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De novo and acquired resistance to platinum therapy such as cisplatin

(CDDP) is a clinical challenge in gastric cancer treatment. Aberrant expres-

sion and activation of aurora kinase A (AURKA) and eukaryotic transla-

tion initiation factor 4E (eIF4E) are detected in several cancer types.

Herein, we investigated the role of AURKA in CDDP resistance in gastric

cancer. Western blot analysis demonstrated overexpression of AURKA

and phosphorylation of eIF4E in acquired and de novo CDDP-resistant

gastric cancer models. Inhibition of AURKA with MLN8237 (alisertib)

alone or in combination with CDDP significantly suppressed viability of

CDDP-resistant cancer cells (P < 0.01). Additionally, inhibition or knock-

down of AURKA decreased protein expression of p-eIF4E (S209), HDM2,

and c-MYC in CDDP-resistant cell models. This was associated with a sig-

nificant decrease in cap-dependent translation levels (P < 0.01). In vivo

tumor xenografts data corroborated these results and confirmed that inhi-

bition of AURKA was sufficient to overcome CDDP resistance in gastric

cancer. Our data demonstrate that AURKA promotes acquired and

de novo resistance to CDDP through regulation of p-eIF4E (S209), c-

MYC, HDM2, and cap-dependent translation. Targeting AURKA could

be an effective therapeutic approach to overcome CDDP resistance in

refractory gastric cancer and possibly other cancer types.

1. Introduction

Gastric cancer is currently the fourth most common

malignancy worldwide and the third leading cause of

cancer-related deaths in both males and females (Fer-

lay et al., 2015). Resistance to chemotherapeutic

agents is a major clinical problem in the management

of patients with cancer. In fact, patients with gastric

cancer exhibit poor response to neoadjuvant and adju-

vant chemotherapy due to intrinsic and acquired drug

resistance (Hohenberger and Gretschel, 2003; Jemal

et al., 2011). Platinum-based regimens that include cis-

platin [cis-diamminedichloroplatinum (CDDP)] are

employed to treat a variety of cancers such as ovarian,

bladder, esophageal, and gastric cancers. Although

platinum-based chemotherapeutic regimens have

become standard approaches for the treatment of

patients with advanced gastric cancer, there is a rela-

tively low rate of complete response (Van Cutsem

et al., 2008). Therefore, there is an urgent need for the
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development of novel therapeutic approaches based on

understanding the underlying molecular pathways

mediating cisplatin resistance.

Aurora kinase A (AURKA) is a serine/threonine cell

cycle kinase, whose main physiological function in nor-

mal cells is related to centrosome and spindle assembly

(Lens et al., 2010). We and others have reported ampli-

fication and overexpression of AURKA in several

malignancies including gastric, esophageal, colon,

breast, and ovarian cancers (Aradottir et al., 2015;

Cirak et al., 2015; Dar et al., 2008b, 2009; Fang et al.,

2011; Furukawa et al., 2006; Gritsko et al., 2003;

Katayama et al., 1999; Katsha et al., 2013, 2015; Zheng

et al., 2016). Recent studies have shown that inhibition

of AURKA can sensitize cancer cells to CDDP in gas-

tric cancer (Sehdev et al., 2012) and its overexpression

may predict platinum resistance in epithelial ovarian

cancer (Mignogna et al., 2016). It has been shown that

AURKA can inhibit p53 through direct binding and

activation of the E3-ubiquitin ligase, human double

minute 2 (HDM2) (Sehdev et al., 2014). Notably,

AURKA overexpression in cancer cells has also been

implicated in activating a plethora of prosurvival onco-

genic pathways including b-catenin, NF-jB, and AKT

(Dar et al., 2008b, 2009; Katsha et al., 2013). These

studies suggest that AURKA overexpression in cancer

cells has prosurvival and antiapoptotic functions.

The eukaryotic translation initiation factor 4E

(eIF4E), which is the rate-limiting component in for-

mation of eIF4F complex (Jones et al., 1997), is

involved in recognizing the 50 7-methyl guanosine cap

of mRNAs (Mamane et al., 2004). Regulation of pro-

tein translation is important for the control of cell

growth and proliferation. Aberrant activation of

eIF4E has been linked to resistance to therapy and

poor outcome in breast, melanoma, prostate, and gas-

tric cancers (Chen et al., 2004; Graff et al., 2009; Pet-

tersson et al., 2015; Zhan et al., 2015). Activity of

eIF4E is dependent upon its phosphorylation on

Ser209, leading to oncogenic transformation through

translational control (Wendel et al., 2007). Enhanced

translation of growth-promoting genes such as c-

MYC, cyclin D1, and VEGF has been associated with

the activation of eIF4E. Activation of eIF4E has been

implicated in chemotherapeutic resistance in several

cancer types (Kraljacic et al., 2011; Martinez-Marignac

et al., 2013; Zhan et al., 2015). A recent study

reported that inhibiting eIF4E might be a viable thera-

peutic approach to overcome resistance to vemu-

rafenib, BRAF inhibitor, in melanoma (Zhan et al.,

2015). Therefore, targeting eIF4E is considered a

promising anticancer strategy to combat drug

resistance (reviewed in Siddiqui and Sonenberg, 2015).

In this study, we demonstrate that AURKA pro-

motes acquired and de novo resistance to cisplatin in

in vitro and in vivo gastric cancer cell models. We

show that AURKA mediates phosphorylation of

eIF4E to promote protein translation of pro-oncogenic

downstream effectors such as c-MYC and HDM2. We

propose targeting AURKA as an effective second-line

therapeutic approach in cisplatin-resistant cancers.

2. Materials and methods

2.1. Cell culture and reagents

Human gastric adenocarcinoma cell lines (AGS, SNU-1,

MKN28, and MKN45) were maintained in Dulbecco’s

modified Eagle’s medium (GIBCO, Carlsbad, CA,

USA). All cell lines were authenticated using short tan-

dem repeat (STR) profiling (Genetica DNA Laborato-

ries, Burlington, NC, USA). The cell lines were

supplemented with 10% fetal bovine serum (Invitrogen

Life Technologies, Carlsbad, CA, USA) and with 1%

penicillin/streptomycin (GIBCO). The investigational

AURKA inhibitor alisertib, known as MLN8237 (Mil-

lennium Pharmaceuticals, Inc., Cambridge, MA, USA),

was used for in vitro and in vivo studies. The AURKA

expression plasmid was generated as described previ-

ously (Dar et al., 2009). Specific antibodies against p-

AURKA (T288), AURKA, p-eIF4E (S209), eIF4E, and

b-actin were purchased from Cell Signaling Technology

(Beverly, MA, USA). Specific antibody against c-MYC

was purchased from Santa Cruz Biotechnology (Dallas,

TX, USA). Transfection reagent LipoJet was purchased

from SignaGen (Gaithersburg, MD, USA). Cisplatin

(CDDP) (APP Pharmaceuticals, LLC) was obtained

from Vanderbilt University Medical Center pharmacy in

a stock solution (2 mmol�L�1), prepared using 1 9 PBS.

2.2. Establishment of CDDP-resistant sublines

from AGS cells

AGS CDDP-resistant cells were established by contin-

uous exposure to CDDP starting at 0.1 lM and

increasing in a stepwise manner to 10 lM for

6 months. Finally, we generated two AGS CDDP-

resistant pools (Pools 1 and 2) from which we selected

two highly resistant single clones (Clones 1 and 2) to

be used in the study.

2.3. Western blotting

Cells were scraped on ice and centrifuged, and pellets

were resuspended in RIPA lysis buffer. Cell lysates

were placed on ice. Protein concentration was
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determined using Bradford Protein Assay (Bio-Rad

Laboratories, Hercules, CA, USA). Proteins (25 lg)
from each sample were subjected to SDS/PAGE and

transferred onto nitrocellulose membranes using the

semidry transfer protocol (Bio-Rad Laboratories).

After transfer, membranes were probed with each

respective primary antibody overnight at 4 °C. Follow-
ing incubation, the membranes were probed with

HRP-conjugated secondary antibodies (Cell Signaling).

Protein bands were visualized using the commercial

Immobilon Western Chemiluminescent HRP Substrate

Kit (Millipore, Billerica, MA, USA).

2.4. AURKA and eIF4E silencing by small-

interfering RNA (siRNA)

Cells were seeded at 60% confluency in 10% FBS-con-

taining DMEM for 24 h in p60 plates. AURKA and

eIF4E were transiently silenced by using siAURKA

and sieIF4E (Invitrogen) for a total of 48 h. A nega-

tive siRNA control (Ambion, Austin, TX, USA) was

used in each experiment. Transfection of cells was

achieved by using a LipoJet reagent (SignaGen)

according to the manufacturer’s instructions. Follow-

ing 24-h transfection, medium was replaced with

DMEM, supplemented with 5% FBS and antibiotics

for another 24 h prior to harvesting. Validation of

AURKA and eIF4E knockdown was assessed by

qPCR and western blot analyses.

2.5. AURKA overexpression

The expression plasmid for AURKA was generated as

described previously (Dar et al., 2009). A synthetic

Flag-tag sequence was added at the N terminus of

AURKA. The recombinant adenovirus expressing

AURKA or control was generated as described previ-

ously (Katsha et al., 2013). The recombinant aden-

ovirus was generated by cotransfecting human

embryonic kidney (HEK)-293 cells (American Tissue

Culture Collection) with the shuttle and adenoviral

backbone (pJM17) plasmids using the Calcium Phos-

phate Transfection Kit (Applied Biological Materials,

Inc., Richmond, BC, USA).

2.6. CellTiter-Glo Luminescence Assay

CellTiter-Glo assay was used to determine IC50 and

drug dose–response curves for each cell line following

treatment with CDDP, alisertib (MLN8237), or in

combination. Cells were seeded at 2000 cells/well in a

96-well plate. Cells were treated with CDDP with or

without MLN8237 following a 12 9 2-fold serial

dilution treatment in 5% FBS-containing DMEM.

After five days, cell viability was measured using Cell-

Titer-Glo Luminescence Assay (Promega, Madison,

WI, USA). The dose–response curves were fitted using

GraphPad Prism 5, following a nonlinear regression

(four-parameter, least-squares fit) method. IC50 values

were determined by a four-parameter, nonlinear

regression method. The data were generated from at

least three independent experiments.

2.7. RNA extraction and real-time RT-PCR

Cells were scraped and centrifuged, and total RNA

was isolated using the RNeasy Mini kit (Qiagen,

Germantown, MD, USA), and cDNA synthesis was

performed using an iScript cDNA Synthesis Kit (Bio-

Rad). Specific primers’ sequences were acquired from

qPrimerDepot-A quantitative real-time PCR primer

database (https://primerdepot.nci.nih.gov/). All primers

were purchased from Integrated DNA Technologies

(IDT), Coralville, IA, USA). c-MYC-F: CACC-

GAGTCGTAGTCGAGGT; c-MYC-R: TTTC

GGGTAGTGGAAAACCA; AURKA-F: AGTTGGA

GGTCCAAAACGTG; AURKA-R: TCCAAGTGG

TGC ATATTCCA; HDM2-F: ACCTCACAGATTCC

AGCTTCG; HDM2-R: TTTCATAGTATAAGTGTC

TTTTT. The quantitative RT-PCR was performed

using a Bio-Rad CFX Connect Real-time System, with

the threshold cycle number determined by Bio-Rad

CFX MANAGER software version 3.0 (Bio-Rad Life

Sciences, Hercules, CA, USA). Reactions were per-

formed in triplicate, and the threshold cycle numbers

were averaged. The results of the genes were normal-

ized to HPRT1 housekeeping gene.

2.8. Luciferase reporter assay

For the cap-dependent dual luciferase reporter assays,

cells were transfected with 1 lg of a dual-renilla-firefly-

luciferase pcDNA3-rLuc-PolioIRES-fLuc reporter (a

kind gift from John Blenis, Harvard Medical School),

to measure cap-dependent/cap-independent translation

(Dos Santos et al., 2016). Cells were plated in six-well

plates, transfected using Lipofectamine 2000 reagent

(Life Technologies), and treated with MLN8237 for

24 h. The lysates were prepared in triplicate, and the

dual luciferase reporter assay (Promega) was used fol-

lowing the manufacturer’s protocol. The rate of cap-

dependent translation was defined as the ratio of

renilla to firefly luciferase activities.

For c-MYC transcription activity, cells were cotrans-

fected with 250 ng of b-GAL and 1 lg of 4xEMS

c-MYC reporter (a kind gift from Stephen R. Hann,
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Vanderbilt University School of Medicine) in six-well

plates using the PolyJet transfection reagent (Signa-

Gen). As a positive control, parental cells were trans-

fected with 500 ng of pcDNA-c-MYC plasmid in

addition to 250 ng of b-GAL and 1 lg of 4xEMS c-

MYC reporter. Cells were treated with MLN8237 for

24 h and then lysed to measure luciferase activity

using the Luciferase Assay Kit (Promega). The c-MYC

luciferase activities were normalized to b-GAL levels.

2.9. In vivo tumor xenograft

All animal work was approved by the Vanderbilt Insti-

tutional Animal Care and Use Committee. MKN45

cells (2 9 106) suspended in 200 lL of DMEM and

Matrigel mixture (50% DMEM supplemented with

10% FBS and 50% Matrigel) were injected into the

flank regions of female 201 NIH III HO nude mice

(Charles River Laboratories, Wilmington, MA, USA).

We used eight mice per group. The tumors were

allowed to grow until 150–200 mm3 in size before

starting treatment with CDDP (2.5 mg�kg�1 body

weight, once a week, IP) alone, MLN8237

(40 mg�kg�1, five times per week, orally) alone, or the

combination of CDDP and MLN8237 for 28 days.

Tumor xenografts were measured every three days,

and tumor size was calculated according to the follow-

ing formula: T vol = L 9 W2 9 0.5, where T vol is

tumor volume, L is tumor length, and W is tumor

width. For control group, mice were sacrificed when

tumor size reaches 1000 mm3 in accordance with the

approved protocols. At the end of treatment, three to

six xenograft tumors from each group were collected

and processed for western blot (p-AURKA (T288),

AURKA, p-eIF4E (S209), eIF4E, c-MYC). Immuno-

histochemical analysis was carried out on formalin-

fixed, paraffin-embedded tissues to measure Ki-67 and

cleaved caspase 3 protein expression levels. Ki-67 and

cleaved caspase 3 protein expression levels were evalu-

ated by IMAGEJ software (NIH, Bethesda, MD, USA).

Relative integrated density indicates the quantification

data of diaminobenzidine staining signal analyzed by

ImageJ IHC Toolbox plugin (https://imagej.nih.gov/

ij/plugins/ihc-toolbox/index.html; Zhang et al., 2016).

2.10. Statistical analysis

Data are presented as means � standard error of mean.

Statistical significance of difference between control

groups and treatment groups was determined using

one-way ANOVA test. Statistical analyses were carried

out using GRAPHPAD PRISM 5 software, nonlinear regres-

sion (GraphPad Software Inc., La Jolla CA, USA).

The correlation between two parameters was deter-

mined by two-tailed Student’s test. The differences were

considered statistically significant when the P < 0.05.

3. Results

3.1. Acquired resistance to CDDP correlates with

high levels of AURKA and p-eIF4E proteins in

gastric cancer cells

Cisplatin-based chemotherapeutic regimen is a standard

approach for the treatment of patients with gastric cancer.

Unfortunately, disease progression eventually occurs

because of acquired drug resistance (reviewed by Lu

et al., 2016). To determine the molecular mechanism that

drives acquired resistance to CDDP in gastric cancer cells,

we generated AGS cell models of acquired resistance to

CDDP using a stepwise increase in CDDP concentrations

starting at 0.1–10 lM for 6 months. At the end of CDDP

treatments, we obtained the following CDDP-resistant

AGS cell models: AGS CDDPR Pool 1, AGS CDDPR

Pool 2, AGS CDDP Clone 1, and AGS CDDPR Clone 2.

Short-term cell viability (5 days) in response to CDDP

treatments was evaluated by CellTiter-Glo assay. The

CDDP IC50s of AGS CDDPR Pool 1 (15.4 lM), AGS

CDDPR Pool 2 (14.2 lM), AGS CDDPR Clone 1

(17.5 lM), and AGS CDDPR Clone 2 (8.6 lM) were sig-

nificantly higher than that of AGS Parental cells (4.9 lM,
P < 0.05) (Fig. 1A), confirming that AGS CDDP-resis-

tant cell models conferred the CDDP resistance pheno-

type. Using western blot analysis, we found that CDDP-

resistant AGS cells gained overexpression of AURKA, p-

eIF4E (S209), c-MYC, and HDM2 proteins, as compared

to AGS Parental cells (Fig. 1B).

3.2. Cancer cells with acquired resistance to

CDDP are sensitive to AURKA inhibition

To find out whether targeting AURKA can reverse these

signaling effects and restore therapeutic efficacy in

CDDP-resistant cells, we inhibited AURKA with

MLN8237, an investigational AURKA-specific inhibi-

tor, alone or in combination with CDDP in AGS Paren-

tal and CDDPR cells. Using short-term cell viability

(5 days) CellTiter-Glo assay, the results showed that

MLN8237 alone significantly decreased cell survival

(P < 0.001) in AGS Parental cells, AGS CDDPR Pool 1,

AGS CDDPR Pool 2, AGS CDDPR Clone 1, and AGS

CDDPR Clone 2 cells in a dose-dependent manner.

Interestingly, while the combination of MLN8237 and

CDDP had an additive effect on parental cells (Fig. 1C),

the addition of CDDP toMLN8237 had minimal advan-

tage over MLN8237 alone in CDDP-resistant cells
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(Fig. 1D–G). Collectively, the data indicated that inhibi-

tion of AURKA usingMLN8237 is sufficient to decrease

cell viability of AGSCDDP-resistant cells.

3.3. AURKA promotes CDDP-acquired resistance

through regulation of eIF4E, c-MYC, and HDM2

Based on our results indicating that AURKA is

important for CDDP-acquired resistance (Fig. 1), and

the positive correlation between the protein expression

of AURKA, p-eIF4E (S209), c-MYC, and HDM2 in

CDDP-resistant cells (Fig. 1B), we examined whether

AURKA inhibition by MLN8237 can regulate these

signaling molecules. Indeed, we observed a substantial

reduction in the protein levels of p-eIF4E (S209), c-

MYC, and HDM2 in AGS CDDPR Pool 1, AGS

CDDPR Pool 2, AGS CDDPR Clone 1, and AGS

CDDPR Clone 2 cells, as compared with nontreated

Fig. 1. CDDP-resistant cells express high levels of AURKA and p-eIF4E (S209) proteins. (A) AGS Parental, AGS CDDP-resistant (CDDPR)

Pool 1, AGS CDDPR Pool 2, AGS CDDPR Clone 1, and AGS CDDPR Clone 2 cells in 96-well plates were treated with CDDP following a 8-

point twofold serial dilution, starting at 100 lM concentration. Cell viability was measured using CellTiter-Glo assay. Dose response was

fitted using a three-parameter nonlinear regression method. (B) Cell lysates from AGS Parental and CDDP-resistant cell lines were subjected

to western blot analysis of the indicated proteins. Levels of AURKA, p-eIF4E (S209), c-MYC, and HDM2 proteins were substantially higher

in AGS CDDP-resistant cells than in AGS Parental cells. AGS Parental (C), AGS CDDPR Pool 1 (D), AGS CDDPR Clone 1 (E), AGS CDDPR

Pool 2 (F), and AGS CDDPR Clone 2 (G) cells in 96-well plates were treated with MLN8237 alone, CDDP alone, or CDDP + MLN8237 at a

fixed ratio (10 : 1) following a 12-point twofold serial dilution. Cell viability was measured and dose–response curves were generated as in

(A). The mean value of IC50 of each drug treatment was generated from at least three independent experiments.
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cells (Fig. 2). To validate the data indicating that inhi-

bition of AURKA by MLN8237 leads to decreased

protein expression of p-eIF4E (S209), c-MYC, and

HDM2 in AGS CDDPR cells, we knocked down

endogenous AURKA with siRNA and evaluated the

expression of p-eIF4E and downstream effectors in

these cells. Indeed, the western blot data confirmed the

downregulation of p-eIF4E (S209), c-MYC, and

HDM2 proteins following the knockdown of AURKA

(Fig. 3A). The qRT-PCR data indicated that knocking

down AURKA did not decrease the mRNA expres-

sion of c-MYC, and HDM2 in AGS CDDPR cells

(Fig. 3B). On the contrary, we observed some induc-

tion of mRNA expression level (Fig. 3B) despite the

reduction in their protein level, which may reflect a

compensatory cellular feedback mechanism in an

attempt to restore the protein expression back to its

base level. Taken together, these results confirm that

regulation of c-MYC and HDM2 in resistant cells is

post-transcriptional. These results are also in line with

phosphorylation of eIF4E (S209), which plays an

important role in protein translation, suggesting that

AURKA-mediated cap-dependent translation is likely

a dominant mechanism. Therefore, we next

Fig. 2. Pharmacologic inhibition of AURKA with MLN8237 downregulates phosphorylation of eIF4E and protein expression of downstream

effectors in CDDP-resistant cells. AGS CDDPR Pool 1, AGS CDDPR Pool 2, AGS CDDPR Clone 1, and AGS CDDPR Clone 2 cells were

treated with MLN8237 (0.5 lM), and cell lysates were subjected to western blot analysis of the indicated proteins. The data showed that

pharmacologic inhibition of AURKA with MLN8237, as indicated by decreased protein levels of p-AURKA (T288), reduced the protein levels

of p-eIF4E (S209) and its protein translation targets, c-MYC and HDM2 in CDDP-resistant cells. Gel loading was normalized for equal b-actin.

Fig. 3. Genetic knockdown of AURKA reduces phosphorylation of eIF4E and protein levels of its downstream effectors in CDDP-resistant

cells. AGS CDDPR Pool 1, AGS CDDPR Pool 2, AGS CDDPR Clone 1, and AGS CDDPR Clone 2 cells were transfected with control siRNA

(siControl) or siRNA specific for AURKA (siAURKA) for 48 h. Cell lysates and total RNA were subjected to western blot (A) and real-time RT-

PCR (B) analyses, respectively. The data showed that knockdown of AURKA led to decreased p-eIF4E (S209), c-MYC, and HDM2 protein

levels, but did not decrease mRNA expression of the corresponding encoding genes in CDDP-resistant cells. Gel loading was normalized for

equal b-actin. HPRT1 housekeeping gene was used as the internal control for PCR. (C) AGS Parental, AGS CDDPR Pool 1, AGS CDDPR

Pool 2, AGS CDDPR Clone 1, and AGS CDDPR Clone 2 cells were transfected with luciferase reporter plasmid (pcDNA3-rLuc-Polio IRES-

fLuc). Cells were treated with MLN8237 (0.5 lM) for 24 h. The rate of cap-dependent translation was defined as the ratio of renilla to firefly

luciferase activities. (D) AGS Parental, AGS CDDPR Pool 1, AGS CDDPR Pool 2, AGS CDDPR Clone 1, and AGS CDDPR Clone 2 cells were

transfected with 4 9 EMS c-MYC reporter. Cells were treated with MLN8237 (0.5 lM) for 24 h. Luciferase activity was determined as

described in Materials and methods. The results showed that the basal level of cap-dependent translation activity and c-MYC transcription

activity in AGS CDDPR cells are significantly higher than in AGS Parental cells. ***P < 0.001. Additionally, treatment with MLN8237

significantly reduced cell cap-dependent translation or 4xEMS c-MYC Luciferase activity in comparison with the no-treatment control group.

Transient transfections with pcDNA-eIF4E (C) or pcDNA-c-MYC (D) were included as controls. *P < 0.05, **P < 0.01, ***P < 0.001.
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investigated protein translation activity. We utilized a

unique dual-renilla-firefly-luciferase pcDNA3-rLuc-

PolioIRES-fLuc reporter to measure cap-dependent/

cap-independent translation (Liu et al., 2013), followed

by treatment with MLN8327. We found that the cap-

dependent renilla activity is higher in CDDP-resistant
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cells (P < 0.01), as compared to parental cells, and

was significantly decreased after MLN8237 treatment

in AGS CDDPR cells (P < 0.01) (Fig. 3C). We also

measured the transcriptional activity of the induced c-

MYC protein in resistant cells using the 4xEMS c-

MYC reporter, which contains 4 c-MYC binding sites

(Boone et al., 2011), followed by treatment with

MLN8327. The data indicated that inhibition of

AURKA significantly decreased c-MYC transcription

activity in AGS CDDPR cells (P < 0.05) (Fig. 3D).

To test our hypothesis that AURKA-mediated

acquired CDDP resistance is dependent on eIF4E and

downstream effectors, we knocked down eIF4E or c-

MYC in AGS CDDPR cells and assessed cell viability

in response to CDDP. Our western blot data showed,

as expected, that knockdown of eIF4E downregulated

the downstream effectors, c-MYC and HDM2

(Fig. 4A). To confirm that the regulation of down-

stream effectors, c-MYC and HDM2, by AURKA is

mediated by eIF4E, we transiently expressed AURKA

with and without knocking down eIF4E in AGS cells.

Western blot data showed that AURKA-induced c-

MYC and HDM2 protein expression was suppressed

following eIF4E knockdown (Fig. 4B), confirming that

AURKA regulates these proteins in an eIF4E-depen-

dent manner. Notably, we observed that knockdown

of eIF4E significantly sensitized AGS CDDPR Pool 1

(P < 0.05) and AGS CDDPR Clone 1 (P < 0.01) cells

to CDDP as indicated by a decrease in IC50 from 15.2

to 6 lM and from 18 to 5.3 lM, respectively (Fig. 4C).

In addition, our data indicated that knockdown of the

downstream effector, c-MYC, significantly increased

the sensitivity of AGS CDDPR Pool 1 (P < 0.01) and

AGS CDDPR Clone 1 (P < 0.05) cells to CDDP as

indicated by a decrease in IC50 from 15.9 to 6.5 lM
and from 20 to 10 lM, respectively (Fig. 4D). Taken

together, these results indicate that AURKA-mediated

acquired CDDP resistance is dependent on eIF4E and

its downstream targets in AGS gastric cancer cells and

suggest that targeting AURKA can be an effective

therapeutic approach in CDDP-resistant cells.

3.4. AURKA enhances de novo CDDP resistance

through regulation of eIF4E, c-MYC, and HDM2

We next investigated whether AURKA–eIF4E axis is

also present in de novo CDDP resistance. We first

screened a panel of gastric cancer cell lines for their

sensitivity to CDDP and correlation with protein

expression of AURKA, p-eIF4E, eIF4E, c-MYC, and

HDM2. Our cell viability data in response to CDDP

indicated various levels of sensitivity (IC50) of the fol-

lowing cell lines: AGS (4.9 lM), SNU-1 (0.9 lM),

MKN28 (7.2 lM), and MKN45 (11.6 lM) (Fig. 5A).

Western blot data demonstrated high levels of

AURKA in CDDP-resistant cells (MKN28 and

MKN45 cell lines) (Fig. 5B). We next selected

MKN45 cells, which exhibit the highest degree of

CDDP resistance, relative to other cell lines, as a

model of intrinsic de novo resistance to investigate

whether targeting AURKA can achieve a therapeutic

response. Cell viability data showed that MLN8237

alone or in combination with CDDP can significantly

reduce cell viability as compared to CDDP alone

(P < 0.01, Fig. 5C). Accordingly, western blot data

showed that inhibiting AURKA using MLN8237

(Fig. 5D) or AURKA knockdown using siRNA

(Fig. 5E) downregulated protein expression of p-eIF4E

(S209), c-MYC, and HDM2 in MKN45 cells, similar

to acquired resistance cell models. To investigate

whether AURKA-mediated de novo CDDP resistance

is dependent on eIF4E and c-MYC, we knocked down

eIF4E or c-MYC in MKN45 cells and assessed cell

viability in response to CDDP. Our data showed that

knocking down either eIF4E or c-MYC significantly

sensitized cells to CDDP (P < 0.05), as indicated by

approximately a twofold decrease in IC50 (Fig. 5F).

Western blot data indicated that knocking down of

eIF4E markedly decreased c-MYC and HDM2 protein

levels (Fig. 5G). The knockdown of c-MYC in

MKN45 cells was confirmed (Fig. 5H). Collectively,

our data demonstrate that AURKA–eIF4E axis pro-

motes de novo CDDP resistance in MKN45 cells.

3.5. MLN8237 alone or in combination with CDDP

suppresses growth of resistant cell-derived

xenografts in vivo

We next sought to assess the in vivo efficacy of

MLN8237 alone or in combination with CDDP using

subcutaneous xenograft tumor models. The treatments

were initiated after the tumor xenografts reached 150–
200 mm3 in size, with at least 10 tumor xenografts per

group. We treated the CDDP-resistant MKN45 cell-

derived xenografts with CDDP alone, MLN8237

alone, or in combination with CDDP, and examined

the tumor growth rate and protein expression levels of

eIF4E, p-eIF4E (S209), and c-MYC in xenografts. The

data showed that CDDP treatment had a relatively

limited negative effect on tumor growth; however,

MLN8237 significantly reduced the rate of tumor

growth following 4 weeks of treatments (P < 0.01,

Fig. 6A,B). The addition of CDDP to MLN8237 did

not enhance the antitumor efficacy of MLN8237 in

CDDP-resistant cells. Western blot data analyses indi-

cated that treatments with MLN8237 substantially
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Fig. 4. AURKA-mediated regulation of c-MYC and HDM2 requires eIF4E. (A) AGS CDDPR Pool 1, AGS CDDPR Pool 2, AGS CDDPR Clone

1, and AGS CDDPR Clone 2 cells were transiently transfected with control siRNA (siControl) or siRNA specific for eIF4E (sieIF4E) for 48 h.

Cell lysates were subjected to western blot analysis of the indicated proteins. Knocking down of eIF4E decreased c-MYC and HDM2

protein expression. (B) AGS Parental cells were transiently transfected by siControl + AdControl, siControl + AdAURKA,

sieIF4E + AdControl, or sieIF4E + AdAURKA for 48 h. Cell lysates were then subjected to western blot analyses of the indicated proteins.

The data showed that overexpression of AURKA increased protein levels of p-eIF4E (S209), c-MYC, and HDM2. Knockdown of eIF4E

suppresses AURKA-induced upregulation of c-MYC and HDM2 protein expression. (C) AGS CDDPR Pool 1 and AGS CDDPR Clone 1 cells

were transfected with siControl or sieIF4E for 48 h and subjected to CellTiter-Glo viability assay. Knocking down of eIF4E significantly

sensitized cells to CDDP (P < 0.05), as indicated by two- to threefold decrease in CDDP IC50. (D) AGS CDDPR Pool 1 and AGS CDDPR

Clone 1 cells were transfected with siControl or sic-MYC for 48 h and subjected to CellTiter-Glo viability assay. Knocking down of c-MYC

significantly sensitized cells to CDDP (P < 0.05), as indicated by twofold decrease in CDDP IC50.
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Fig. 5. AURKA mediates de novo CDDP resistance through regulation of eIF4E and its downstream effectors. (A) Gastric cancer cells (AGS,

SNU-1, MKN28, and MKN45) in 96-well plates were treated with CDDP following an 8-point twofold serial dilution, for 5 days. Cells were

then subjected to CellTiter-Glo assay to determine cell viability. IC50 values were determined as described in Materials and methods. (B)

Protein extracts from the gastric cancer cell lines, shown in panel A, were subjected to western blot analysis of the indicated proteins. The

results indicated high protein levels of AURKA in cell lines with de novo CDDP resistance (MKN28 and MKN45). (C) CDDP-resistant MKN45

cells in 96-well plates were treated with CDDP, MLN8237, or CDDP + MLN8237 at a fixed ratio (10 : 1) following a 12-point twofold serial

dilution of CDDP, for 5 days. The CellTiter-Glo assay results showed that treatment with MLN8237 alone or in combination with CDDP

significantly reduced cell viability in comparison with the treatment with CDDP alone (P < 0.001). (D) MKN45 cells were treated with

MLN8237 (0.5 lM) for 6 h or 48 h. (E) MKN45 cells were transiently transfected with siControl or siAURKA for 48 h. Cell lysates were

subjected to western blot analysis of the indicated proteins. The results indicated that pharmacologic inhibition (D) or knockdown (E) of

AURKA reduces protein levels of p-eIF4E (S209), c-MYC, and HDM2 in CDDP-resistant MKN45 cells. (F) MKN45 cells were transfected with

siControl, sieIF4E, or sic-MYC for 48 h and subjected to CellTiter-Glo viability assay. Knocking down of eIF4E or c-MYC significantly

sensitized cells to CDDP (P < 0.05), as indicated by twofold decrease in CDDP IC50. (G,H) Cell lysates were subjected to western blot

analysis of p-eIF4E (S209), eIF4E, c-MYC, and HDM2 proteins. Gel loading was normalized for equal b-actin.
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decreased p-AURKA (T288), AURKA, p-eIF4E

(S209), and c-MYC protein levels in xenografts

(Fig. 6C). Consistent with the decreased rate of tumor

growth in response to treatment with MLN8237, the

immunohistochemical data analysis showed a signifi-

cant decrease in Ki-67 (a marker of cell proliferation)

and an increase in cleaved caspase-3 (a marker of

apoptosis) in xenografts (P < 0.001, Fig. 6D). Taken

together, our results strongly suggest that targeting

AURKA using MLN8237 can induce tumor regression

and achieve a therapeutic response in CDDP-resistant

gastric cancer.

4. Discussion

Gastric cancer is the third cause of cancer-related

deaths in the world. Resistance to chemotherapeutic

agents is a major cause for gastric cancer recurrence

Fig. 6. MLN8237 alone or in combination with CDDP effectively reduces resistant cell-derived xenograft growth in vivo. MKN45 cell-derived

xenograft tumors (150–200 mm3 in size) were treated with CDDP (2.5 mg�kg�1, once a week) alone, MLN8237 (40 mg�kg�1, five times a

week) alone, or with combination of CDDP and MLN8237 for 28 days, and tumor sizes were measured twice a week. (A,B) The data

indicated that MLN8237 alone or in combination with CDDP has a significant antitumor activity against resistant MKN45 cell-derived

xenografts. (C) Tumor tissue lysates were subjected to western blot analysis of the indicated proteins. (D) IHC analysis of MKN45 cell-

derived xenografts showing Ki-67 and cleaved caspase-3 expressions in vivo. Relative integrated density indicates the quantification data of

immunostaining intensities, which was calculated using IMAGE J software; **P < 0.01, ***P < 0.001.
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and low patient survival rates (Ferlay et al., 2015).

Platinum therapy is a first-line chemotherapeutic agent

for several cancer types, including gastric cancer. How-

ever, cancer cells eventually develop acquired resis-

tance against cisplatin (CDDP), which adversely

affects patients’ prognosis (Hainsworth et al., 1992;

Kartalou and Essigmann, 2001). Therefore, identifica-

tion of novel therapeutic strategies to target CDDP-

resistant cancer cells has significant clinical implica-

tions for improving response and clinical outcome in

patients with gastric cancer. In this study, we estab-

lished a link between AURKA, eIF4E, and CDDP

resistance. Our data demonstrate that high levels of

AURKA promote CDDP-acquired and de novo resis-

tance through eIF4E phosphorylation and upregula-

tion of its downstream effectors, c-MYC and HDM2

proteins. The results indicate that inhibiting AURKA

can be an effective therapeutic approach to target

CDDP-resistant gastric cancer cells.

Overexpression of AURKA has been associated

with poor outcome and chemotherapeutic drug resis-

tance (Sumi et al., 2011). At the same time, aberrant

activation of eIF4E, as a mechanism of drug resis-

tance, has been described in several cancers (Huang

et al., 2012; Liang et al., 2013). Our results indicated

that AURKA inhibition or knockdown downregulated

p-eIF4E (S209), c-MYC, and HDM2 proteins in

acquired and de novo CDDP-resistant cells. Overex-

pression and activation of c-MYC, by means of

increased transcription, translation, or protein stabil-

ity, is associated with aggressive tumors and poor

patient prognosis (Horiuchi et al., 2014; Schmidt,

2004). Of note, there are accumulating lines of evi-

dence that show that AURKA can regulate c-MYC in

cancer. We have previously shown that AURKA can

regulate transcription of c-MYC through the activa-

tion of b-catenin (Dar et al., 2009). Recent studies

have shown that inhibition of AURKA can regulate

phosphorylation and stability of MYC, suggesting tar-

geting AURKA–MYC axis by AURKA inhibitors as

a novel potentially effective therapeutic approach

(Dauch et al., 2016; Richards et al., 2016; Silva et al.,

2014). We investigated whether eIF4E and its down-

stream effector, c-MYC, mediate the function of

AURKA and CDDP resistance. Our data demonstrate

that knockdown of eIF4E or c-MYC significantly sen-

sitized acquired or de novo resistant cells to CDDP.

Therefore, our results add to the current knowledge

and suggest a multifaceted regulation of c-MYC at dif-

ferent levels by AURKA in cancer. We and others

have previously shown that AURKA can also regulate

the key ubiquitin ligase involved in the degradation of

p53, HDM2, whereby overexpression of AURKA

promoted HDM2 phosphorylation and enhanced its

stability leading to the degradation of p53 (Hsueh

et al., 2013; Sehdev et al., 2014; Vilgelm et al., 2015).

Collectively, our new findings in this report add a sig-

nificant novel perspective by showing that activation

of AURKA–eIF4E axis is required for the induction

of c-MYC and HDM2 protein levels and CDDP resis-

tance in gastric cancer cells. Of note, a recent study

has shown that AURKA can mediate resistance to

mTOR inhibition by everolimus (Katsha et al., 2017).

This involved AURKA-dependent activation of eIF4E

through the inhibition of PP2A activity. Although we

did not investigate this signaling axis in detail in

CDDP resistance, it is possible that AURKA-mediated

regulation of PP2A is involved in the activation of

eIF4E in CDDP resistance, too. Taken together, acti-

vation of AURKA–eIF4E axis in cancer cells could

play a crucial role for resistance to several chemother-

apeutics.

A previous report indicated that AURKA was

implicated in CDDP resistance in murine bone marrow

Ba/F3 cells transformed by JAK2 V617F mutant

(Sumi et al., 2011). Another study indicated that

AURKA suppresses CDDP-induced apoptosis through

phosphorylation of p73 and its sequestration in the

cytoplasm in cancer cells (Katayama et al., 2012). Of

note, earlier reports have shown that AURKA can

suppress p73 (Dar et al., 2008a; Katayama et al.,

2012) and activate STAT3, b-catenin, and NF-jB (Dar

et al., 2009; Katsha et al., 2013, 2014). Although we

have not specifically investigated these pathways in the

present study, it is plausible that targeting AURKA in

CDDP-resistant cancer models may induce cancer cell

death not only through the suppression of eIF4E-

c-MYC-HDM2, but also through reversing these sig-

naling effects.

5. Conclusions

In summary, we present evidence for a novel mecha-

nism by which AURKA promotes resistance to CDDP

through the activation of p-eIF4E, c-MYC, and

HDM2. Targeting AURKA using MLN8237 may pre-

sent a clinically relevant opportunity to treat CDDP-

resistant tumors and enhance the therapeutic response

in patients with gastric cancer.
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