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Loss of the coxsackie and adenovirus receptor (CAR) has previously been observed in gastric cancer. The role of CAR in gastric
cancer pathobiology, however, is unclear. We therefore analysed CAR in 196 R0-resected gastric adenocarcinomas and non-
cancerous gastric mucosa samples using immunohistochemistry and immunofluorescence. Coxsackie and adenovirus receptor was
found at the surface and foveolar epithelium of all non-neoplastic gastric mucosa samples (n¼ 175), whereas only 56% of gastric
cancer specimens showed CAR positivity (Po0.0001). Loss of CAR correlated significantly with decreased differentiation, increased
infiltrative depths, presence of distant metastases, and was also associated with reduced carcinoma-specific survival. To clarify whether
CAR impacts the tumorbiologic properties of gastric cancer, we subsequently determined the role of CAR in proliferation, migration,
and invasion of gastric cancer cell lines by application of specific CAR siRNA or ectopic expression of a human full-length CAR cDNA.
These experiments showed that RNAi-mediated CAR knock down resulted in increased proliferation, migration, and invasion of
gastric cancer cell lines, whereas enforced ectopic CAR expression led to opposite effects. We conclude that the association of
reduced presence of CAR in more severe disease states, together with our findings in gastric cancer cell lines, suggests that CAR
functionally contributes to gastric cancer pathogenesis, showing features of a tumour suppressor.
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Gastric adenocarcinoma represents the second-leading cause of
cancer-related death worldwide (Parkin et al, 2005). The clinical
outcome of gastric cancer is critically determined by the local
tumour growth as well as the presence of local and distant
metastases (Maehara et al, 2002; Hohenberger and Gretschel,
2003). For both, invasion and metastatic spread, an impaired
adhesion of cancer cells is considered a crucial prerequisite.
Although previously, in particular, the adherens junction protein
E-cadherin (Christofori and Semb, 1999) has been studied,
investigation of tight junctions (TJs) in gastric cancer has become
of interest in recent years. Hereby, a decreased presence of TJ
proteins has been described for claudins 4, 18, and 23, ZO-1 as well
as occludin, in part correlating with poor cancer differentiation
(Kimura et al, 1997; Katoh, 2005; Lee et al, 2005; Sanada et al,
2006). An increased presence of TJ proteins when compared with
normal gastric mucosa has been described for claudins 1, 3, 4, 5,
and 7, particularly in intestinal-type adenocarcinomas (Johnson
et al, 2005; Resnick et al, 2005; Hewitt et al, 2006; Soini et al, 2006;

Wu et al, 2006). These observations point to a complex
deregulation of TJ proteins in gastric carcinogenesis, being
suggestive of a cancer inhibitory role of downregulated TJ
proteins. In contrast, upregulation of TJ proteins may account
for tumour-promoting functions as suggested previously for
claudin 1 in colon cancer (Dhawan et al, 2005). A more detailed
understanding of the functional impact of TJs in gastric cancer,
however, is still missing.

The coxsackie adenovirus receptor (CAR), a transmembrane
glycoprotein, had initially been characterised as viral attachment
site on the surface of epithelial cells (Bergelson et al, 1997). Later
on it was identified as a component of the TJ complex, an
interacting partner for a number of other TJ proteins, and a
regulator of TJ formation (Cohen et al, 2001; Sollerbrant et al,
2003; Coyne et al, 2004; Excoffon et al, 2004; Mirza et al, 2005;
Raschperger et al, 2006). On the basis of in vitro assays, it has been
speculated that loss of CAR weakens intercellular adhesion,
increases proliferation, and promotes migration as well as invasion
of cancer cells (Okegawa et al, 2000, 2001; Bruning and
Runnebaum, 2003, 2004; Huang et al, 2005; Wang et al, 2005).
These findings led to the hypothesis of a tumour suppressive role
for CAR in human cancers. In line with this hypothesis, reduced
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presence of CAR was found in advanced cancers in part associated
with loss of tumour differentiation, increased infiltration, and a
poor prognosis (Rauen et al, 2002; Sachs et al, 2002; Matsumoto
et al, 2005; Korn et al, 2006; Buscarini et al, 2007; Okegawa et al,
2007). In gastric adenocarcinomas, an immunohistochemical
analysis of cancer tissues from 30 patients and 11 non-cancerous
controls showed reduced CAR staining intensities in gastric cancer
(Heideman et al, 2001).

Intrigued by this observation, we hypothesised that CAR is
involved in gastric cancer biology. To test our hypothesis, we
determined the presence of CAR in a large series of gastric cancer
patients and correlated these data with various clinicopathological
patient characteristics. Second, we conducted cell culture experi-
ments to evaluate, whether CAR influences the proliferative,
migratory, and invasive capabilities of gastric cancer cells.

MATERIALS AND METHODS

Study population and tissues

All tissues were obtained from patients (n¼ 196) who had
undergone curative gastrectomy (R0 resection) between 1995 and
2005. Two of the patients received neoadjuvant chemotherapy and
exclusion of these individuals from survival analysis did not
influence the results. Written informed consent for experimental
biomarker analysis was obtained from all patients before analysis.
Patients age ranged from 25 to 87 years (mean 64.2±11.7 years).
Out of these patients, 54 patients were lost during follow-up, 1 died
of unknown cause, and 3 patients died of reasons not related to
gastric cancer (mean follow-up time 25.3±22.5 months). Staging
and diagnosis of gastric adenocarcinomas was assessed according
to the WHO classification (Hamilton and Aaltonen, 2000) and the
TNM classification set out by the International Union against
cancer (Wittekind et al, 2003). Representative areas of each tissue
specimen were chosen for the construction of tissue microarrays.
Samples of non-neoplastic mucosa were obtained from regions
furthest away from the tumour. In brief, a minimum of six tissue
cylinders of 0.6 mm diameter from each tumour-bearing donor
block and 12 tissue cylinders (six from antrum and six from
corpus mucosa) from corresponding non-cancerous mucosa,
constructing recipient blocks of tissue microarrays, each with a
mean of 141 tissue cylinders from 8–14 patients were punched. An
overall mean of 6.1 spots (s.d. 2.7) for each carcinoma from
different tumour areas were eligible for analyses. Four mm sections
from the tissue microarrays were mounted on Superfrost-plus
slides for the subsequent immunofluorescence and immunohisto-
chemical analysis.

Immunofluorescence and Immunohistochemistry

Immunofluorescence and immunohistochemical staining were
carried out as described previously (Anders et al, 2003b). In brief,
tissue sections were deparaffinised, rehydrated, and submitted to
antigen retrieval by microwave treatment. Anti-CAR (H-300:
sc-15405, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA;
1 : 50) and anti-ZO-1 (Zymed, S. San Francisco, CA, USA; 1 : 300)
antibodies served as primary antibodies. For immunofluorescence
staining, a FITC-conjugated anti-rabbit antibody or a Cy-3-
conjugated anti-mouse antibody were used as secondary antibodies
(both from Molecular Probes, Eugene, OR, USA). Multicolour
fluorescence microscopy was carried out using a Zeiss Axiophot
microscope (Carl Zeiss AG, Jena, Germany). For immunohisto-
chemistry, a biotinylated goat anti-rabbit immunoglobulin (Vector
Laboratories, Burlingame, CA, USA; 1 : 400) served as secondary
antibody, followed by treatment with streptavidin-biotinylated
horseradish peroxidase complex (Vectastain Elite ABC kit, Vector
Laboratories). Using diaminobenzidine tetrahydrochloride (Sigma-

Aldrich, Munich, Germany), sections were developed and counter-
stained with haematoxylin. Staining results for CAR were evaluated
by estimating the percentage of epithelial cells showing specific
immunoreactivity by an expert pathologist (MV), who was blinded
for the clinical data. The CAR status was classified as: negative (no
immunoreactivity), weak (0–5% positive cells), moderate (5–50%
positive cells), or strong (450% positive cells). Only samples
showing moderate or strong immunoreactivity were considered
positive (Juttner et al, 2006).

Cell culture and generation of stably transfected cell lines

Gastric cancer cell lines AGS, KATO III, MKN28, and MKN45 were
cultured as previously described (Juttner et al, 2006). Chinese
hamster ovary cells stably transfected with human full-length CAR
cDNA (CHO-CAR; a kind gift of Dr J Bergelson, Division of
Infectious Diseases, Children’s Hospital of Philadelphia, PA, USA)
and parental CHO cells were cultured in Ham’s F12 medium
containing 10% fetal calf serum (FCS). Gastric cancer cell line AGS,
showing high CAR expression, were chosen for CAR down-
regulation. Hereby, a CAR-specific siRNA: CCAAGUACCAAGUGA
AGACdTdT or a control siRNA: CACAAAAGUAUCGCGCAAGd
TdT cloned into the ‘pSuper’ vector system (Oligoengine, Seattle,
WA, USA) were stably transfected into AGS cells using Effectene
(Quiagen, Hilden, Germany). Following selection with Puromycin
(Sigma-Aldrich), CAR downregulation in a pooled cell population
was tested by western blotting. MKN28 and MKN45 cells, showing
low CAR level, were selected for CAR overexpression. These cell
lines were transfected with a construct in which the human full-
length CAR cDNA is expressed under control of the CMV
promoter in a pcDNA3.1 expression vector (‘hCARpcDNA3.1’; a
kind gift of Dr J Bergelson) or pcDNA3.1 expression vector alone
(Invitrogen, Karlsruhe, Germany) using Effectene (Quiagen).
Following neomycin selection (Invitrogen) CAR expression in a
pooled cell population was determined by real time RT-PCR assay
and western blotting.

Quantitative mRNA determination

Total RNA was isolated using TRIZOL (Invitrogen) and reversely
transcribed with Oligo-dT primers and SuperScript II (Invitrogen).
cDNA generated from 50 ng of total RNA was used for real-time
quantification using gene-specific primers (Anders et al, 2003b)
and the Brilliant QPCR kit (Stratagene, Amsterdam, The
Netherlands) on a Stratagene MX3000P cycler. Quantification
was performed by the comparative DCT method normalising CT

values to b-actin. cDNA derived from CHO and CHO-CAR cells
were used as negative and positive controls, respectively.

Western blotting

Protein lysates were obtained as previously described (Anders
et al, 2003a). Subsequently, equal amounts of protein lysates were
loaded on reducing Laemmli gels, immunoblotted with specific
antibodies against CAR (H-300: sc-15405, Santa Cruz Biotechno-
logy), or b-actin (Sigma-Aldrich), and detected using the ECL
system (Amersham Pharmacia, Piscataway, NJ, USA). Protein
lysates of CHO and CHO-CAR cells were used as negative and
positive controls, respectively.

Assessment of gastric cancer cell proliferation

Cells were seeded onto six-well plates (n¼ 3� 105 cells per well) in
DMEM containing 10% FCS. After 48 h, cells were detached using
trypsin and counted using a haematocytometer counting chamber
(VWR International, Darmstadt, Germany). All experiments were
performed in triplicate and repeated at least twice. Statistical
calculations for relationships between CAR status and cell
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numbers were carried out using Fisher’s exact probability test
(GraphPad Prism software, version 4.00; GraphPad Software Inc.,
San Diego, CA, USA).

Gastric cancer cell migration

Assessment of directed gastric cancer cell migration was
performed using an ‘AP48 48 Well Micro Chemotaxis Chamber’
(Neuro Probe, Gaithersburg, MD, USA). Hereby, 50 000 cells per
well in 50 ml FCS-free media were seeded onto the upper part of the
chamber, whereas its lower compartment was filled with media
containing 10% FCS or serum-free media as a control. After 24 h at
371C, cells migrated through the filter were fixed with 100%
methanol and stained using Diff-Quick reagent (Fisher Scientific,
Schwerte, Germany). Non-migrated cells at the upper side of the
filter were swiped off. All experiments were performed in triplicate
and repeated at least twice.

Gastric cancer cell invasion

Cells were seeded onto the top of ‘BioCoat Matrigel Invasion
Chambers’ (BD Biosciences, Bedford, MA, USA) containing 8 mm
pore size PET membranes covered with matrigel matrix. Medium
containing 10% FCS was added to the bottom well of the chambers
as a chemoattractant, whereas serum-free medium was used as a
control. Following 24 h at 371C and 5% CO2, cells that had invaded
the matrigel-coated membrane, located at the lower membrane
surface, were fixed and stained by crystal violet containing 10%
ethanol. Results were documented at a magnification of � 5.
Experiments were performed in triplicate and repeated at least
twice.

Statistical analysis

Statistical calculations were performed using GraphPad Prism
software (version 4.00; GraphPad Software Inc.). Relationships
between CAR immunopositivity and clinicopathological features
were evaluated using Fisher’s exact probability test. Survival was

determined from the date of surgery to the time of event
(recurrence or death) using the Kaplan–Meier method. Statistical
significance of differences in cumulative survival curves was
evaluated using log-rank tests. Additional parameters besides CAR
showing a P-value o0.05 in the univariate study were included in
multivariate survival analyses using the Cox proportional hazard
method (SPSS Software, Chicago, IL, USA).

RESULTS

Distribution and presence of CAR in non-transformed and
malignant gastric tissues

In all samples of non-cancerous gastric mucosa, homogenous CAR
immunoreactivity was observed by immunohistochemistry. Cox-
sackie and adenovirus receptor was restricted to epithelial cells
and not found in endothelial, lymphoid, or stromal cells. On a
subcellular level, CAR was preferentially localised at the plasma
membrane, showing a ‘honeycomb’ appearance typical of junc-
tional staining. Additional immunofluorescence staining for CAR
and ZO-1 showed a co-localisation of both proteins at these sites.
In contrast, only 56% of gastric adenocarcinoma samples showed
CAR positivity (Po0.0001). In CAR positive cancers, CAR
immunoreactivity was limited to tumour epithelium. On a
subcellular level, cytoplasmic immunoreactivity was noted in some
areas of the tumour in addition to apical plasma membrane
staining (Figure 1).

CAR presence and clinicopathological parameters

To assess whether loss of CAR correlates with clinicopathological
features, we analysed the results for CAR immunoreactivity using
the Fisher’s exact probability test. Loss of CAR in gastric cancer
correlated significantly with decreased differentiation (P¼ 0.0238),
increased infiltrative depths (P¼ 0.0349), and presence of distant
metastases (P¼ 0.0016). There was no correlation between CAR
and tumour types according to Lauren’s classification and local

A B C

D E F

Figure 1 Coxsackie and adenovirus receptor (CAR) presence and distribution in non-transformed gastric mucosa and in gastric adenocarcinomas. Co-
immunofluorescence staining for CAR (red A, C) and ZO-1 (green B, C) using specific antibodies visualised by phase contrast microscopy: CAR is
exclusively detected in epithelial cells, co-localising with ZO-1 at the apical cell surface (arrow in C) (magnification: � 400). Typical results for CAR staining
determined by immunohistochemistry are shown in non-transformed gastric mucosa, showing CAR localisation at the plasma membrane (arrow in D), well
differentiated gastric adenocarcinoma, showing apical plasma membrane immunoreactivity (arrow) as well as segmental cytoplasmic staining (asterisks) (E),
and lack of CAR immunoreactivity in undifferentiated gastric carcinoma (F) (magnification: � 100, Bar: 200 mm).
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tumour spread (Table 1). To evaluate a potential correlation of
CAR presence with the survival of gastric cancer patients, the
Kaplan–Meyer algorithm was applied. These analyses showed that
loss of CAR was associated with shortened carcinoma-specific
survival (P¼ 0.025). Furthermore, a nonsignificant trend towards
shorter disease-free survival (P¼ 0.67) in CAR negative cases was
observed (Figure 2). Moreover, presence of local and distant
metastasis showed a significant association with shortened
carcinoma-specific survival, whereas other clinicpathological
parameters failed to gain a significant correlation in this analysis
(Table 2). The inclusion of patients who died of non-gastric
cancer-related causes had no substantial effect on these results
(data not shown). Subsequent multivariate analysis showed that
CAR does not qualify as independent prognostic factor for
carcinoma-specific survival in our cohort. In contrast, presence
of lymph node and distant metastases were identified as
independent predictors of a poor clinical outcome in this analysis
(Table 3).

CAR expression in gastric cancer cell lines

To evaluate the influence of CAR on gastric cancer biology, we first
determined CAR mRNA expression in a panel of four permanent
gastric carcinoma cell lines by a real time RT-PCR assay. By
normalising CT values for CAR expression relative to b-actin levels,
highest CAR expression was found in AGS cells. In comparison,
MKN28 cells showed about two-fold less CAR mRNA expression,
whereas in KATO III and MKN45 cells the lowest CAR mRNA
values were found (Figure 3A). In contrast, determination of CAR
protein expression by western blotting showed a robust signal in
AGS cells only. In MKN45 cells a weak signal was detected, whereas
no expression was found in MKN28 and KATOIII, potentially due
to limitations in sensitivity of the assay (Figure 3B). On the basis of
these findings, we chose AGS cells for CAR downregulation, and

Table 1 Correlation of CAR immunopositivity with clinicopathological
parameters

Clinicopathological
parameters

No. of
cases

CAR
positive P-value

o0.0001
‘Normal’ mucosa 175 175 (100%)
Gastric cancer 196 109 (55.6%)

Cancer type 0.8634
Intestinal 117 59 (50.4%)
Diffus 46 24 (52.1%)

Tumour differentiation 0.0238
G1/G2 69 46 (66.7%)
G3/G4 127 62 (48.8%)

Tumour infiltration 0.0349
T1/T2 127 78 (61.4%)
T3/T4 69 31 (44.9%)

Lymph node metastasis 0.6383
N0 57 33 (57.9%)
N1-3 137 74 (54.0%)

Distant metastasis 0.0016
Absent 54 40 (74.0%)
Present 15 4 (26.7%)

NOTE: statistically significant correlations are shown in bold face. Results were
calculated by Fisher’s exact test. Divergent numbers of tissue samples assessable for
calculations were due to limited accessibility of clinical information, for example,
presence of distant metastasis.
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Figure 2 Coxsackie and adenovirus receptor (CAR) presence and
clinical outcome of gastric cancer patients. The relationship between CAR
and survival of gastric cancer patients was assessed using the Kaplan–Meier
method. The upper panel shows results for carcinoma-specific survival,
whereas the lower panel represents data for disease-free survival. Statistical
evaluation was performed using the log-rank test.

Table 2 Correlation of CAR immunopositivity and clinicopathological
parameters with patients survival

Clinicopathological
parameters

Hazard
ratio 95% CI of ratio P-value

CAR 1.842 1.090–3.727 0.0254
Positive
Negative

Cancer type 1.426 0.6110–3.811 0.3655
Intestinal
Diffus

Tumour differentiation 1.25 0.6883–2.279 0.5432
G1/G2
G3/G4

Tumour infiltration 1.336 0.5772–3.071 0.502
T1/T2
T3/T4

Lymph node metastasis 3.587 1.453–4.808 0.0015
N0
N1-3

Distant metastasis 7.129 29.04–1201 o0.0001
Absent
Present

NOTE: statistically significant correlations are shown in bold face. Survival was
determined from the date of surgery to the time of event (death) using the Kaplan–
Meier method. Non-cancer-related deaths were excluded from analyses. Statistical
significance of differences in cumulative survival curves was evaluated using log-rank
tests.
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MKN28 as well as MKN45 cells for CAR over expression in the
subsequently performed in vitro assays. Western blotting con-
firmed reduced CAR protein expression in AGS cells upon stable
transfection of CAR-specific siRNA, whereas ectopic expression of
hCARcDNA in MKN28 and MKN45 cells resulted in a marked
increase of CAR protein levels (Figure 3C).

Impact of CAR on proliferation, migration, and invasion of
gastric carcinoma cells

The potential influence of CAR on gastric tumour biology was
investigated in a series of in vitro experiments. Coxsackie and
adenovirus receptor inhibition in AGS cells (AGSCAR�negative)
yielded significantly higher cell numbers upon 48 h of cultivation
in proliferation assays compared with the respective controls
(AGSVector�control) (Figure 4A). To minimise the chance of gaining
misleading results due to cell death, these cells were counted
following staining with Trypan blue dye (Sigma-Aldrich) without
finding considerable differences between AGSCAR�negative and
AGSVector�control cells (data not shown). Using an in vitro
migration assay, AGSCAR�negative cells were found to show
markedly increased migratory properties in comparison with
AGSVector�control cells (Figure 4B). To test whether these cells

migrate in a FCS-directed manner, FCS-free medium controls were
included for each cell line. Hereby, no migration of either
AGSCAR�negative or AGSVector�control cells was noted (data not
shown). The evaluation of cancer cell invasion showed a marked
increase of AGSCAR�negative vs AGSVector�control cells into matrigel
(Figure 4C). In contrast, CAR overexpression in MKN45
cells (MKN45CAR�positive) reduced cell proliferation signifi-
cantly compared with vector-only transfected MKN45 cells
(MKN45Vector�control) (Figure 4D). The investigation of
MKN28CAR�positive vs MKN28Vector�control cells did not show
significantly different cell numbers. When evaluating these cells
in a migration assay, MKN28CAR�positive yielded approximately
50% less migrated cells compared with MKN28Vector�control

cells (Figure 4E). Furthermore, a B75% reduced invasion of
MKN28CAR�positive cells was found compared with
MKN28Vector�control cells (Figure 4F). When testing
MKN45CAR�positive and MKN45Vector�control cells in these assays,
no cell migration or invasion was noted (data not shown).

DISCUSSION

Here we report for the first time that loss of CAR in gastric
adenocarcinomas correlates with reduced tumour differentiation,
tumour growth, distant metastases, and reduced survival. In line
with these clinical findings, our in vitro data show that CAR
influences proliferation, migration, and invasion of gastric
carcinoma cells.

Our observations show that loss of CAR is not a uniform feature
of gastric cancers but correlates with tumour differentiation. So
far, claudin 4 has been the only TJ protein shown to be lost in
correlation with poor gastric cancer differentiation (Lee et al,
2005). Our findings are in line with a limited number of reports
showing a correlation between loss of CAR in cancers of the
bladder, oesophagus, liver, and pancreas, as well as colon cancers
metastatic to the liver (Sachs et al, 2002; Matsumoto et al, 2005;
Korn et al, 2006). Whether loss of CAR is a consequence of cancer

Table 3 Multivariate analysis of correlation of CAR immunopositivity and
clinicopathological parameters with patients survival

Clinicopathological
parameters

Hazard
ratio 95% CI of ratio P-value

CAR 1.310 0,547–3.135 0.545
Lymph node metastasis 2.999 1.077–8.354 0.036
Distant metastasis 2.295 1,092–4,824 0.028

NOTE: statistically significant correlations are shown in bold face. Parameters showing
a P-value o0.05 in the univariate analysis were included in the multivariate survival
calculation using the Cox proportional hazard method.
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Figure 3 Expression of CAR in gastric cancer cell lines. Real time RT-PCR determination of CAR mRNA levels in gastric cancer cell lines was performed
as outlined in the Materials and Methods section. Data represent relative CAR mRNA expression from a series of three independent experiments with CAR
mRNA levels in AGS cells set to ‘1’ (A). Protein expression levels of CAR and b-actin were analysed by western blotting using specific antibodies (B).
Coxsackie and adenovirus receptor inhibition by stable transfection of CAR-specific siRNA diminished CAR protein expression in AGS cells (left panel),
whereas ectopic CAR expression using full-length human CAR cDNA markedly increased CAR protein levels in MKN28 and MKN45 cells (right panel) (C).
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dedifferentiation, or if CAR itself is involved in the maintenance of
epithelial differentiation, however, remains unclear.

Furthermore, we did note a significant correlation between loss
of CAR and tumour growth in accordance with observations in
bladder cancers made by Sachs et al (2002), who found a
significant reduction of CAR protein in invasive vs superficial
tumour specimens, and Okegawa et al (2001), who detected
significantly lower CAR mRNA levels in stage T3/T4 compared
with T1 bladder tumours. Moreover, this study represents, to our
best knowledge, the first description of a correlation between loss
of CAR and haematogenous spread in human cancer. Considering
the role of CAR as cell adhesion molecule, these data support the
concept of a disrupted intercellular adhesion as prerequisite for
metastasis as described for E-cadherin in gastric cancer (Yone-
mura et al, 1995, 2000). However, our data did not show a
correlation between CAR presence and local lymph node spread, as
previously observed in bladder cancer (Matsumoto et al, 2005). In
contrast to these findings and the results of this study, Martin et al
(2005) suggested that increased CAR levels are associated with the
occurrence of breast cancer metastases. Unfortunately, no
discrimination between local and distant metastasis is given.

Moreover, these data did not reach statistical significance and
therefore, need further confirmation. As these authors determined
CAR mRNA expression, diverging results maybe also explained by
the usage of different techniques.

Our study shows a significant correlation of CAR negativity with
reduced carcinoma-specific survival and a trend towards a shorter
disease-free survival. These data are in accordance with the
pathophysiological concept of an association between a disturbed
intercellular adhesion and a poor prognosis in gastric cancer (Yasui
et al, 2005). Particularly, the loss of E-cadherin has been linked to an
unfavourable clinical outcome in gastric cancer patients (Yonemura
et al, 1995, 2000; Guilford, 1999). However, apart from E-cadherin,
only few studies investigated the correlation of TJ proteins with
gastric cancer prognosis: reduced expression of claudin 3 has been
associated with a poorer prognosis in intestinal-type tumours, yet
failing to gain statistical significance in multivariate analysis (Soini
et al, 2006). Furthermore, gastric cancer patients showing down-
regulation of claudin 18 had a significantly worse survival, compared
with patients with robust expression of this protein (Sanada et al,
2006). In contrast, strong expression of claudin 4 significantly
correlated with a decreased survival in gastric cancers (Resnick et al,
2005). Interestingly, CAR upregulation was correlated with a poor
clinical outcome as well: On the basis of CAR mRNA expression, a
significant correlation between increased CAR levels and a poor
overall survival in breast cancer patients was found (Martin et al,
2005). However, as discussed above, these authors measured mRNA
expression. This may account for the differences compared with this
study and findings in bladder cancer, where loss of CAR expression
correlated with decreased cancer-specific survival, but not disease
progression, in an univariate analysis (Matsumoto et al, 2005).

Given the significant correlation between loss of CAR and
advanced disease, as well as reduced survival of gastric cancer
patients, it may be speculated that the CAR facilitates an invasion
and migration suppressive role in gastric cancer. To clarify
whether CAR functionally influences the migratory, and invasive
capabilities of gastric cancer cells, we carried out a series of in vitro
invasion and migration assays upon either inhibition or upregula-
tion of CAR. Hereby, we found that specific CAR silencing
increases invasion and migration of gastric cancer cells, whereas
ectopic CAR expression resulted in the opposite effect. These in
vitro findings in conjunction with our observations made in cancer
tissue specimens suggest that CAR influences gastric cancer cell
migration and invasion, hereby contributing to tumour infiltration
and dissemination. Again, our data are in line with the limited
number of observations made in other tumour entities: Following
retrovirally mediated expression of full-length CAR cDNA in a
glioma cell line, cultured in a three-dimensional spheroid model,
Huang et al observed a reduced cancer cell invasion (Huang et al,
2005). An inhibitory effect of CAR on cancer cell migration has
been seen upon CAR upregulation in ovarian and cervical cancer
cell lines (Bruning and Runnebaum, 2004). The increased
migration and invasion of cancer cells upon loss of CAR is
currently believed to be a consequence of an impaired intercellular
adhesion, as has been shown in ovarian and bladder cancer cell
lines (Okegawa et al, 2001; Bruning and Runnebaum, 2004; Wang
et al, 2005). Moreover, it has been suggested that CAR may be
involved in processes during reorganisation of the cytoskeleton
and thereby impact cell migration and invasion. Hereby, binding
of CAR to actin, as been shown previously, may pose a central
phenomenon (Huang et al, 2007). However, a more detailed
understanding of mechanisms underlying functions of CAR in
cancer cell motility in general, and gastric cancer cell migration
and invasion in particular is currently still missing.

In conclusion, our findings suggest that CAR facilitates tumour
suppressor functions in gastric adenocarcinomas. Hereby, our findings
add to the current understanding of TJs in gastric cancer, as they
represent, to our best knowledge, the first report correlating the presence
of a TJ protein with functional characteristics of gastric cancer cells.
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Figure 4 Impact of CAR on gastric cancer cell proliferation, migration,
and invasion. The influence of CAR downregulation on proliferation (A),
migration (B), and invasion (C) was assessed in AGS cells upon stable
transfection of a CAR-specific siRNA compared with the respective
‘vector-only’ control cell line. The impact of CAR upregulation on
proliferation (D), migration (E), and invasion (F) was determined in
MKN45 (proliferation) and MKN28 cells (migration, invasion) upon stable
transfection of a human full-length CAR expression vector ‘hCARpcD-
NA3.1’. All data represent typical results from a series of three independent
experiments. Panels B and E show characteristic individual wells of a 48
Well Micro Chemotaxis Chamber, as described in the Materials and
Methods section. Arrows in panels C and F indicate clusters of invaded
cells. Statistical evaluation was performed by Fisher’s exact probability test.
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