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Abstract

Barley grain starch is formed by amylose and amylopectin in a 1:3 ratio, and is packed into granules of different dimensions.
The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of
large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with
characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are
relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING)
approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch
metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound
Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3
mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin
content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a
missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in
2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold
increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense
mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate
the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their
novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.
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Introduction

Barley (Hordeum vulgare L.) is the fourth most important cereal

crop both in terms of cultivated area and tonnage harvested;

global production being mostly used as animal feed and for the

malting industry (http://faostat.fao.org). Only 5% of the global

production of barley is used as ingredients in food preparation, but

nevertheless barley grains are a valuable functional food for the

high content of soluble dietary fiber [1]. The recent assemblage of

the sequence of the 5.1-Gb haploid genome of barley [2] further

supports the role of barley as a model species for the Triticeae

tribe, which includes very important crops such as wheat (bread

and durum) and rye.

Mature barley grains typically contain 50–60% starch on a dry

weight basis. Starch is synthesized and stored in granules

composed of two types of D-glucose polymers, amylose and

amylopectin. Amylose, generally accounting for about 25–30% of

starch weight in barley, is essentially a linear polymer of D-glucose

units linked by alpha-1,4-glucosidic bonds. The second polymer of

starch, amylopectin, is highly branched because of the alpha-1,6-

glucosidic bonds that connect short alpha-1,4 linear chains [3],

[4], [5], [6], [7], [8], [9].

While most plants contain starch granules of similar size, the

Triticeae endosperm presents two classes of starch granules

characterized by different sizes and shapes [10], [11]. Most of

the starch is stored in large A-granules, but small B-granules

prevail in number. In barley, the diameter of A-granules ranges

from 10 to 40 mm while B-granules are smaller than 10 mm [10].

Starch granules contain crystalline lamellae in which double

helices, composed of parallel linear chains of amylopectin, interact

among each other to form different types of crystal packing [3].

Crystalline lamellae are interspersed with amorphous lamellae in

which amylopectin branches are concentrated. The exact location

of amylose within the semicrystalline architecture of the starch

granule is still unknown [9], but certainly amylose influences the

global structure of starch granules. For example, starch granules of

different composition are characterized by different types of X-ray

diffraction patterns [3], [4], [8]. In cereals, the A-type crystal

packing is predominant, while the B-type crystallinity, typical of

tuber starch, exists in smaller amounts. A third diffraction pattern,

named V-type, is associated with lipid-amylose complexes and is

little represented in native starches [3].
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Both amylose/amylopectin ratios and the architecture of starch

granules depend in a complex way on many different enzymes

involved in starch metabolism [4], [5], [8], [9]. Biosynthesis of

starch polymers in cereal grains strictly depends on the availability

of ADP-glucose as a precursor for both amylose and amylopectin

polymerization. Starting from ADP-glucose, a single enzyme, the

granule-bound starch synthase I (GBSSI), is required for the

synthesis of amylose. More complex is the biosynthetic pathway

leading to amylopectin production as different classes of soluble

starch synthases (SSs) and starch branching and debranching

enzymes are required [5], [8], [9].

Starches with different amylose/amylopectin ratios have differ-

ent properties that influence their possible use for either nutritional

purposes or industrial transformations [6], [7], [9], [12], [13],

[14]. In barley, mutants with 0–10% amylose (waxy) as well as

mutants containing up to 70% amylose in the endosperm have

been described [15], [16], [17]. Low-amylose starch display higher

freeze-thaw stability, an interesting property for food preparation

[6]. On the other hand, high amylose starches have interesting

nutritional properties due to their positive correlation with

resistant starch. This starch fraction is highly resistant to human

digestion in the small intestine and reaches the large bowel where

it plays a role similar to dietary fiber. Consumption of high-

amylose resistant starch is associated with several health benefits,

including the prevention of colon cancer, type II diabetes, obesity

and cardiovascular diseases [18], [19].

Starch granule size distribution is another important parameter

that may affect technological properties and end-use of each

particular type of starch [20]. Barley grains are largely used for

malting and large A-granules are more readily attached by

hydrolytic enzymes than small B-granules [10]. B-granules are

apparently protected during malting by a heterogeneous matrix

deriving from the grain (proteins and cell walls). As a result, a

significant proportion of B-granules escapes degradation and

causes several technological problems during beer production

[21].

In a previous work using a TILLING strategy, novel allelic

variants in genes involved in starch metabolism in barley seeds

were identified [22]. Here we describe the starch phenotype of

nine mutants carrying either missense or nonsense mutations in

five starch-related genes known to be expressed in the endosperm

during grain filling: BMY1 (beta-amylase 1), GBSSI (Granule

Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch

Synthase I), SSIIa (Starch Synthase IIa). Seven mutant lines

present starches with potentially interesting features for nutritional

uses and/or industrial applications, including an altered amylose/

amylopectin ratio or an unusually high percentage of A-granules

or A-granules that are larger than in wild type starch.

Materials and Methods

TILLING analysis and plant materials
Details on the TILLING-based molecular screening for the five

starch metabolism enzymes were reported in [22] and will only be

summarized here. TILLMore is a chemically (sodium-azide,

NaN3) mutagenized barley population including 4,906 M3:4

families [23]. TILLMore was screened using a standard TILLING

protocol based on LI-COR vertical gel electrophoresis of PCR

reactions obtained on 8X bulked genomic DNA samples. Genes

tilled were Beta-amylase 1 (BMY1), Granule-Bound Starch
Synthase I (GBSSI), Limit dextrinase 1 (LDA1), Starch Synthase
I (SSI) and Starch Synthase IIa (SSIIa) (Table 1). For each

mutant, plant materials phenotyped in this work were grains

(kernels) of M4 lines (three generations of selfing after mutation

induction), which have been verified to be homozygous for the

mutation (not shown). Mutant lines and cv. Morex were grown in

open field following standard agronomic practice in 0.5-m long

one-row plots (approx. 12 plants per plot) using a randomized

design with two replicates. For each line, grains harvested (from all

well-grown ears) from two replicates were bulked. The same

experiment was carried out in two years. Grains from separated

years constituted the biological replicates.

Starch extraction from barley grains
Starch was extracted by grinding the grains to a fine powder in

a pepper mill. About 5 g of seeds, corresponding to about 100

seeds, were used for each line and for each biological replicate

(except for line 1517-SSIIa for which 2.5 g of seeds were used).

Starch grains were purified as described in [24]. Briefly, the

powder was suspended in 70 ml Extraction Buffer (EB: 55 mM

Tris-HCl, pH 6.8, 2.6% SDS, 10% glycerol, 2% ß-mercaptoeth-

anol) and vigorously shaken for 48 h, replacing the EB solution

every 24 h. Following the extraction, samples were washed three

times in water and filtered through a nylon membrane (cut-off

100 mm) in order to eliminate debris. Filtered samples were spun

down for 1 min at 10,000 g. Starch grains were resuspended in

25 ml acetone and spun down again. Once removed the

supernatant, starch grains were air-dried under a chemical hood

for about 48 h at room temperature.

SDS-PAGE analysis of starch granule proteins
Isolation and electrophoretic separation of starch granule

proteins was carried out on mature seeds following the method

reported by Zhao and Sharp [25] with some modifications, as

reported by Mohammadkhani et al. [26]. Protein bands were

visualized by silver staining.

Determination of total starch and amylose content
Total starch content was determined on whole flours using

Megazyme Total Starch Assay Kit (Megazyme, Ireland). The

relative content of amylose was determined using both the

Amylose/Amylopectin assay kit (Megazyme, Ireland) following

the manufacturer instructions, and by an iodometric assay as

reported in Sestili et al. [27]. Three technical replicas were

performed for each mutant and each type of measure. Total starch

content and relative amylose content (enzymatic method) were

measured on two biological replicas.

Starch morphology
The morphology of starch samples was analyzed using a

scanning electron microscopy (SEM) Hitachi S-4000. The samples

were glued by a carbon type on an aluminum stub and gold coated

(2 nm thick layer) before observations. For each sample two sets of

10 pictures at two magnifications (1000x and 2500x) were

randomly collected. These two magnifications allowed a good

estimation of the size of large and small granules. The granule size

was estimated using the software ImageJ for image processing and

analysis. The two main axes for each granule were recorded and

200–500 grains were measured for each sample. Percentage of

granules with major axis lower than 8 mm (B-granules) was

recorded in 10 pairs of pictures (at different magnification) for each

genotype. Statistically significant differences between mutants and

wild type mean values were detected by Student’s t-test (P,0.01).

The frequency analysis was carried out tacking classes of 2 mm.
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Starch crystallinity
The X-ray powder diffraction patterns were recorded using a

Philips X’Celerator diffractometer with Cu Ka radiation

(l = 1.5418 Å) and equipped with a Ni filter. The samples were

scanned for 2h angles between 5u and 30u, with a resolution of

0.02u. The degree of crystallinity of samples was quantitatively

estimated following the method of Nara and Komiya [28]. A

smooth curve which connected peak baselines was computer-

plotted on the diffraction patterns. The area above the smooth

curve was taken to correspond to the crystalline portion, and the

lower area between the smooth curve and a linear baseline which

connected the two points of intensity at 2h of 30u and 5u. The

upper diffraction peak area and total diffraction area over the

diffraction angle 5u–30u 2h were integrated on X’Pert HighScore

Plus software (PANalytical B.V. 2008). The ratio of upper area to

total diffraction area was taken as the degree of crystallinity.

In the diffraction patterns only peaks associable to A-type and

V-type crystallinities were detected. To estimate the relative

amount of A-type and V-type crystallinities in the starch samples

from the diffraction patterns, only well isolated diffraction peaks

were considered. The one at 15.1u is diagnostic of the A-type

crystallinity and the one at 19.7u is diagnostic of the V-type one.

These diffraction intensities has been normalized on the sum of

their intensities.

Results

TILLING molecular analysis
Molecular details about TILLING for five genes involved in

starch metabolism were already reported in Bovina et al. [22] and

will only be summarized here. TILLING was carried out in

TILLMore, a TILLING population in the cultivar (cv.) Morex

background which was chemically mutagenized using NaN3 [23].

The analyses identified an allelic series for each of the genes

examined with a total number of 29 mutations [22]. Seeds of nine

mutant lines carrying either missense or nonsense mutations in the

five genes analyzed (BMY1 GBSSI, LDA1, SSI and SSIIa) were

phenotypically characterized in this study (Table 1). Seeds of the

mutant lines did not show any macroscopic differences in respect

to Morex wild type (wt) with the exception of the line 1517-SSIIa
(Starch Synthase IIa) that showed shrunken kernels with an empty

cavity inside (Figure 1). These seeds were also lighter than wild-

type ones (3.660.3 vs. 4.960.1 g/100-kernels).

Total starch content
Total starch content was measured in whole flours obtained

from two biological replicates for each of the nine mutant lines.

The water content of the flours was very similar in all samples

(<9%, Table S1 in File S1). Morex wt contained 43% starch on a

fresh weight basis, but this value was diminished by one third in

mutant 1517-SSIIa (27%, P,0.01; Table 2). In no other mutants

the total starch content was significantly different to the wild-type

value (P,0.05, n = 2).

Table 1. List of TILLING mutant lines carrying either missense or nonsense mutations in five genes related to starch metabolism in
barley grains that have been isolated as described in Bovina et al. [22] and phenotypically characterized in this work.

Gene name Mutant code
Genebank
accession Nucleotide change

Amino acid
substitution Seed and starch phenotype

Beta-amylase 1 2253-BMY1 EF175470 G2522A D277N Normal

2682-BMY1 EF175470 G2944A E348K Normal

Granule-bound starch
synthase I

1090-GBSSI AB088761 G2306A G493E Low % amylose. Low % V-diffraction pattern

Limit dextrinase 1 905-LDA1 AF122050 G1528A V270I Low % A- granules

Starch synthase I 1132-SSI AF234163 C5705T T522I High % A- granules

1284-SSI AF234163 G5666A G509E Low % A- granules. Large A-granules

5850-SSI AF234163 G6020A G576D High % A- granules. Small A-granules

Starch synthase IIa 1039-SSIIa AY133251 G2453A G678R Small A-granules

1517-SSIIa AY133251 G2449A W676* Small and shrunken seeds. Low % total starch. High %
amylose. High % V-diffraction pattern. Deformed
granules

doi:10.1371/journal.pone.0107779.t001

Figure 1. Seed morphology and transverse section of TILLING
mutant line 1517-SSIIa (Starch Synthase IIa) (right) showing a
shrunken phenotype, compared with cv. Morex wild type (left).
From top to bottom: adaxial and abaxial seed views, and seed cross
section. White bars = 2 mm.
doi:10.1371/journal.pone.0107779.g001
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Amylose content
Whole flours from two biological replicates were also analysed

for amylose content by enzymatic assay. For comparison, the

relative content of amylose was also determined colorimetrically

with similar results (Table 2). Wild type starch contained 32%

amylose and similar values were detected in seven over nine

mutants (amylose/amylopectin ratio 0.47). However, mutant

1090-GBSSI, carrying a missense mutation in Granule Bound
Starch Synthase I, contained only one third of the normal amylose

content in its grain starch (9%, P,0.05; amylose/amylopectin

ratio 0.10), and mutant 1517-SSIIa, carrying a nonsense mutation

in Starch Synthase IIa, contained much more amylose than the

wild type (47%, P,0.05; amylose/amylopectin ratio 0.88;

Table 2).

SDS-PAGE analysis
In order to assess whether the nine mutations identified had an

effect on the electrophoretic protein profile typical of the starch

granule proteins of barley, SDS-PAGE analysis was performed.

With the exception of the lines 1517-SSIIa and 1284-SSI, all the

mutants showed a profile identical to Morex wt, characterized by

three major bands corresponding to SSIIa (overlapped with Starch

Branching Enzyme II, SBEII), SSI and GBSSI [29] (Figure S1 in

File S1). The absence of the SSIIa enzyme was confirmed in the

line 1517-SSIIa. Notably this mutant appeared to lack also SBEII

and SSI isoforms. Moreover, although mutant 1284-SSI has no

premature stop codon in the SSI gene, a drastic reduction of the

SSI band was observed in starch granules (Figure 2).

Starch granules morphology
Starch extracts from wild-type and mutant grains were analysed

by Scanning Electron Microscopy (SEM). With the exception of

1517-SSIIa, starch granules of all remaining samples were quite

regularly shaped (Figure 3 and Figure S2 in File S1). A

quantitative analysis of granules dimensions was performed by

collecting the length of the major and minor axis of 200–500

granules for each biological sample from their SEM digital images.

Distribution of granule dimensions was clearly bimodal in all

samples (Figure S3 in File S1), with a major sub-population of

small spherical granules (major axis ,8 mm, B-granules), and a

minor sub-population of larger discoid particles with a major axis

varying between 8 and 30 mm (A-granules). Distributions based on

minor axis were qualitatively identical to those based on the major

axis (not shown). Differently from all other mutants, starch of

1517-SSIIa contained irregularly shaped A-granules typically

appearing like deflated spheres (Figure 3 and Figure S2 in File

S1). B-granules were also irregular in shape and agglomerated.

These features prevented a quantitative determination of A and B-

type particles in 1517-SSIIa samples.

The percentage of B-granules (,8 mm) in wild-type purified

starch was 73% (SD). A similar value was found in mutants of

BMY1, GBSSI and SSIIa (Figure 4). In the four remaining

mutants the percentage of B-granules differed significantly from

the wild type Morex (P,0.01). B-granules were less abundant in

two soluble starch synthase mutants, 1132-SSI (57%) and 5850-

Table 2. Content of starch and amylose in seeds of TILLING mutant lines.

% starch % amylose (enzymatic) % amylose (colorimetric)

Morex 42.561.3 (100) 32.363.2 (100) 33.4 (100)

2253-BMY1 47.762.7 (112) 31.961.9 (99) 34.0 (102)

2682-BMY1 46.260.6 (109) 34.460.9 (107) 29.0 (87)

1090-GBSSI 38.960.8 (92) 9.563.1 * (29) 8.8 (26)

905-LDA1 44.260.5 (104) 31.062.2 (96) 30.8 (92)

1132-SSI 41.862.4 (98) 32.662.8 (101) 36.1 (108)

1284-SSI 40.661.1 (96) 34.561.0 (107) 35.9 (107)

5850-SSI 42.162.3 (99) 31.061.4 (99) 36.7 (110)

1039-SSIIa 43.162.1 (101) 34.960.7 (108) 36.4 (109)

1517-SSIIa 26.560.1 ** (62) 47.565.0 * (147) 48.9 (146)

Total starch content is expressed as percentage of fresh weight (water content in flours was about 9%, with no significant differences among samples, see Table S1 in
File S1). Amylose was detected either by enzymatic or colorimetric methods and it is expressed as a percentage of total starch. To facilitate comparisons, all values are
also reported in brackets as percentage of the corresponding wild type value. Total starch and relative amylose content was determined on two biological replicates.
Significant differences were detected by Student’s t-test (P,0.05 = *; P,0.01 = **). For comparison, colorimetric analysis of amylose was performed on a single biological
sample for each genotype, and data shown are means of 3 technical replicates (standard deviations were in all cases below 10% of the mean value).
doi:10.1371/journal.pone.0107779.t002

Figure 2. Electrophoretic separation (SDS–PAGE) of starch
granule proteins extract from barley wild type cv. Morex (1)
and barley mutants 1284-SSI (2) and 1517-SSIIa (3). The bands
corresponding to starch synthase II and starch branching enzyme II
(SSII+SBEII), starch synthase I (SSI) and granule-bound starch synthase
(GBSSI) are indicated. In lane 3, the high molecular weight band marked
with an asterisk is probably due to impurities present in the starch
preparation obtained from the shrunken seeds of line 1517-SSIIa.
Molecular weight standard is schematically reported on the right.
doi:10.1371/journal.pone.0107779.g002
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SSI (62%), but relatively more abundant in mutant 1284-SSI of

the same gene (85%) and in mutant 905-LDA1 of limit dextrinase

I (85%) (Figure 4). All these four mutants contained missense

mutations (Table 1).

The average size of A- and B-granules in each sample was also

analysed. In two mutants (5850-SSI and 1039-SSIIa, both

missense mutations), A-type granules were significantly smaller

(225% major axis) than wt ones (17.1 mm) (Table 3; P,0.01). On

the other hand, A-granules of 1284-SSI mutant were significantly

larger (+15%) than wt ones. The average diameter of B-particles

varied between 2.3 and 3.5 mm in all samples, with no significant

differences between wt and mutants (Table 3). Interestingly, two

missense mutants of SSI displayed symmetrical properties in A-

granules size and frequency: in mutant 1284-SSI A-granules were

larger but less abundant, while in mutant 5850-SSI they were

relatively more numerous, but smaller in size (Table 3 and

Figure 4).

Crystallinity of starch granules
Crystallinity of starch granules was evaluated by X-ray powder

diffraction. The crystallinity of wild-type starch was estimated as

29% and this value ranged between 26 and 33% in all mutants

(Table 4), with no clear correlation between the degree of

crystallinity and other phenotypic characters previously recorded.

On the contrary, the type of crystallinity, as detected from the X-

ray diffraction patterns, was more variable. In wild-type starch we

estimated a large predominance of the A-type crystal pattern

(81%), with a minor contribution of the V-type (Figure 5). No

evidence for B-type crystallinity was obtained from diffraction

patterns of wild type and mutants. In most of the mutants, the type

of crystallinity was similar to that observed in wild type starch, i.e.
78–83% A-type and 17–22% V-type. Interestingly, however, in

the low-amylose 1090-GBSSI mutant, crystallinity was almost

exclusively of the A-type (92%) whereas in the high amylose 1517-

SSIIa mutant crystallinity was prevalently of the V-type (76%)

(Figure 5 and Table 4).

Figure 3. Scanning Electron Microscopy (SEM) analysis of starch granules from barley cv. Morex wild-type (A) and mutants 2253-
BMY1 (B), 2682-BMY1 (C), 1090-GBSSI (D), 905-LDA1 (E), 1132-SSI (F), 1284-SSI (G), 5850-SSI (H), 1039-SSIIa (I), 1517-SSIIa (L). Scale bar:
10 mm.
doi:10.1371/journal.pone.0107779.g003
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Discussion

Starch structure and chemical composition are genetically

determined by a large set of genes [5], [6], [8], [30] and the

potential for obtaining different types of starch by screening

natural or induced genetic variability is huge. TILLING provides

a non-transgenic approach to explore this potential [7], [12], [22],

[31], [32], [33], [34], [35], [36]. We exploited TILLING to

identify and phenotypically characterize new alleles of five genes

involved in grain starch metabolism of barley.

Granule bound starch synthase (GBSSI)
Granule-bound starch synthase I (GBSSI) [4] is specifically

expressed in the endosperm of barley [30] where it is known to

exert a tight control on the biosynthesis of amylose [37]. GBSSI is

coded by the waxy locus and barley cultivars with altered GBSSI

activity contain altered levels of amylose in grains, ranging

between 0 and 41% of total starch [29]. Besides amylose, GBSSI is

also involved in the synthesis of extra long glucan chains of

amylopectin, such that also amylopectin may be modified in waxy
mutants [38], [39], [40]. Low-amylose varieties can be used for

food applications because of their peculiar starch features (low

gelatinization temperature and retrogradation), that confer high

freeze-thaw stability and anti-stailing properties to processed food

[41], [42].

Here we report a new allele of GBSSI with a G493E point

mutation. Grain starch of this mutant (1090-GBSSI) contains less

than 10% amylose (vs. 30% of wild-type) and is thus defined low-

amylose or near-waxy. Crystallinity of 1090-GBSSI starch was

found to be largely A-type, with a minor contribution of the V-

type pattern. A similar profile has been previously reported in low

amylose barley [43], [44].

Plant starch synthases (both granule bound and soluble

isoforms) are proteins of about 60–120 kDa that belong to the

glycosyltransferase family GT-5 [4]. They typically contain a

catalytic domain formed by two Rossman fold domains delimiting

a deep cleft where the catalytic site is located (Figure 6). In plant

starch synthases, the catalytic domain is often preceded by an N-

terminal sequence of variable length and no clear function. The

crystal structure of the catalytic domain of rice GBSSI [45] was

used as a template to model barley GBSSI (the two proteins are

84% identical in amino acid sequence). According to the model,

glycine-493 belongs to an alpha-helix of the second, C-terminal

Rossman fold domain at approximately 10 Å from the ADP

binding pocket [45] and 6 Å from the conserved STGGL motif

suspected to be involved in catalysis and/or substrate binding [29].

Several near-waxy cultivars are known in barley, all carrying a

large deletion in the promoter region of the GBSSI gene that

results in strongly diminished expression of the enzyme [29], [46].

Waxy cultivars with no detectable amylose are also known (e.g. cv.

CDC Alamo and CDC Fibar) but they contain point mutations in

the coding sequence that likely cause complete inactivation of the

enzyme without drastically affecting the protein abundance in

starch granules [29]. Interestingly, mutation G493E in 1090-

GBSSI seems to modulate, rather than inactivate, enzyme activity

as demonstrated by the residual content of amylose (10%) detected

in its starch. Moreover, this effect is obtained without altering

protein expression, as suggested by the SDS-PAGE pattern

identical to the wild-type. Indeed, mutation G493E may prove

Figure 4. Percentage of B-type granules (diameter ,8 mm) in
grain starch of barley wild-type cv. Morex and mutant lines.
Granules size distribution was determined on 10 couples of SEM images
randomly collected for each genotype. Data shown are means 6SD
(n = 10). Statistically significant differences between mutants and wild
type mean values were estimated by Student’s t-test (P,0.01) and are
highlighted by a double asterisk (**).
doi:10.1371/journal.pone.0107779.g004

Table 3. Length of major axis in A-type and B-type starch granules.

B-granules, major axis [mm] A-granules, major axis [mm]

Morex 3.0161.23 17.0864.88

2253-BMY1 2.5060.77 17.9765.17

2682-BMY1 2.8061.19 18.1865.47

1090-GBSSI 2.2660.86 16.4967.24

905-LDA1 2.8361.04 16.6865.10

1132-SSI 3.4561.09 17.7064.38

1284-SSI 3.0261.03 19.6964.84 **

5850-SSI 3.3861.86 13.1563.41 **

1039-SSIIa 3.2761.74 12.9263.39 **

1517-SSIIa Nd Nd

Data are means 6SD of 200–500 granules measured for each genotype. Statistically significant differences as determined by Student’s t-test are indicated (P,0.01 = **).
Nd, not determined (starch granules in 1517-SSIIa mutant were irregular in shape).
doi:10.1371/journal.pone.0107779.t003
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useful for the understanding the little known catalytic mechanism

of GBSSI.

Limit dextrinase (LDA1)
Together with isoamylases (ISAs), limit dextrinases (LDAs, also

known as pullulanases) constitute the set of starch debranching

enzymes. The role of ISAs in removing excess branches of

amylopectin formed by branching enzymes is well known [8]. In

the absence of isoamylases, starch is synthesized in a highly

branched form known as phytoglycogen [47]. Barley limit

dextrinase is coded by a single gene (LDA1) and is apparently

involved both in starch biosynthesis and degradation [48]. In vivo,

the activity of LDA1 is regulated by a proteinaceous inhibitor LDI

[49], and antisense transgenic barley with lower expression of LDI

showed higher LDA1 activity and a lower percentage of B-

granules (i.e. inhibition of granule initiation) and lower amylose/

amylopectin ratio [50]. It was suggested that LDA, which is

expressed when B-granules are formed, may play a role in

reducing the amount of primers that allows the nucleation of small

B-granules. In our study, we have found a mutant of LDA1 (905-

LDA1) with a higher percentage of small B-granules that further

supports the role of this enzyme in starch granule initiation.

The tridimensional structure of barley LDA1 has been solved

[51]. The protein is made of four domains: the N-terminal

domain, the CBM48 domain, the catalytic domain and the C-

terminal domain. Valine-270 of LDA1, that in mutant 905-LDA1
is substituted by a more bulky isoleucine, belongs to the

carbohydrate binding module CBM48 and is located close to

the interface with the catalytic domain (Figure 6). It is plausible

that the substitution of valine in isoleucine (V270I) in the CBM48

domain may reduce the capability of the protein to bind glucans

and in turn inhibit, albeit indirectly, its scavenging activity toward

primers of granules nucleation. Consistently, starch of mutant 905-

LDA1 is formed by a larger number of granules (predominantly

small B-granules) and the role of LDA1 in controlling granule

nucleation is further supported.

Figure 5. X-ray diffraction patterns of native starch extracts from barley wild type cv. Morex (black) and mutants 1090-GBSSI (grey)
and 1517-SSIIa (light grey). The characteristic peaks of the A-type and V-type polymorphs are indicated.
doi:10.1371/journal.pone.0107779.g005

Table 4. Percentage crystallinity and relative intensity of diffraction peaks at 15.1u and 19.7u.

% crystallinity IA-type IV-type

Morex 0.29 0.81 0.19

2253-BMY1 0.30 0.82 0.18

2682-BMY1 0.33 0.80 0.20

1090-GBSSI 0.26 0.92 0.08

905-LDA1 0.27 0.81 0.19

1132-SSI 0.28 0.79 0.21

1284-SSI 0.27 0.79 0.21

5850-SSI 0.27 0.80 0.20

1039-SSIIa 0.26 0.78 0.22

1517-SSIIa 0.29 0.24 0.76

These latter data represent a relative estimation of A-type and V-type crystallinity, respectively.
doi:10.1371/journal.pone.0107779.t004
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Soluble starch synthase I (SSI)
In plants, soluble starch synthases are divided into four classes

with different specificity (from SSI to SSIV), and some of them are

represented by more than one isoform [4], [8], [9]. While SSIV is

probably involved in starch granule initiation [52], SSI preferen-

tially synthesize short glucan chains using short amylopectin chains

as substrate [5], [8]. These short amylopectin chains may then be

prolonged by SSII and SSIII [5], [8], but individual roles and

cooperation between different starch synthases in building the

starch granule are still undefined, in barley at least. Mutants in rice

and wheat clearly suggest that the activity of the different starch

synthases is not necessarily sequential and the lack of SSI may be

partially compensated in vivo [8], [53], [54].

In cereals SSI is represented by a single isoform. We have

analysed three missense mutations in SSI and all of them showed

starch phenotypes consisting in modifications in either size or

frequency of A- and B-granules. However, our results may appear

contradictory: in fact two mutants showed a higher % of A-type

granules (1132-SSI and 5850-SSI), while the third mutant had

more B-type granules (1284-SSI). Morever, the A-granules of

mutant 5850-SSI were more abundant but smaller in size and,

symmetrically, the A-granules of mutant 1284-SSI were larger but

less frequent. Only in mutant 1132-SSI the higher percentage of

A-granules was not compensated by a reduction in size. The

unexpected phenotypic difference between the three mutant lines

may be due to currently unknown additional background

mutations present in the genome of TILLMore mutant lines [23].

However, some hints could be obtained from the recently solved

crystallographic structure of barley SSI [55] (Figure 6). The

G576D substitution of mutant 5850-SSI is localized at the base of

a loop involved in the formation of a high affinity binding site for

maltooligosaccharides. This site is 30 Å away from the putative

catalytic site, but is believed essential for colocalizing branched

glucans and SSI, thereby favoring catalysis. Moreover, the starch

phenotype associated to the G576D mutation (smaller A-granules)

may suggest a role of this site in controlling the final size of large

starch granules. The other two point mutations here described

(Figure 6) are localized in regions of the protein not yet

characterized, providing no suggestions to understand their role.

Nevertheless, the high percentage of large A-granules in mutant

1132-SSI is interesting because this is a desirable trait for malting

[10].

Initiation of A and B-granules are separated events, although

little is known of the genetic control of this trait in Triticeae. In

barley, A-granules are nucleated at 4–14 days post-anthesis,

during endosperm cell division, while small B-granules are

nucleated later, during endosperm cell growth [56]. A QTL

controlling B-granules initiation was recently described in wild

wheat Aegilops [10] and in Arabidopsis, SSIV is believed to

positively regulate granule initiation [52]. Recently the suppression

Figure 6. Localization of point mutations in the 3D structures of barley GBSSI, SSI and LDA1. A) Barley GBSSI was modelled by
Swissmodel using the catalytic domain of wild-type rice GBSSI complexed with ADP as a template (pdb 3VUF). The two mature
proteins are 84% identical in sequence. The main chain of glycine-493 is represented by blue spheres. In mutant 1090-GBSSI, glycine-493 is
substituted by a glutamate (G493E). Co-crystallized ADP of the rice GBSSI structure (3VUF) is superimposed to highlight the adenine nucleotide
binding site. B) Crystal structure of barley SSI, co-crystallized with a molecule of maltopentaose (red spheres) (pdb 4HLN). Main chain atoms of
mutated residues are represented by coloured spheres: blue (G576D in mutant 5850-SSI), green (T522I in mutant 1132-SSI) and yellow (G509E in
mutant 1284-SSI). C) Crystal structure of barley LDA1 (pdb 2X4B). The carbohydrate binding module CBM48 is coloured yellow. Residue no. 270 (blue
spheres corresponding to main chain atoms) is part of the CBM48 domain. Mutant 905-LDA1 carries a V270I mutation. A molecule of
betacyclodextrine (red spheres) co-crystallized with the protein highlights the putative active site.
doi:10.1371/journal.pone.0107779.g006
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of SSI expression in wheat grains using RNAi technology led to

the production of lines with a reduced proportion of B-granules

[54]. All three SSI barley mutants analysed in this work showed an

abnormal distribution between large and small granules. However,

because of the complexity of our results, any conclusion about a

possible role of SSI in granule initiation in barley is premature.

Soluble starch synthase IIa (SSIIa)
SSIIa is the major SS isoform of barley endosperm during grain

filling [4]. Mutant sex6 of barley cv. Himalaya has no SSIIa
activity and produces shrunken kernels containing starch made of

up to 70% amylose [15], [16]. SSIIa knock-out mutants are

particularly interesting for industrial applications because of their

higher level of amylose and resistant starch in the endosperm.

Resistant Starch is associated with several human health benefits,

including the prevention of the colon cancer, type-II diabetes and

obesity [13], [19]. In this work, we identified a mutant line with A-

granule of smaller size carrying a missense mutation (1039-SSIIa),

and a SSIIa null mutant (1517-SSIIa) characterized by small/

shrunken seeds and containing less starch with more amylose (48%

of grain starch is made of amylose in this mutant). The SDS-

PAGE analysis of starch extracted from 1517-SSIIa confirmed the

absence of the protein SSIIa, together with SBEII and SSI
isoforms. The simultaneous absence of SSIIa, SBEII and SSI in

the starch granule was already observed in SSIIa mutants of

barley, bread and durum wheat [14], [57], [58].

Starch crystallinity of 1517-SSIIa was largely characterized by a

V-type diffraction pattern suggesting the formation of lipid-

amylose complexes, similarly to those observed in the sex6 mutant

[15]. In the missense mutant 1039-SSIIa, in spite of the smaller

size of A-granules, no other starch parameters including crystal-

linity were significantly affected. In barley endosperm, SSIIa was

shown to extend short amylopectin glucan chains of 3–8 glucose

units to chains of up to 35 units [15]. Consistently, the lack of

SSIIa negatively affects amylopectin synthesis, more than amylose

synthesis [16], and mutant 1517-SSIIa is fully consistent with these

results.

Conclusions

TILLING of five genes encoding enzymes involved in starch

metabolism enabled us to identify seven new alleles that are

associated with new starch phenotypes in terms of amylose/

amylopectin ratio, or crystal packing, or distribution of A- and B-

granules, or size of A-granules (Table 1). Our results confirmed

the role played by granule-bound starch synthase (GBSSI) in

controlling amylose biosynthesis and, conversely, the role played

by soluble starch synthase IIa (SSIIa) in controlling amylopectin

synthesis. Starch granule initiation appeared to be controlled by

limit dextrinase (LDA1), and size of A-granules by starch synthases

IIa. Thanks to their physical-chemical properties, these new alleles

deserve further attention in order to investigate their possible

interest in nutritional uses or industrial applications.
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