents is less satisfactory, justifying the use of classical features.

The intrinsic evaluation of our automatic classifier showed good performance as high F-

scores were generally achieved. We have demonstrated that our classifier successfully catego-

rizes exposure data in a manner that greatly narrows down the amount of irrelevant informa-

tion that would be retrieved by broad keyword based PubMed searches. We have also showed

that our classifier is capable of finding more abstracts in specific sub-nodes and at the same

time achieve higher accuracy compared to if the corresponding PubMed search strings were

used. Consequently, the information that would be lost using specified PubMed searches is

found by our classifier and the relevance of the retrieved information is higher.

Table 8. Performance comparison according to top returned results sample. Manual evaluation of 20 abstracts retrieved from PubMed using a search

query VS automatic classification into the corresponding node in our system.

PubMed search query PubMed keyword search Classification by our system Sample size

Precision False Positive Precision False Positive

7439-92-1 AND inhalation 50% 50% 100% 0% 20

7439-92-1 AND (DNA OR gene) AND biomarker 35% 65% 100% 0% 20

7439-92-1 AND protein AND biomarker 35% 65% 100% 0% 20

7439-92-1 AND blood AND biomarker 85% 15% 95% 5% 20

7439-92-1 AND (hair OR nail) AND biomarker 60% 40% 75% 20% 20

doi:10.1371/journal.pone.0173132.t008
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The problem-based case studies showed that the classifier successfully can be used by

researchers as a time-saving complement to manual information search. We also showed that

the classifier creates chemical-specific publication profiles that reflect what we know about

well-studied chemicals, which further confirms the relevance of the obtained results. As we

show in our case studies, such profiles can be used to overview exposure data when comparing

different chemicals or compounds within a chemical group and to detect data gaps.

In this paper, we present the first automatic classifier for exposure data. To the best of our

knowledge, the only existing database for annotated exposure information is the Comparative

Toxicogenomics Database (CTD; http://ctdbase.org), in which exposure information is one

out of several modules [43]. However, in contrast to our classifier, the CTD rely on manual

curation of all articles in the database. The curation for the CTD is structured according to an

Exposure Science Ontology (ExO) [44], which was not considered as a suitable structure for

our exposure taxonomy.

The taxonomy presented in this paper has great potential to be extended to include addi-

tional relevant branches for exposure information. For example, measurements of environmen-

tal media, such as biota and ambient air may provide important complementary information,

especially when other exposure data is scarce. The taxonomy could also be extended to include

classification of health outcomes (i.e. disorders and/or diseases) of chemical exposures studied

in e.g. epidemiological studies.

In our taxonomy and in the annotation process we exclusively considered human exposure

data. In related research areas (such as toxicology), also animal and in vitro data are highly rele-

vant for the chemical risk assessment. In future continuation of the project, animal and in vitro
data could be included in the annotation and machine learning processes aiming to better

overview the current knowledge of e.g. effect biomarkers.

In human exposure assessments, data from the general adult population is not necessarily

transferrable to subpopulations, such as children or pregnant women, due to differences in

behavioral patterns, physiology and susceptibility. Chemical exposure measurements or calcu-

lations representative for specific subpopulations are therefore important to accurately assess

exposure in the total population and to identify highly exposed groups in the population [45].

Therefore, the taxonomy was initially developed to differentiate between studies performed

in children, pregnant women and workers. The classifiers achieved F-scores of 11–78 percent

for these subpopulation specific nodes under the exposure biomarker and exposure route

branches (data not shown). These moderate scores may be due to the relatively few abstracts

available for annotation for these sub-nodes. This highlights the need for more exposure stud-

ies performed in susceptible subgroups.

The evaluation of the classifier revealed some challenges which should be addressed in fur-

ther optimization of the system. Here, we present three challenges that should be overcome. 1)

The nodes other tissue for exposure biomarker measurements, other effect biomarkers and

indoor air performed poorly, probably due to the diversity of data in these nodes. Using our

gained knowledge about the characteristics of this diverse information, each node can be

divided into more specific nodes, which provide more relevant classification and enhance the

F-scores. 2) The classifier is unable to distinguish between different chemicals that are mea-

sured in different tissues but presented in the same article. This is not a classification error per
se since these abstracts are classified correctly based on the available information, however

chemical-specific publication profiles may show an incorrect pattern if the misclassification

occurs systematically. Addressing this problem will require further analysis of the available

annotations for textual cues that might help the classifier to make the distinction. 3) Aiming to

exclude animal and in vitro studies when retrieving abstracts from PubMed, only abstracts

indexed with the MeSH term “humans” were used. However, some animal and in vitro studies
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were also labeled with this MeSH term and were therefore retrieved and included in the auto-

matic classification. In these cases, our classifier classified the information correctly, but the inter-

pretation of the results as exclusively human data may be misleading. To overcome this problem,

we can’t change the manner in which abstracts are indexed by PubMed. However, by extending

the taxonomy to include animal and in vitro studies, we would overcome these biases.

In conclusion, we have introduced and evaluated an automatic classifier for human expo-

sure data that constitutes the first step towards developing a text mining tool that can support

practical tasks such as the exposure assessment in the chemical risk assessment process. The

promising results reported in this paper and identification of strengths, challenges and possible

future improvements of the classifier can be used to further optimize the approach in future

work.
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