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Abstract

With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical
and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that
human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the
multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we
report the purification and physicochemical characterization of high molecular weight biomacromolecular complex
containing bovine lactoferrin ($250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed
structural similarities to native monomeric iron free (Apo) lactoferrin (,78–80 kDa), retained anti-bovine lactoferrin
antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It
further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High
molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p,0.01) of
human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and
cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led
to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential
of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be
investigated further.
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Introduction

Clinical and mechanistic research over the past few decades has

indicated significant relationships between nutrition and health.

The clinical studies with bovine milk derived cancer preventive

multifunctional protein lactoferrin (bLf) are currently a promising

field of research. Lactoferrin (Lf) is an iron binding ,78–80 kDa

glycoprotein of the transferrin family found to be widely

distributed in mammalian milk and most other exocrine secretions

such as tears, nasal and bronchial mucous, saliva etc. [1]. Lf

comprises of ,700 amino acids with two symmetrical lobes

forming a single polypeptide chain. Each lobe is further sub-

divided into two domains that harbor the iron binding sites [2]. In

its natural form, native monomeric-bLf (NM-bLf) is approximately

15-20% saturated with Fe3+ ions [3]. bLf’s role in mammalian iron

homeostasis, organ morphogenesis, and bridging innate and

adaptive immune functions has resulted in its potential applica-

tions in the medical field, along with its wide use as a current

nutraceutical and a safe food supplement [1,4,5]. More recently,

based on the success of animal feeding studies and human clinical

trials, bLf has gained significant attention for its prospective use as

a safer anti-cancer chemopreventive and therapeutic agent [5,6,7].

Because of the worldwide interest in bLf’s health and medical

applications, investigators for several decades have searched for

the most convenient way to produce bLf. Today, native ,78–

80 kDa bLf is mostly produced at a commercial scale from skim

milk or whey and bovine colostrum (BC) [4]. When compared to

milk, BC is a naturally rich source of bLf, known to contain 1.5–

5.0 g L21 of bLf. BC is a thick yellow fluid produced during the

first few days after calf’s birth. It is known to contain immune, and

growth factors to support the growth of the young calf, and also to

prevent gastrointestinal infections until the calf develops its own

active immune defense [8].
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Attempts have also been made to explore the multifunctional

nature of Lf. Considering Lf’s apparently higher concentrations

found in mammalian secretions during the acute phase of

infection, inflammation, and its interactions with a range of cells

and biomacromolecules (proteins, DNA, oligosaccharides, mono-

nucleotides), a possible role of oligomerization of Lf has been

suggested [9]. Earlier, it has been demonstrated that tetramer is

the dominating form of human Lf (hLf) found under physiological

conditions [10]. Being an acute phase protein with conformational

flexibility, Lf can self-assemble into larger structures. However,

molecular level explanation for this process is scarce, and

investigations are still underway to unravel this property of Lf.

Recently, by employing different techniques such as gel filtration,

soft laser ablation, small-angle X-ray scattering (SAXS), and light

scattering (LS), hLf has been reported to oligomerize into several

high molecular weight (HMW) aggregates (70 kDa–800 kDa). The

level of oligomerization was reported to depend on the concen-

trations of Lf, KCl, NaCl and also on the duration of the protein

storage in solution [11]. Interestingly, the addition of oligonucle-

otides, oligosaccharides, or mononucleotides to hLf in the presence

or absence of KCl accelerated the oligomerization rate leading to

the formation of associates containing ten or more protein

molecules. The presence of ions, ATP, NAD, nucleotides, DNA

or polysaccharides can further effect the self-association of Lf

molecule under physiological conditions [11]. These findings

suggest the importance of oligomerization for the multifunctional

activities of Lf during host–pathogen interactions, and also in

targeting cellular and molecular components of disease signaling

pathways.

Chromatographic analysis of bovine milk reveals that the bLf is

also found to elute as high molecular weight (HMW) mass

complexes corresponding to its monomers, dimers and trimers

[12]. Moreover, thermal treatments have been reported to induce

bLf aggregation into high molecular weight polymers, and this self-

association depends on iron saturation. The thermal stability of

bLf markedly increases with iron saturation leading to decrease in

the formation of larger aggregates [13]. The oligomerization of

bLf therefore can have, varied implications for its biological

functions and iron binding abilities. Whether HMW-bLf aggre-

gates/oligomers retain their functional activities like monomer is

presently unknown. Due to extensive health promoting activities of

monomeric bLf, it becomes essential to unravel the biological

functions of HMW-bLf/oligomers of bLf. In this study, we first

investigated if it was possible to purify HMW-bLf/oligomers of bLf

from BC which is known to contain a high concentration of bLf.

We then tested if the HMW-bLf/oligomeric bLf was structurally

and immunochemically similar to a native monomeric bLf (NM-

bLf). As a proof of concept, by using robust in vitro cell bioassays

with human breast (MDA-MB-231) and colon cancer (SW480) cell

lines from ATCC, we further determined if HMW-bLf/oligomeric

bLf potentially targeted cancer cell proliferation and cell death.

Another ATCC cell line FHs 74 Int, derived from normal human

fetal intestine has been reported to show mature epithelial-like

characteristics [14]. It was also employed to investigate the effects

of HMW-bLf on normal cells.

Materials and Methods

i) Purification of HMW-bLf from bovine colostrum whey
The colostrum sample was obtained from an Australian farm,

which was milked normally during postpartum/postnatal period

(first 2–4 days after calf’s birth). The sample was obtained with the

permission from the farm to collect and use it for the study. To

obtain the whey proteins, the high viscous colostrum sample was

diluted with sterile PBS (pH 7.4). Diluted colostrum sample was

skimmed by centrifugation at 30006g at 4uC for 30 min. The fat

(yellow layer) was discarded, and the supernatant was collected

and processed immediately or kept frozen at 220uC.

Casein removal by acid precipitation. The skimmed

diluted bovine colostrum sample as obtained above was acidified

by 1 M HCl until it reached pH 4.6 to achieve isoelectric

precipitation of casein. The precipitated casein was removed by

centrifugation (35006g for 30 min at 4uC); the supernatant was

collected, and the pH was adjusted to pH 7.4.

Cation-exchange chromatography. HMW-bLf was further

purified using cation exchange chromatography on SP-Sepharose

following the modified procedure of Van Berkel et al. [15]. Briefly,

the column was packed with SP-Sepharose food grade big beads

(Amersham biosciences, 17-0657-03). Before first use, the station-

ary phase was washed with 5 column volumes of water followed by

5 column volumes of 1 M NaCl. It was left in 1 M NaCl for 12 h

and then in 5 column volumes of water. The skimmed colostrum

after casein removal was diluted in the ratio of 1:1 with the dilution

buffer (0.04 M NaH2PO4, 0.8 M NaCl, 0.04% (v/v) Tween 20,

pH 7.4), and filtered through 0.45 mm and 0.22 mm filters. The

diluted colostrum sample was then loaded in the column and

allowed to pass through the column at a flow rate of 0.3 mL

min21. Following this, the SP-Sepharose was repeatedly washed

with washing buffer (0.02 M NaH2PO4, 0.4 M NaCl, 0.02% (v/v)

Tween 20, pH 7.4) to remove the unbound whey proteins. Bovine

Lf was then eluted with the elution buffer (0.02 M NaH2PO4, 1 M

NaCl, pH 7.4). The column was run at a flow rate of 3 mL min21.

The eluted fractions were dialyzed extensively with a 100 kDa cut

off dialysis membrane (Spectrum Labs) against sterile Milli-Q

water for 24 h. The purity check and the characterization of

eluted fractions were further carried out as described in the

following section.

ii) Characterization of HMW-bLf
SDS-PAGE and Western blotting. The purity and molec-

ular weight of purified fractions were analyzed by SDS-PAGE.

Following electrophoresis, Western blotting was carried out to

confirm the purity and identity of HMW-bLf. The protein was

transferred on to a PVDF membrane and probed for bLf with goat

anti- bLf antibody (Bethyl Laboratories) diluted in the ratio of

1:1000 for 1 h at 37uC and secondary anti-goat HRP (Sigma-

Aldrich) for 1 h at 37uC with appropriate washing with TBS-T

(137 mM NaCl, 20 mM Tris, 0.1% Tween 20, pH 7.6). The

membrane was developed using ECL chemiluminescence reagent

(GE) in ChemiDoc XRS gel doc (Bio-Rad). Protein samples were

freeze-dried for further characterization studies.

Dissociation of HMW-bLf into monomers and

dimers. In order to identify the homogeneity of HMW-bLf,

analysis of the components of HMW-bLf was further carried out

by dissociating the complex into its dimeric and monomeric forms

in the presence of 1 M NaCl as described earlier for hLf [11]. The

study reported that hLf oligomers dissociate fast and almost

completely to monomers in the presence of high concentrations

($1.0 M) of Na+ or K+. Briefly, 3 mg mL21 of HMW-bLf was

dissolved in 50 mM Tris HCl (pH 7.5) containing 1 M NaCl and

incubated for 1 day at 37uC. SDS-PAGE was carried out to

analyze the dissociation of HMW-bLf complex into its compo-

nents [11]. Western blotting was carried out to analyze the

obtained protein bands by goat anti- bLf (Bethyl Laboratories)

diluted in the ratio of 1:1000 to confirm the presence of lactoferrin.

Detection of Lipopolysaccharide (LPS) content. The

presence of any LPS activity was measured using E-Toxate assay

kit (Sigma-Aldrich). Briefly, 10 mg of purified and freeze-dried
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HMW-bLf protein was dissolved in endotoxin-free water to

prepare a test stock solution of 10 mg mL21, from which serial

dilutions of the protein were made to obtain 1, 0.5, 0.1 and

0.01 mg mL21 solutions. Endotoxin standards were prepared

from the stock solution (400 EU mL21) to obtain standards of

different endotoxin concentrations of 40, 4, 0.4 and 0.04 EU

mL21 solutions. Endotoxin free water supplied with the kit was

used as a negative control. E-Toxate reagent working solution

containing Limulus Amebocyte Lysate (LAL) was prepared

according to the manufacturer’s instructions. To 0.1 mL of the

test/standards/controls, 0.1 mL of E-Toxate reagent working

solution was added in 10675 mm sterile fresh glass tube. The

tubes were covered with parafilm and were incubated at 37uC for

1 h without disturbance. After 1 h the tubes were taken out and

observed for gelation by tilting them to 120u. The formation of a

solid gel was considered a positive result. Semi-solid and watery

gels were considered as negative for endotoxin activity. The final

endotoxin concentration in the test samples was calculated as;

Endotoxin (EU mL-1) = (1/Highest dilution at which the sample

was positive)*(Lowest dilution at which endotoxin standard found

negative), and it is represented as endotoxin units per mg of the

protein.

Determination of iron content in HMW-bLf. The iron

saturation level in purified HMW-bLf was determined as

described earlier by Kanwar et al. (2008) [16]. Briefly, to 1 mL

of each sample, 50 mL of ascorbic acid was added and allowed to

stand for 10 min. Iron standards representing a range of iron

concentrations and blank (Milli-Q water) were used to plot a

calibration curve. Samples were then centrifuged at 10000 rpm for

20 min. 500 mL supernatant collected from each sample was

added into new tubes containing 100 mL of alkaline acetate

solution followed by addition of 75 mL of tripyridyl solution. Two

hundred microliters of each solution were then transferred into an

optically clear 96 well plate, and the absorbance was read at

550 nm. Commercially obtained native LPS free monomeric bLf

(NM-bLf) was used to prepare iron saturated (Fe-bLf) and iron free

(Apo-bLf) according to the previously described method developed

in our laboratory by Kanwar et al. (2008) [5,16]. These forms were

used as controls for all the assays.

Differential scanning calorimetry (DSC). 5 mg of bLf was

measured accurately by sensitive balance and sealed into an

aluminum pan. DSC (TA instrument DSC Q200) scans were

programmed in the temperature range of 35–110uC and at

heating rate of 10uC min21. Native monomeric bovine lactoferrin

(NM-bLf) ,78 kDa was used as a control, along with its iron

depleted (Apo-bLf) and iron saturated (Fe-bLf) forms to determine

the thermal stability of these proteins.

Fourier Transform Infrared Spectroscopy (FTIR)

analysis. Samples were mixed with 200 mg of KBr (Sigma-

Aldrich) powder and pelleted into a KBr disc using a hydraulic

press. FTIR spectroscopy (Bio-Rad with OPUS 5.5 software)

analysis was performed between 4000 and 450 cm21 at a

resolution of 4 cm21 averaging 10 scans.

Gut enzyme intestinal digestion assay. Omnizyme cock-

tail represents most of the gut enzymes responsible for digestion of

proteins, carbohydrates and fats [14]. Omnizyme (Rainrock

Nutritionals) enzyme solution was added to the purified HMW-

bLf (1:50) to investigate its stability against gut enzymes. The

supernatants collected at different time intervals of (4 h, 6 h and

8 h) were heated at 42uC for 7 min to arrest the enzyme activity

and all samples were analyzed by SDS-PAGE.

iii) Cell bioassays
MDA-MB-231, SW480 and FHs 74 Int cells were obtained

from American Type Culture Collection (ATCC, supplied by

Cryosite). MDA-MB-231 has been derived from Homo sapiens
(female) breast carcinoma while SW480 cell line was derived from

Homo sapiens (male) colorectal adenocarcinoma. Both MDA-MB-

231 and SW480 cell lines were epithelial and had adherent growth

properties. Both the cell lines were routinely cultured in L-15

media containing 10% FBS at 37uC without CO2. FHs 74 Int is a

cell line from normal human fetal intestinal tissue, and it was

grown in DMEM with 10% FBS at 37uC under 5% CO2.

Cell cytotoxicity (LDH release) assay. Cytotoxicity caused

by treatments with HMW-bLf and other control forms of bLf was

measured by release of lactate dehydrogenase (LDH) following

cellular injury or cytotoxic insult. The cytotoxicity detection kit

(Roche Applied Science) was used according to manufacturer’s

instructions. The assay is based on calculating the LDH leakage

into the culture medium after 24 h following exposure of cells to

different treatments. LDH is constitutively present in all cells and is

released into supernatant due to cell membrane damage. MDA-

MB-231 SW480 and FHs 74 Int cells were treated with media

containing different treatment concentrations (800, 1600, 2400,

3200 mg mL21) of HMW-bLf for 24 h. Each treatment was

carried out three times, in triplicates. The absorbance values were

measured by using a SH-1000 lab absorbance microplate reader

(Corona Electric) at 492 nm with reference wavelength at 620 nm.

All values were the product of background subtraction with media

alone reacting to the LDH reagent. Addition of Apo-bLf, Fe-bLf

and HMW-bLf to the media did not alter the background reading.

The % cytotoxicity was calculated by the formula; Cytotoxicity

% = [(Exp. value-Low control)/(High control-Low control)]6100.

Negative control (Low control) used was the cell culture

supernatant of untreated cells and positive control (High control)

representing the maximum value of LDH release was the cell

culture supernatant of the cells treated with 1% (v/v) Triton X-

100 (Sigma-Aldrich, Sydney, Australia). All obtained values for

treatments are represented relative to untreated control value set

to zero.

Cell proliferation assay. The inhibition of cell proliferation

caused by bLf treatments was analyzed by determining the DNA

content of the cell using CyQuant assay kit (Invitrogen) as per

manufacturer’s instructions. Briefly, viable MDA-MB-231 and

SW480 cells were plated, initially at a concentration of

26105 cells/mL in 96 well microplates and incubated overnight.

Cells were then treated with fresh media containing different

treatment concentrations (800, 1600, 2400, 3200 mg mL21) of

HMW-bLf for 24 h and the media was aspirated out. The

CyQuant reagent was then added to the cell pellet, and the

corresponding fluorescence from the DNA was measured using a

fluorescence reader at an excitation wavelength of 490 nm and

emission of 530 nm. Treatments with different doses of HMW-bLf

were carried out in triplicates, and the assay was repeated three

times. Media with 20% FBS was used as a positive control.

Background measurements for the plate alone with CyQuant

reagent were subtracted from the test values.

Measurement of cell death by Flow cytometry. MDA-

MB-231, SW480 and FHs 74 Int cells were treated with different

concentrations of HMW-bLf for 24 h, and then trypsinized. Cell

pellets were washed with sterile PBS and resuspended in 500 mL

sterile PBS containing 0.1 mg mL21 Propidium Iodide (PI)

solution. PI is a fluorochrome that intercalates into double-

stranded nucleic acids. After 15 min of incubation in dark at room

temperature, the cells were analyzed for cell death (viability

counts) using Flow cytometry (BD FACSCanto II). Untreated
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unstained cells were used to set up the instrument for acquisition,

and the gating was adjusted to have ,1% PI positive cells. The

test samples were acquired after this under the same settings, and

the percentage of cells in the PI positive gate was considered as the

percentage dead cells.

Cellular internalization of HMW-bLf. Cellular uptake of

HMW-bLf was studied by immunofluorescence and visualized by

confocal microscopy. SW480, MDA-MB-231 and FHs 74 Int cells

were seeded in an 8-chamber multi-well slide (BD falcon) at a

density of 16105 cells/well and were then treated with 800

mg mL21 of HMW-bLf for different time intervals in assay media

(basal cell media with 1% FBS). Cells (to be treated as well as the

untreated) were pre-conditioned to the assay media for 24 h before

the actual assay by culturing in the assay media and remained

healthy. Following treatment, the medium was removed, and the

cells were washed thoroughly using PBS (pH 7.4) to remove

unbound and non-internalized HMW-bLf from the cell layer,

followed by fixation with 4% paraformaldehyde. After fixation, the

cells were permeabilized with 0.1% TritonX-100 for 5 min on ice.

Blocking was carried out with 2% sterile rabbit serum in PBS and

cells were then incubated with primary antibody, goat anti-bovine

lactoferrin (Bethyl Laboratories) at a dilution of 1:200 in PBS at

37uC for 1 h. The primary antibody was then removed and after

washing, cells were incubated with anti-goat IgG-FITC conjugate

(Sigma-Aldrich) and counterstained for actin with Phalloidin-

AlexaFluor 568 (Invitrogen) and nucleus with DAPI in fluorshield

(Sigma-Aldrich). The slides were imaged using TCS SP5 Leica

broadband confocal microscope and processed using LAS-AF

software. Media containing 1% FBS was used to avoid any

protein-protein interactions during treatments. Because we used

the lower FBS concentration in the assay media than the normal

growth media, the cell viability was checked with trypan blue

exclusion assay, before performing cellular uptake studies. No

difference was noted between the cells ability to exclude the trypan

blue dye when cells were grown in media containing 10% FBS or

of that in 1% FBS for 24 h (Figure S1 in File S1). The 800 mg mL-1

of HMW-bLf concentration was used for its comparatively lower

cytotoxic effects on cancer cells. As a result following incubation

with these treatments, lesser cell detachment (of dying/dead cells)

was observed from the slide, and the cell monolayer survived the

staining and imaging procedure.

Caspase-3 assays. Activation of cellular apoptosis was

determined by caspase-3 activation assay using the method

described by Fujie et al. [17]. Cells were treated with different

concentrations of HMW-bLf and Fe-bLf (3200 mg mL21) for 24 h.

Cells were lysed, centrifuged, and supernatant containing 100 mg

mL21 protein lysates were taken for analysis from each treatment.

50 mL of mixture reagent (Dithiothreitol (DTT) in radio-immu-

noprecipitation assay RIPA buffer solution) was added. Finally,

6 mL of substrate acetyl-Asp-Glu-Val- Asp p-nitroanilide (Sigma-

Aldrich) dissolved in dimethyl sulfoxide (DMSO) at 10 mg mL21

was added to all samples. The plate was then incubated for

180 min at room temperature in dark. Level of caspase-3

expression was quantified by using SH-1000 lab absorbance

microplate reader (Corona Electric) at 405 nm.

The activation of cleaved caspase-3 was also confirmed using

Western blot for cleaved caspase-3. Cells were treated with

different concentrations of HMW-bLf, Apo-bLf and Fe-bLf

(3200 mg mL21) for 24 h. Cells were lysed using RIPA (Radio

Immuno-Precipitation Assay) buffer, and 75 mg of total protein

was loaded for the SDS-PAGE. The proteins were then

transferred to a PVDF membrane using Trans-Blot Turbo (Bio-

Rad) semidry transfer instrument. The membrane was blocked

using 3% skim milk for one hour after which they were probed

using cleaved caspase-3(Asp175) primary antibody (Cell Signaling

Technology) in the dilution of 1:500 at 37uC for 1 h. The primary

antibody was then removed, and the membranes were washed

thrice with TBS-T to remove unbound primary antibodies. It was

then incubated with 1:40000 anti-rabbit HRP secondary antibody

(Sigma) for 1 h at 37uC. After incubation, the secondary antibody

was removed and membrane was washed three times with TBS-T.

The membrane was developed using ECL chemiluminescence

reagent (Amersham) and viewed under Chemi-doc XRS gel

documentation system (Bio-Rad).

Statistical analysis. Data was expressed as mean values

(6SD) and Student’s t-test was performed for evaluating statistical

significance. A value of (p,0.05) denotes statistical significance,

whereas (p#0.01) denotes results that are highly significant. All

treatments were tested in triplicate, and each assay was repeated 3

times.

Results and Discussion

HMW biomacromolecular complex containing bLf was purified

from skimmed defatted, casein free colostrum whey using cation

exchange chromatography with SP Sepharose food grade big

beads. Casein from skimmed bovine colostrum was completely

precipitated at lower pH and was removed. The whey obtained

was therefore casein and fat free. Lactoferrin has an Iso-electric

point of pH 8.7 which is the highest among all the milk proteins.

Hence bLf remains positively charged even at the near neutral pH

of 7.4. It binds very strongly to the cation exchange resin whereas

other whey proteins are not strongly bound, and they get washed

off during the washing step, leaving only the bLf molecules

attached to the resin. This bound bLf was then isolated using a

strong cationic 1 M salt solution [18]. The eluted protein fractions

were then subjected to extensive dialysis. The purity of the eluted

fractions was checked by SDS-PAGE that showed a single HMW

band $250 kDa (Figure 1A). The HMW protein band on SDS-

PAGE was later identified as bLf by Western blotting using anti-

bLf antibody (Figure 1B). Native bLf as a monomer has a

molecular mass of ,77–80 kDa, depending upon the glycosylation

of mature protein, the $250 kDa HMW-bLf therefore indicates a

trimer or a probably partially degraded tetramer due to its possible

interaction with Sepharose resin during purification. This

phenomenon has been reported earlier that incubation of hLf

with oligosaccharides led to the formation of unstable oligomers as

studied by gel filtration chromatography using polysaccharide

resins such as Sephadex, Sepharose 4B, etc. [11]. These authors

suggested that Sepharose, containing alternating residues of b-D-

galactopyranose and 3, 6 anhydrido-a-1-galactopyranose linked

by 1-4 bonds, could dissociate hLf oligomers. As explained above,

Lf has high affinity for such resins, thereby efficiently interacts with

them. Lf bound to these gel filtration/cation exchange chromato-

graphic resins can be eluted at high salt concentrations (KCl or

NaCl), since the high ionic strength causes dissociation of

oligomers, and Lf then can be mostly eluted as a monomer.

Interestingly, previous Sephadex G-200 chromatographic puri-

fication reports reveal that when the concentration of bLf was high

in mammary secretions due to infections such as during mastitis,

bLf was initially obtained as 77 kDa monomer, and as the

infection progressed, it was separated at approximately the size of

a trimer (,240 kDa). These observations were therefore concur-

rent with the increasing bLf concentrations during infections [19].

Another study similarly reported that the bLf, in non-lactating

mammary secretions during involution, was mainly present as

HMW complexes rather than as monomers, and majority of total

bLf existed in ,250 kDa molecular mass fractions [12]. Structural
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studies employing the method of sedimentation equilibrium in the

ultracentrifuge, on purified preparations of bLf obtained from

commercial preparations, revealed that the purified protein

exhibited heterogeneity with respect to its molecular weight in

dilute aqueous salt solutions. The top of the cell had 76 kDa bLf

material while .200 kDa material was sedimented at the cell

bottom. These findings implied that bLf associated in the native

state in a concentration dependent manner, and aggregates as high

as trimers were obtained [20]. The nature of these intermolecular

interactions in bLf oligomers remained unknown, and mostly

investigators in the late last century, did not take bLf oligomeric

forms into consideration. There are reports that bLf dimers have

also been mistaken for IgG, because of its molecular weight that is

twice of the bLf monomer [21,22].

More recently, emerging experimental evidence indicate Lf as

an extremely conformationally dynamic protein that is prone to

self-association. The macromolecule has a dumbbell shape, well

described by a bi-axial ellipsoid with half-axis of 47 Å and 26 Å

[11,13,21]. While the levels of self-association were shown to

depend on the number of conditions such as Lf concentration,

presence of salts, ligands, storage in solutions, iron saturation and

temperature, a molecular level explanation remains yet to be

understood for this phenomenon. Without salt or at physiological

salt concentrations, bLf as well as hLf reportedly self-associate in

aqueous solutions as dimers, trimers, and also as tetramers with

tetramer being the dominant form [11,21]. In these studies, gel

filtration analysis also revealed small peaks of the decamer. For

tetramer formation, which is the predominant molecular form of

Lf in human serum, tears, and breast milk, calcium dependent

oligomerization of hLf has been reported, [23]. Therefore the

purification of $250 kDa bLf oligomer in our study is in

agreement with the aforementioned findings of other investigators.

Colostrum is known to contain higher concentrations of bLf and

calcium ions than milk [8,24,25] these could have also contributed

to the self -association of bLf into HMW oligomeric complex along

with the unidentified molecular trigger(s) of self-association.

HMW- bLf molecule was also found to be dissociated into the

dimeric (,160 kDa) and monomeric (,78 kDa) forms of bLf

when kept for 24 h in the presence of 1 M NaCl. This observation

is inconsistent with earlier findings on hLf [11]. As determined by

gradient SDS-PAGE (reducing gel) analysis followed by Western

blotting with anti-bLf antibody (Figure 1C), all the three bands

were identified as bLf protein. More interestingly, a progressive

increase in the intensity of monomeric ,78 kDa band with a

simultaneous decrease in the remaining HMW-bLf band was

observed. This is clearly evident in Western blot (Figure 1C). We

Figure 1. Purification and analysis of components. A) SDS-PAGE analysis of purified HMW-bLf indicating the presence of pure $250 kDa
protein in elutes (lanes 1 and 2). B) The purified protein was confirmed to be bLf through Western blotting using anti-bLf specific antibody. C)
Dissociation of HMW-bLf in 1 M NaCl into the dimeric (,160 kDa) and monomeric (,78 kDa) forms (lane S1). These were confirmed to be bLf bands
by Western blot for the same dissociated sample (S1). The absence of any other lower bands and the detection of all the constituent bands by anti-
bLf specific antibody indicate that HMW-bLf is an oligomer formed by the interactions of monomeric bLf molecules.
doi:10.1371/journal.pone.0106568.g001

High Molecular Weight Lactoferrin Targets Cancer Cell Apoptosis

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e106568



have also noted that since the purified HMW-bLf sample

(Figure 1B) was stored for about a year after purification and

lyophilization, a much larger bLf aggregate (polymer) in the

stacking gel was identified that showed lower mobility protein

material with a comparative decrease in its band density, than the

$250 kDa oligomeric complex band observed just after the

purification (Figure 1A). These observations are also consistent

with the earlier oligomerization studies on hLf which report that in

the presence of 1 M NaCl, the hLf oligomers dissociate slowly into

monomers whereas, during storage of dialyzed and lyophilized

protein solutions at neutral pH, the monomeric or oligomeric

forms slowly aggregate[11,26]. We also performed Western

blotting for bovine IgG to identify dimeric 2160 kDa band, and

the larger HMW-bLf aggregate band but no immunoreactivity

was observed indicating there was no contamination from IgG.

Further, no other bands that could correspond to molecular

weights of any other milk protein (lysozyme 2 14.6 kDa, a-

lactalbumin -14.12 kDa, b-lactoglobulin – 22.40 kDa, as1-casein –

33.30 kDa, b-casein – 37.50 kDa) in the dissociated sample of

HMW-bLf were observed on SDS-PAGE reducing gel (Figure 1

C), indicating their absence in the sample.

The absence of any LPS contamination and endotoxin activity

in the purified protein was confirmed using E-Toxate assay kit

which indicated the presence less than 0.04 EU/mg (Endotoxin

Units/mg) of endotoxin activity in the purified HMW-bLf

samples. This was much lower than the FDA accepted standards

[27]. Our observations thus indicate that purified HMW-bLf could

be made up of bLf molecules forming a multimeric complex due to

non- covalent, ionic interactions. These interactions were broken

in the presence of strong ionic solution (1 M NaCl) and results in

the appearance of more intense low molecular weight monomeric

as well as dimeric forms. In the existing literature, despite the

emerging data on Lf oligomerization/self-association, little is

known about the nature of the chemical linkages/binding

Figure 2. Physico-chemical characterization of HMW-bLf. A) Fourier transform infra-red (FTIR) spectra of HMW-bLf indicating characteristic
peaks and compared with other forms of bLf. B) Differential scanning calorimetry thermograms of the different bLf forms C) SDS-PAGE showing the
comparative resistance of HMW-bLf to Omnizyme (human digestive enzyme cocktail) treatment. It also gives an indication that HMW-bLf is an
oligomer made of bLf monomers; because upon digestion HMW-bLf besides dimers and trimers does not release any other fragments lower than
,78 kDa apart from the ones produced from the digestion of commercially pure NM-bLf.
doi:10.1371/journal.pone.0106568.g002
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interactions that result in the formation of Lf-Lf complexes. Ionic,

thiol/disulfide and hydrophobic interactions may all be involved

in these intermolecular interactions. Earlier findings on thermal

aggregation of bLf molecules proposed that the bLf aggregation

proceeded via a combination of non-covalent interactions and

intermolecular thiol/disulphide reactions that did not require free

thiol residues. Specifically, the thermal aggregation of iron

saturated bLf was mainly driven by non-covalent interactions,

with intermolecular thiol/disulphide reactions also observed above

80uC [13]. Using force field based molecular modeling of the

protein–protein interaction free energy, it was demonstrated that

at neutral pH, Lf forms highly stereo-specific dimers. This self-

association is driven by a high charge complementarity across the

proteins’ contact surface [21].

Because of its iron binding properties, Lf is known to exist in two

forms: holo-Lf (binds two Fe3+ ions, iron saturated), Apo-Lf (iron

depleted) [2]. Native Lf is only partially saturated. Therefore, we

measured the iron content of HMW-bLf and found that it

contained only 0.47% iron and thus, was more like Apo-bLf

(1.1%), when compared with other forms of bLf such as NM-bLf

(22% iron), and iron saturated bLf (Fe-bLf) .94% iron (Figure S2

in File S1). Figure 2A shows a comparison between the FTIR

spectra of HMW-bLf, NM-bLf, Apo-bLf and Fe-bLf. The

characteristic amide carbonyl stretching appeared between 1630

and 1650 cm21, the C-N stretch was observed between 1500 and

1550 cm21 while the O-C-N bend was discernible between 675

and 721 cm21 in the four forms. The Fe-O vibration band

appeared at 560 cm21 in the FTIR spectrum of Fe-bLf while it

was not pronounced in the other three spectra suggesting high iron

content in Fe-bLf (Figure S3 in File S1). This also confirms our

iron content estimation results. bLf is classified as a glycoprotein,

the bands from 900–1200 cm21 due to C–O, C–C, C–O–H, C–

O–C vibrations of the carbohydrate moiety were therefore

observed in all the four forms of bLf [28].

Exploring the thermal stability of bLf has been also important

because of its bioactivity. In order to develop a practical method

for pasteurization of bLf, the heat stability has been studied

previously. Several factors can affect the heat stability of bLf such

as pH, salts, and other whey proteins [29]. We tested the thermal

stability of HMW-bLf, Fe-bLf, Apo-bLf and NM-bLf in lyophi-

lized powder form by DSC. The thermogram of $250 kDa

HMW -bLf (Figure 2B) showed denaturation peak at 88uC, which

was the highest when compared with those of Fe-bLf, Apo-bLf and

NM-bLf, and their denaturation peaks were observed at 82uC,

74uC and 78uC, respectively. These findings suggest that the

higher thermal stability of HMW-bLf may be due to its structural

integrity as an oligomer. Among other bLf forms, the Fe-bLf was

comparatively more resistant to heat when compared to the Apo-

bLf and the NM-bLf. Similar findings have also been reported,

suggesting that an increase in protein stability depends upon the

degree of iron saturation [13,30,31]. Increased thermal stability of

Fe-bLf (holo-bLf) has been attributed to the more compact

conformation, adopted by the molecule by binding a ferric ion in

the inter-domain cleft of each lobe [2]. Slightly higher thermal

stability of the NM-bLf than the Apo-bLf could thus be attributed

to partial iron saturation status of the native protein.

From our results, and the aforementioned discussion, it can be

inferred that the interactions between the bLf molecules may

largely be ionic to form the HMW-bLf oligomer. Oligomeriza-

tion/protein aggregation is a concentration dependent process. At

high concentration of Lf and of calcium in the bovine colostrum,

the equilibrium shifts towards the formation of oligomers,

however, under dilution or at high Na+/K+ concentration the

ionic bonds are broken and they tend to shift towards existence as

monomers. We propose that HMW-bLf, which is similar to Apo-

bLf and lacks mostly the iron content, and likely contain lot of free

aspartate and tyrosine residues. This confers a very open, flexible

configuration to HMW-bLf molecule similar to Apo-bLf [32]. Due

to this, the ability of the molecule to undergo intermolecular

interactions was highly increased when maintained at a high

concentration and in the absence of any salt content, especially

iron [13]. These complex interactions in HMW-bLf appeared to

be very strong [11] and led to the formation of even larger

aggregates upon prolonged storage (Figure 1C). We have also

noticed that NM-bLf (22% iron saturated), when stored at high

concentration, displays trimers and dimers formation visualized on

denaturing SDS-PAGE condition (data not shown). In a study that

investigated the effect of iron saturation on thermal aggregation of

bLf in Apo state, it was shown that Apo-bLf associated into large

polymers by non-covalent interactions without the participation of

disulphide cross-links. The more unfolded structure of heat

sensitive Apo-bLf may have increased the exposure of non-

covalent sites normally buried in the core of both lobes of the

protein, thereby favoring intermolecular interactions and the

formation of larger aggregates [13]. The in-depth molecular and

biophysical characterization of the HMW-bLf needs to be

investigated further with more powerful proteomics tools such as

Mass spectroscopy and Circular Dichroism, in order to identify the

chemical as well structural changes/linkages in the oligomer. To

determine spontaneous association of bLf in physiologically

simulated solution SAXS and LS can be employed to analyze

the oligomeric states of HMW-bLf.

The consumption of test drinks containing Apo-bLf and iron

saturated bLf in human volunteers has shown that Apo-bLf is

more susceptible to in vivo gut digestion, than the corresponding

iron-saturated form [33]. Similarly, we have reported earlier the

resistant nature of Fe-bLf towards Omnizyme (a digestive enzyme

cocktail) [5]. In the current study, HMW-bLf was found to be

more resistant to Omnizyme digestion in vitro, even after 4, 6, and

8 h incubation periods. Figure 2C shows that HMW-bLf in lanes

2, 3 and 4 showed excellent stability to digestion, with digested

forms appearing as 150–160 kDa dimers at various intervals of

time (4, 6 and 8 h) while faint bands at ,78, 50 and 25 kDa. In

the case of NM-bLf, in lanes 5, 6 and 7 the 78 kDa bands have

completely disappeared and digested to its peptides that appeared

at 51, 37and ,25 kDa. HMW-bLf’s comparatively much stronger

resistance to gut enzyme digestion despite having far lower iron

content than NM-bLf (0.47% versus 22%).This can be explained

in terms of the robustness of its structure being a larger

biomacromolecule/oligomer. This property will therefore prove

beneficial for its potential use as a nutraceutical. In that case, if

given orally there will be an increase in the in vivo bioavailability

of HMW-bLf to the required sites of the action in the body, e.g.,

tumor/infected and inflammatory tissues as compared to NM-bLf,

which is comparatively more prone to digestion. This assay also

gives an insight into the components of HMW-bLf and indicates

that HMW-bLf appears not to be made up of any other

component than that of NM-bLf. The fragments that are

generated by the Omnizyme digestion show that NM-bLf (Lanes

4, 5 and 6) can be degraded into a large C- terminal lobe with a

part of the N-terminal region and the connector seen as a 51 kDa

band. The C-terminal lobe on further digestion produced the

band at 36 kDa. This is not a homologous digestion, and it does

not produce two equal sized fragments hence resulting in a few

smaller fragments seen at 25 kDa [34]. The observation that

below ,78 kDa, the HMW-bLf also produces the same set of

bands as that of NM-bLf (Figure 2C, Lanes 1–3 and 4–6
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respectively) thus is in agreement with our dissociation findings of

HMW-bLf (Figure 1C) that it was comprised of bLf monomers.

We have shown earlier that 100% iron-saturated bLf form (Fe-

bLf) when given orally to mice prior to chemotherapy caused its

augmentation [16]. Significant eradication of large tumors in

combination with anticancer drugs was observed. However, 20%

iron-saturated (NM-bLf) or Apo-bLf remained ineffective in

eradicating these tumors, owing to their high degradation in the

gut as compared to Fe-bLf. In order to increase the more

bioavailability of Fe-bLf to the tumour sites, more recently, we

have developed a novel nanodrug delivery system (alginate-

enclosed chitosan–calcium phosphate-loaded Fe-bLf nanocarriers)

for oral delivery. By employing human colon xenograft model, we

reported that nanoformulated Fe-bLf when fed orally led to the

complete inhibition of tumorigenesis in prevention mode. A

complete tumor rejection through regression, in the treatment

mode was also observed [5]. These nanocarriers thus led to the

increased bioavailability of Fe-bLf to the tumor sites, and were

found to be safe and nontoxic. Similarly, another study has shown

that the anti-tumor effects of NM-bLf on melanoma cells can be

enhanced with liposomalization. A lipid delivery system (lipo-

somes) was used to prevent the NM-bLf from proteolysis or

neutralization by serum proteins [35]. Considering the findings

that tetramer is reported to be the dominating form of hLf

observed under physiological conditions [10,23], and bLf self-

associates as dimers, trimers and tetramers in mammary secretions

during infection and involution [12,19], it may imply that the

physiological existence of Lf oligomers, can therefore be a

protection strategy acquired by multifunctional Lf against

proteolysis or neutralization by serum proteins.

Earlier it has been shown that NM-bLf decreased the viability of

breast cancer cell lines HS578T and T47D by inducing a 2-fold

increase in apoptosis, and decreased the proliferation rates as well

in both the cell lines [36]. A similar effect of bLf was seen on colon

carcinoma [37] and in vivo on tumors of melanoma, EL-4 T-cell

thymic lymphoma and Lewis lung cancer cells [16]. To test the

anticancer activities of HMW-bLf, we employed MDA-MB-231

(human breast carcinoma) and SW480 (human colorectal adeno-

carcinoma) cell lines. Figure 3 (A and B) shows the cytotoxic effects

of HMW-bLf. It was assessed by measuring the leaked LDH

enzyme (as a cell viability biomarker), from dying or dead cells

(early/late apoptotic and necrotic) due to their damaged cell

membranes. HMW-bLf was found to be effective in a concentra-

tion dependent manner in inducing cell cytotoxicity in both MDA-

MB- 231 and SW480 cells. The cytotoxicity values of HMW-bLf

and Fe-bLf at the highest concentration used (3200 mg mL21),

were highly significant (p,0.01) with 90% and 76% cytotoxicity

observed respectively. Similarly, when compared with the other

control forms of bLf, 3200 mg mL21 of HMW-bLf also showed

significantly highest cytotoxicity in SW-480 cells. Though, among

all the concentrations of HWW-bLf tested on SW480 cells, it

showed lowest cytotoxicity values at a concentration of 800 mg

mL-1 but the effect was still statistically significant (p,0.05) when

compared to the untreated cells’ (value set at zero). The

cytotoxicity of HMW-bLf towards non-cancerous human cells

(of normal intestinal origin) was also tested by treating FHs 74 Int

cells with its different concentrations. A significant increase in the

LDH release activity corresponding to 15% cytotoxicity was

observed only at the highest concentration (3200 mg mL21) of

HMW-bLf, as shown in Figure 3 C. More importantly, in HMW-

bLf treated colon cancer cells (SW480), the corresponding

cytotoxicity values at all the concentrations tested were signifi-

cantly higher (P,0.01) than those obtained with FHs 74 Int cells.

Moreover, at HMW-bLf treatments(800 mg mL21, 1600 mg mL21

and 2400 mg mL21), LDH release activity from FHs74 Int cells

was significantly lower than that of untreated cells. The presence

of Lf in mammalian milks and bovine colostrum has an important

role for the normal gut cell growth, maturation and repair in

young ones. It could thus possibly be a therapeutic action of the

HMW-bLf in repairing membrane damage, occurred normally to

these normal intestinal cells under in vitro culture. A maximum of

LDH release corresponding to 33% cytotoxicity (p,0.01) was seen

with NM-bLf 3200 mg mL21 treatment to FHs74Int cells. There

was no significant difference observed among the cytotoxic

activities of Apo-bLf (2066.5%), NM-bLf (33615%) and

HMW-bLf (1564.2%) at 3200 mg mL21. However, when

compared at 1600 mg mL21, NM-bLf caused significantly higher

cytotoxic effect on FHs74 Int cells than HMW-bLf at the same

concentration. It is important to note here that among all the

treatments, NM-bLf induced highest 33% cytotoxicity to the

normal intestinal cells. The non-toxicity of bLf to normal cells/

tissues during long-term feeding has been clearly shown through

number of in vivo animal studies, and oral feeding trials in human

volunteers and colon cancer patients [4,5,6,16]. It has been

approved by the Food and Drug Administration (FDA) of United

States in 2001, and later by European Food Safety Authority as a

dietary supplement in food products [38,39]. Moreover, FHs 74

Int is a fetal derived intestinal cell line, known to grow as normal

enterocytes. Considering Lf’s intense affinity for iron [1,32], it can

be explained that FHs 74 Int cells’ requirement of iron, for their

cell viability, appears to be targeted by both Apo-bLf (iron free)

and NM-bLf (partially saturated with iron) thus showing

significantly higher cytotoxicity values than Fe-bLf. On the other

hand, HMW-bLf although showed very low iron content but

having a more robust complex molecular structure, might not bind

iron as fiercely as Apo-bLf and NM-bLf do. Therefore, it showed

comparatively less cytotoxicity than Apo-bLf and NM-bLf. These

observations need follow-up investigations to determine the

complete safety profile of HMW-bLf towards the normal cells.

Since recent reports suggest that LDH release measurements

can underestimate the cytotoxicity caused by compounds causing

cell cycle arrest [40], the cytotoxic effects of HMW-bLF were also

studied by Flow cytometry using PI staining. Figures 3 (D and E)

and Figure S4 in File S1, show the cell death induced by HMW-

bLf in cancer cells and FHs74 Int cells, respectively. PI test values

appeared higher (Figure 3 D and E) than the LDH release assay

(Figure 3 A and B). However, the results of the two assays were in

general agreement and showed that HMW-bLf targeted cell death

in a dose-dependent and cell specific manner. Even within cancer

cells from different tissues, it was significantly more cytotoxic

towards MDA-MB-231 cells than SW480 cells.

To determine the growth inhibitory properties of HMW-bLf,

we further assessed the proliferation of MDA-MB-231 and SW480

cells after treatments for 24 h using the CyQuant assay. Figure 4

(A and B) shows that HMW-bLf decreases the rate of cell

proliferation in a dose-dependent manner. At the highest dose, it

significantly (p,0.01) inhibited the proliferation of both MDA-

MB- 231 and SW480 cells (up to 90%), a better rate than any

other control forms of bLf. Furthermore, observation into the

effects of HMW-bLf on cell morphology revealed that cells after

treatments for 24 h, exhibited poor growth showed altered

morphology with high levels of cellular fragmentation and

apoptotic bodies. Both cell lines used in this study showed

detachment from culture dish bottom and floating dead cells were

mostly observed, when highest concentration of HMW-bLf was

employed (Figure 4 C and D).

NM- bLf is known to be internalized into live cells through cell

surface (membrane) receptor mediated endocytosis mechanism
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[1,41]. The published data report that transferrin receptor (TfR),

lactoferrin receptors and low density lipoprotein receptor-related

protein receptors (LRPs) play a crucial role in facilitating the

internalization of bLf inside cells[42,43]. Using both colon and

breast cancer cells it was observedthat bLf internalized into the

membrane, cytoplasm and nucleus in a time dependent fashion

(unpublished studies from our laboratory). Therefore immunoflu-

orescence was carried out in order to determine whether the

oligomerization state of HMW-bLf affects its cellular internaliza-

tion and receptor binding properties using MDA-MB-231 SW480

and FHs74 Int cells (Figure 5 and Figure S5 in File S1). Since the

cytotoxicity of HMW-bLf was observed in a concentration

dependent manner, only lowest concentration (800 mg mL21)

was used. Therefore following incubation, lesser cellular detach-

ment (of dying/dead cells) was observed from the slide making the

immunostaining and imaging possible. The confocal microscopy

images indicate that beginning at 30 min after incubation, there

was a rapid internalization of HMW-bLf by the three cell types.

The presence of green fluorescence signal of bLf specific antibody

immunostaining was mainly seen on the cell surface and cell

membrane. Since internalization is a time dependent process, it

was more evident at earlier time points of incubation (30 min and

4 h). HMW-bLf was also found to be localized along the

perinuclear region in 4 h. In the images obtained after 6 h and

8 h of incubation periods, HMW-bLf was seen to be internalized

into the nuclei of cancer cells. This indicates that bLf in its

oligomeric state retains its ability to interact with receptors and is

taken up by the cells in time dependent fashion, although further

investigations are needed to determine the receptor-ligand

interactions completely. Taken together, the results of cellular

internalization, LDH release and CyQuant assays reveal that

cellular uptake of HMW-bLf even at 800 mg mL-1 proved

effective; where internalized HMW-bLf displayed its functional

bioactivity in terms of inducing significant cytotoxicity (LDH

release) and anti-cell proliferative activity in cancer cells.

Interestingly, the degradation of actin network within the cells

Figure 3. Cytotoxic effects of HMW-bLf. A B and C represent the cellular cytotoxicity measured by LDH release assay induced by HMW-bLf in a
concentration dependent manner, in MDA-MB-231 (human breast carcinoma) SW480 (human colorectal adenocarcinoma) and FHs 74 Int (normal
intestinal cells) cells. D and E show the cell death (mortality count) as measured by Flow cytometry using propidium iodide staining (* p,0.05 and **
p,0.01). Other forms of bLf were used for comparison.
doi:10.1371/journal.pone.0106568.g003
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was observed by the reduced fluorescence intensity of phalloidin -

AlexaFluor 568 stain (red fluorescence). This shows that the

cellular uptake of HMW-bLf triggers the process of apoptosis

resulting in the loss of actin framework which acts as a substrate

for caspase-3 and its downstream products [44]. Figure 5B shows

the high magnification image of HMW-bLf internalization in

SW480 cells after 4 h with the arrows pointing out at the cells that

have internalized HMW-bLf and thereby showing the degradation

of actin. An arrow head points to the cell with intact actin

structure that has not taken up HMW-bLf. Figure 5C is a high

magnification image of HMW-bLf internalization at 6 h showing

the beginning of nuclear material degradation which is the final

stage in the apoptotic pathway.

This was further confirmed by studying the release of caspase-3,

considered as the final executioner enzyme in the apoptotic

pathway [45]. Treatment with HMW-bLf induced a statistically

significant increase in the levels of caspase-3 secretion in both

MDA-MB-231 and SW480 cells, thereby confirming the induction

of cell death by apoptosis, (Figure 6 A and B). In both SW480 and

MDA-MB-231 cells, HMW-bLf treatment significantly (p,0.01)

up-regulated caspase-3 levels, and in SW480 cells the effect was

also significant when compared with control Fe-bLf at 3200

mg mL-1. The rapid internalization of HMW-bLf into the

cytoplasm and nuclei of cancer cells seems to lead to the initiation

of gene transcription within the cell to trigger apoptotic signals

thereby, resulting in cell death via apoptosis. We and other

researchers have also shown that internalization of NM-bLf into

the cell and nucleus can regulate gene transcription of its

receptors, cytokines such as transforming growth factor-b and

survivin [1,46,47]. bLf has been shown to activate both extrinsic

and intrinsic apoptotic pathways through activation of different

caspases [1,7]. To confirm the results obtained using the caspase-3

activity assay, Western blot was performed for cleaved caspase-3,

which is the active form of the apoptosis activator enzyme. Both

SW480 and MDA-MB-231 cells show upregulation of the cleaved

caspase-3 expression upon treatment with HMW-bLf. Especially,

high expression of cleaved caspase-3 is seen in the 3200 mg mL21

treatments of both Fe-bLf and HMW-bLf in MDA-MB-231 and

Figure 4. Cell growth inhibition. HMW-bLf decreases the cellular proliferation of MDA-MB-231 and SW480 (A and B respectively) cells in a
concentration dependent manner. The cell fate was also monitored by analyzing the cell morphology (C – MDA-MB-231 and D – SW480) which clearly
indicates cell death. (* p,0.05 and ** p,0.01)
doi:10.1371/journal.pone.0106568.g004
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with 1600 mg mL21 in SW480 (Figure 6C and D). This indicates

the ability HMW-bLf to induce apoptosis by activating caspase-3.

Conclusions

In summary, our current in vitro study using breast and colon

cancer cells showed for the first time the anticancer efficacy of

$250 kDa HMW-biomacromolecular complex containing bLf.

HMW-bLf was purified to homogeneity from Australian bovine

colostrum. We have identified its unprecedented and interesting

properties. HMW-bLf besides having molecular and structural

similarities to Apo-bLf in terms of iron content also retains its

antibody, and receptor binding properties. It possesses unique

features such as higher thermal stability and better resistance

against gut enzyme digestion than other forms of bLf monomer.

Furthermore, HMW-bLf displayed stronger anti-cancer properties

in terms of cytotoxicity and anti-cell proliferation activity. The

possible actin degradation due to increased caspase-3 activity

thereby, leading to apoptosis further signifies the need to explore

the exact level of interesting interactions exhibited by HMW-bLf

in modulating cancer cell death. The purified sample tested for its

anticancer activities was obtained through final step of dialysis

with 100 kDa MW cut off membrane, and thus devoid of any

contamination with bLf monomer and other low molecular weight

whey proteins such as lysozyme (14.6 kDa), a-lactalbumin -

14.12(kDa), b-lactoglobulin – (22.40 kDa), as1-casein –

(33.30 kDa), b-casein – (37.50 kDa). The discovery of functionally

bioactive HMW-bLf in this study has opened up greater scope for

future research, considering the inherent multifunctional nature of

bLf with its potential in improving human health. Through

preclinical and clinical studies, we and others have shown that

NM-bLf and Fe-bLf can not only inhibit tumor development but

also reduce growth and metastasis of solid tumors [5,6,16].

Because of its widely reported multifunctional properties, and

approval by FDA (US) and European Food Safety Authority as a

dietary supplement in food products [38,39] NM-bLf is gaining

recent attention as an important therapeutic and nutraceutical

against cancer, chronic inflammatory, viral and microbial diseases.

In this regard, further studies are therefore, needed to decipher the

structural and functional nature of HMW-bLf with more powerful

techniques for its in-depth molecular organization and biophysical

characterization. This will lead to the identification of similarities

and differences in the activities displayed by these two forms of

bLf, and help in understanding the true potential bLf as a

multifunctional bio-macromolecule, in meeting the aims of

modern medicine.

Supporting Information

File S1 Figures S1–S4. Figure S1. Representative microscopy

images showing trypan blue exclusion assay when the cells were

grown in their respective growth media with 1% FBS for 24 h,

indicating the .98% viability. This indicates that serum

deprivation on incubation with bLf treatments for cellular uptake

Figure 5. Cellular uptake of HMW-bLf. A – Representative confocal microscopic images show HMW-bLf internalization in MDA-MB-231 and
SW480 in a time dependent manner. The degradation of actin an indicator of apoptosis was observed after 6 h of treatment with HMW-bLf. The
reduction in the intensity of the Alexa 568 signal indicates the degradation of the actin cytoskeleton. B and C are high magnification images HMW-bLf
internalization in SW480 (B) and MDA-MB231(C) with separate panels showing nucleus, actin and HMW-bLf alone. Arrows in 4B points out to the cells
that have taken up HMW-bLf showing perturbed actin structure, and arrowhead points out to the cell with intact actin structure and is without HMW-
bLf uptake in 4 h (SW480). Arrows in 4C point out to the beginning of nuclear degradation at 6 h (MDA-MB-231).
doi:10.1371/journal.pone.0106568.g005
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in 1% FBS containing assay media does not compromise the

ability of the cells to exclude the dye and they remained healthy

with intact membranes for cellular uptake of bLf. Magnifications

40X. Figure S2. Representative graph of the percentage iron

content in the different forms of bLf. Figure S3. High resolution

graph of FTIR spectra. The Fe-O vibration band appears at

560 cm-1 in the FTIR spectrum of Fe-bLf, and it is not

pronounced in the other three spectra suggesting the high iron

content in Fe-bLf and confirming iron content estimation. Figure

S4. Cell death (mortality count) in FHs 74 Int as measured by

Flow cytometry using propidium iodide staining (* p,0.05). Fe-

bLf was used as a control. Figure S5: Confocal microscopy images

showing FHs 74 Int cells (of normal intestinal origin) also take up

HMW-bLf in a time dependent fashion. The internalized HMW-

bLf was detected by indirect immunofluorescence using goat anti-

bovine lactoferrin (Bethyl Laboratories) antibody at a dilution of

1:200 in PBS at 37uC for 1 h. The primary antibody was then

removed and after washing, cells were incubated with anti-goat

IgG-FITC conjugate (Sigma-Aldrich) and counterstained for

nucleus with DAPI (blue) in fluorshield (Sigma-Aldrich). Scale

bar = 25 mm.
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Figure 6. Caspase-3 activation. A and B represent the increased caspase-3 activity measurements upon treatment with HMW-bLf in MDA-MB-231
and SW480 cells, respectively. (* P,0.05 and ** P,0.01). Panels C and D are the respective Western blots showing an increase in cleaved caspase-3
expression upon treatments in MDA-MB-231 and SW480 cells.
doi:10.1371/journal.pone.0106568.g006
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