
Remodeling of Monoplanar Purkinje Cell Dendrites
during Cerebellar Circuit Formation
Megumi Kaneko1, Kazuhiko Yamaguchi3, Mototsugu Eiraku1, Motohiko Sato5, Norio Takata4, Yoshimoto

Kiyohara2, Masayoshi Mishina6, Hajime Hirase4, Tsutomu Hashikawa2, Mineko Kengaku1,5*¤

1 Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan, 2 Laboratory for Neural Architecture, RIKEN Brain Science Institute, Wako,

Saitama, Japan, 3 Laboratory for Memory and Learning, RIKEN Brain Science Institute, Wako, Saitama, Japan, 4 Hirase Research Unit, RIKEN Brain Science Institute, Wako,

Saitama, Japan, 5 Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan, 6 Department of Molecular Neurobiology and Pharmacology,

Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan

Abstract

Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly
branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent
pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons
of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites
extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal
development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells
underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were
polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes
in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a
single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic
climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was
disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was
also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our
results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar
circuitry.
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Editor: Alain Chédotal, Institut de la Vision, France

Received February 3, 2011; Accepted April 2, 2011; Published May 31, 2011

Copyright: � 2011 Kaneko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Grant sponsors: RIKEN Brain Science Institute; the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grant number: 21300120). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kengaku@icems.kyoto-u.ac.jp

¤ Current address: Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan

Introduction

Dendrites show remarkable diversity in morphology depending

on neuronal function in the brain. The size and pattern of

dendritic arbors affect the number and types of synaptic inputs.

Moreover, the complexity of dendritic structures greatly influences

the information processing of neurons [1,2,3]. Defects in dendritic

patterning are often accompanied with mental retardation and

neurological disorders [4].

The establishment of the dendritic tree is a highly dynamic

process that involves addition, extension, stabilization and pruning

of branches. Recent progress indicates that dendritic growth is

regulated by both activity-dependent and activity-independent

mechanisms. Activity-independent mechanisms include cell-intrin-

sic programs and environmental cues, which have profound effects

on the determination of the basic pattern of dendrites in early

brain development [5,6]. In contrast, activity-dependent mecha-

nisms are more critically important for dendritic growth in circuit

reconstruction during later brain development. For instance,

retinal ganglion cells undergo dynamic dendritic and synaptic

remodeling during postnatal development, which is disturbed by

inhibition of visual inputs or synaptic activity of afferent

interneurons [7,8]. Although activity-dependent dendritic remod-

eling has been implicated in neurons in sensory systems where

afferent inputs can be easily manipulated, relatively little is known

about the precise relationship between afferent activity and

dendritic remodeling in other systems in the brain [5,9].

The cerebellar Purkinje cell is a unique neuron that has a very

large and highly branched dendritic tree with planar expansion in

all three spatial dimensions. The fan-shaped dendrites align along

the parasagittal axis coding functional subdivisions of cerebellar

neural circuits [10,11]. Mature Purkinje cell dendrites receive two

major excitatory inputs; a single climbing fiber axon (CF) from the

inferior olive extend along the flat Purkinje dendrites in a sagittal

plane [12]; 105–106 parallel fiber axons (PFs) of cerebellar granule

cells traverse along the longitudinal (mediolateral) axis of the

cerebellum and contact vertically to the plane of Purkinje

dendrites [13,14]. During the first postnatal week of murine

development, Purkinje cells extend multiple dendrites from the cell

body in random orientations. A single primary dendrite is

determined during the second postnatal week, which rapidly

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e20108



extends and branches in a single parasagittal (translobular) plane

[15]. In contrast to murine Purkinje cell dendrites that are thought

to become monoplanar from the second postnatal week, earlier

anatomical work using Golgi impregnation has shown that

Purkinje dendrites in cat cerebellum transiently extend in two

parallel sagittal planes in the second postnatal week and later

confine to a single plane [16]. This morphological variation has

been attributed to species difference, and the biological signif-

icance of transient biplanar arrangement of cat Purkinje cells is

unknown.

Intensive studies have indicated that the dendritic growth of

Purkinje cells is regulated by many extrinsic signals including

steroid and thyroid hormones, neurotrophins and growth factors

[17]. Involvement of afferent inputs from PFs has also been shown,

since the dendritic growth and survival of Purkinje cells are

severely affected in mutants and conditions that are defective in PF

inputs [18,19,20,21]. Earlier studies have also suggested that

vertical contacts with afferent PFs are required for the flat

arborization of Purkinje cell dendrites. In mice deficient in

contactin, however, Purkinje cells extend seemingly normal

dendrites along the sagittal axis despite a large portion of PFs

being misoriented in different directions in the molecular layer,

questioning the instructive role of geometric arrangement of PF

inputs in patterning Purkinje cell dendrites [22]. Thus, it remains

unknown what regulates the patterning of monoplanar Purkinje

cell dendrites.

To understand the mechanisms of the monoplanar arborization

of Purkinje cell dendrites, we analyzed the cellular morphogenesis

of mouse Purkinje cells using virus-mediated gene transfer

followed by three-dimensional reconstruction of confocal images

of labeled cells. We demonstrate that Purkinje cells obtain a

monoplanar configuration by dynamic remodeling from irregular

arrangement extended in multiple sagittal planes during the third

postnatal week in mice. This dendritic remodeling is parallel to the

refinement of climbing fiber inputs to Purkinje cells. We propose

that normal synaptic activity during postnatal development is

prerequisite for the formation of monoplanar dendrites.

Materials and Methods

Mice
All procedures involving animals were approved by the RIKEN

Experimental Animal Committee on the care and use of animals

in experiments (Approval ID: H19-2B002). Mice were kept under

standard conditions of feeding and lightening (12 h light/dark

cycle, 22uC). Pregnant female Slc:ICR mice were purchased from

Japan SLC and 50 pups of either sex were used for analysis of

normal development from postnatal day 7 (P7) to P50. GluRd2-

knockout mice (University of Tokyo colony)[23] and GLAST-

knockout mice [24](RIKEN Brain Science Institute colony) were

of 99.99% C57BL/6 genetic background. Homozygous mutant

and wildtype littermates were generated by heterozygous cross and

their genotypes were determined a posteriori by polymerase chain

reaction (PCR). Fourteen and 18 pups were used for GluRd2-

mutant and GLAST-mutant mice, respectively. Quantitative

analyses were made using cells from 3 to 5 nonsibling pups.

AAV construction and injection
For efficient expression in neurons, an AAV vector with a

chicken beta-actin (CAG) promoter (pCAG-MCS) was made by

converting the CMV promoter of pCMV-MCS (Agilent Tech-

nologies, Santa Clara, CA) to the CAG promoter excised from

pCAGGS [25]. EGFP cDNA was cloned into the pCAG-MCS

and AAVs were prepared by the AAV purification kit (Virapur,

San Diego, CA) at 1012 pfu/ml. For cerebellar injections, P2

mouse pups were anesthetized by hypothermia and positioned on

a stage designed for stereotaxic injections in neonatal mice. The

occipital skin and muscle was cut open, and a small incision was

made in the bone over the cerebellar vermis with a 27-gauge

needle. The tip of a microsyringe with a 33-gauge needle (Ito, Fuji,

Japan) was inserted 0.5 mm through the incision into the

molecular layer of the cerebellar vermis (lobules IV–VI). One-

two ml of the concentrated AAV suspension was stereotaxically

injected over 60 sec. After the wound was sutured, the pups were

revived at 37uC and returned to the litter.

BDA labeling
Rhodamine conjugated BDA (Invitrogen, Carlsbad, CA) was

dissolved in distilled water. For anterograde labeling of climbing

fibers, 0.05 ml of 5% BDA solution was stereotaxically injected into

the caudo-medial part of the inferior olive of the AAV-injected

mice at P14 under Nembutal anesthesia (50 mg/kg). A glass

pipette (tip diameter, ca 60 mm) connected with a 1.0 ml Hamilton

syringe was introduced into the brain through the foramen

magnum at an angle of 30–40 degrees caudal from the vertical

[26]. In some cases, BDA was injected iontophoretically by a 7 mA

positive current for 10–30 min with a protocol of 7 sec on and

7 sec off. Retrograde labeling of Purkinje cells was performed as

previously described [27]. BDA was injected into the medial

cerebellar nucleus at P15 and P22, and labeled Purkinje cells were

assayed at P18 and P25, respectively. After the wound was

sutured, the pups were revived at 37uC and returned to the litter.

Immunohistochemistry
Mice were anesthetized with isoflurane and transcardially

perfused with 4% paraformaldehyde (PFA) in phosphate buffered

saline (PBS, pH 7.4). The cerebellum was then dissected and

postfixed in the same fixative for 24 h at 4uC. Sagittal sections

(100 mm thick) were made using a vibratome (DTK-3000, Dosaka

EM, Kyoto, Japan). For VGluT2-immunostaining of CF termi-

nals, slices were permeabilized with 0.1% Triton in PBS (PBST)

and blocked with 2% skim milk (BD Biosciences, San Jose, CA)

diluted in PBST. The slices were then incubated with the guinea

pig anti-VGluT2 antiserum (1:500, Chemicon) in blocking

solution at 4uC overnight. After washing twice with 2% skim milk

in PBS, slices were incubated with Alexa647-conjugated anti-

guinea pig IgG (1:200, Invitrogen) at 4uC overnight and mounted

with an antifade kit (Invitrogen). Purkinje cells and CF terminals

were visualized by natural fluorescence of virus-derived GFP and

rhodamine-BDA, respectively.

Confocal microscopy and image analyses
Single- or multi-channel image acquisition was carried out with

laser-confocal microscopy LSM 5 PASCAL (Zeiss, Jena, Ger-

many) with a 406oil-immersion objective (numerical aperture 1.3,

Zeiss) or FV1000 (Olympus, Tokyo, Japan) with a 406 dry

objective (numerical aperture 0.90, Olympus) by using 488 nm

(for GFP), 543 nm (for rhodamine) and 633 nm (for Alexa647)

lasers. Confocal serial sections with frame size of 5126512 pixels

were captured at 1-mm intervals to acquire whole cell images with

0.56 mm60.56 mm61.0 mm pixel dimensions. The z-series was

reconstituted into a 3D image using Imaris software (version 5.0.3;

Bitplane, Saint Paul, MN) in the Surpass view. The Filament

tracer software (AutoDepth) was then used to generate a 3D

rendering of each dendritic branch. The minimum endpoint

diameter (smallest dendritic tip) was set at 1.125 mm. Renderings

were individually edited for correct positioning in the third

dimension relative to the actual confocal image.

Purkinje Dendrites Remodel during Circuit Wiring
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Results

Purkinje dendrites are remodeled from multiplanar to
monoplanar arrangement in the third postnatal week

The morphology of the Purkinje cell was assayed by taking

advantage of an adeno-associated virus (AAV) that is known to

predominantly infect Purkinje cells in the cerebellum [28]. A low

titer of the GFP-carrying AAV vector was injected into the

cerebellar vermis of P2 mouse pups and GFP expression was

analyzed in sagittal sections at P7–P50. A large majority of GFP-

expressing cells were Purkinje cells, which were sparsely

distributed to all cerebellar lobules (Figure S1A, B). Adjacent

Purkinje cells were occasionally labeled, whose dendrites were

aligned in close but distinct sagittal planes in the adult cerebellum

(Figure S1C). The three-dimensional images of labeled Purkinje

cells were obtained by laser scanning confocal microscopy, and

processed with IMARIS software. Purkinje cells in the straight

bank region (between the sulcal fundus and gyral surface) were

analyzed to avoid confusion with morphological differences in

distinct subdivisions [29].

It has been shown that Purkinje cell somata extend multiple

dendrites in random orientations during the first postnatal week of

murine development. A single primary dendrite is determined

during the second postnatal week, which rapidly extends and

branches in a single parasagittal (translobular) plane [15,30,31,32].

Consistent with previous observations, Purkinje dendrites under-

went a dynamic remodeling around the first to second postnatal

weeks (Figure 1A, S2). At P7, many Purkinje cells exhibited a

multipolar morphology with multiple small processes emanating

from the cell body (Figure S2 and Video S1). These perisomatic

processes had few branches and randomly oriented in all three

dimensions of the molecular layer. In the second postnatal week

(P9), most Purkinje cells became flat with a single primary stem

dendrite that aligned along the sagittal axis (Figure S2 and Video

S2). This remodeling has been observed around P12 in rats [31],

consistent with previous findings that the cerebellar cortex matures

earlier in the mouse than in the rat [33]. From the third postnatal

week, the primary dendrite rapidly extended and branched along

the sagittal (translobular) axis of the cerebellar cortex until the

beginning of the sixth postnatal week (from P14 to P35). There was

little apparent change in the size and complexity of dendrites

between P35 and P50.

In contrast to the general understanding that most of murine

Purkinje cells extend dendrites in a single sagittal plane in the

molecular layer after P10 [15,17], we found that in the majority of

the cells at P18, dendrites extended in multiple parasagittal planes

(34 out of 58 cells in the lobules III-X; Figure 1B and Video S1). In

these Purkinje cells, one or more secondary or higher-ordered

branches extruded from the main sagittal plane of the stem

dendrites, and these minor arbors further branched in distinct

sagittal planes parallel to the main arbors (yellow and blue

branches in Figure 1B and Video S3). The distance between the

planes formed by main and minor arbors were rather constant

with a mean value of 12.260.94 mm (mean6s.e.m., n = 12 cells).

The tendency of heterotopic dendrites had already appeared at

P14, but multilayered arbors were less evident due to relatively

rudimentary branching at this stage (Figure S2). In contrast, the

majority of the Purkinje cells at P22 and thereafter are

monoplanar with dendrites in a single parasagittal plane (68 out

of 104 cells in the lobules III-X at P22; Figure 1C and Video S4).

The percentage of multiplanar cells showed a significant difference

between P18 and P22 (p,0.05; x2 test).

A higher magnified view revealed that most branches of mature

Purkinje dendrites at P35 extended in a single sagittal plane with

minimal contacts or overlap (Figure 2A). In contrast, branches

extending in differential sagittal planes passed over other branches

without physical contact. These overpassing dendrites appeared to

overlap with other branches when the three-dimensional image

stacks were viewed sagittally (magenta circles in Figure 2A).

For detailed quantification of dendrite development, the

number and length of all branches in developing Purkinje cells

were measured. The number of overpassing dendrites in distinct

sagittal planes was also measured as an index of multiplanarity.

Previous anatomical work has described significant differences in

the developmental timing of Purkinje cells in distinct lobules

[34,35]. Thus, Purkinje cells in the bank region in early maturing

lobules (lobules IX and X) were used for quantitative assessments.

We found an apparent phase shift in morphometric features

around P18 in addition to a remodeling event around P9. The

number and total length of all dendritic branches in a cell rapidly

increased between P9 and P18, and then decreased by P22. In a

subsequent phase between P22 and P35, both the number and

total length of dendrites gradually increased (Figure 2B,C).

Notably, the number of overpassing branches sharply peaked at

P18, and then rapidly decreased by P22 and plateaued thereafter

(Figure 2D). In contrast, the mean length of each dendritic branch

increased constantly between P9 and P35 (Figure 2E). The total

sagittal-sectional area of the molecular layer occupied by the

dendrite rapidly increased by P18, plateaued between P18 and

P22, and increased again after P22 (Figure 2F).

We also counted multiplanar Purkinje cells during development.

The Purkinje cell with second or higher ordered branches that

further branched in distinct sagittal plane(s) and at least partly

overlapped with the main arbor in a sagittal view (those making

overpassing branches) was defined as multiplanar. The percentage

of multiplanar cells sharply peaked at P18 and decreased by P25 in

parallel with the number of branch overpasses (Figure 2D,G).

Indeed, close observation revealed that multiplanar arborization of

the dendrites caused a significant increase in branch overpasses at

P18. The dramatic change in dendritic configurations over the

interval between P18 and P25 was also observed in the later

maturing lobules (lobules III–VIII), suggesting that the dendritic

remodeling is a common phenomenon in all cerebellar folia

(Figure 2G).

The measurements of cellular morphology in above data were

made using Purkinje cells labeled with AAV-derived GFP. This

raises concern that the multiplanar structure might be an

abnormal phenotype caused by viral infection or phototoxicity

to the observed cells. To address this issue, we retrogradely labeled

Purkinje cells by injecting a neuroanatomical tracer biotinylated

dextran amine (BDA) into the medial cerebellar nucleus. The

percentage of multiplanar Purkinje cells revealed by tracer labeling

was comparable to AAV-infected Purkinje cells (Figure S3; 52%,

n = 50 cells, P18 vs. 26%, n = 38 cells, P25; p = 0.062; x2 test).

These results strongly suggest that murine Purkinje dendrites

undergo dynamic remodeling from multiplanar to monoplanar

configurations around P18-P25.

Multiplanar Purkinje dendrites are associated by climbing
fibers of adjacent Purkinje cells

We hypothesized that the spatiotemporally restricted rearrange-

ment of Purkinje dendrites might be correlated with cerebellar

circuit formation during late postnatal development. Among

excitatory inputs to Purkinje cells, we focused on climbing fiber

(CF) terminals from the inferior olive which run along the flat

Purkinje dendrites in a sagittal plane [12].

BDA tracer was injected into the inferior olive of the AAV-

injected mice at P14, and labeled axons innervating GFP-infected

Purkinje Dendrites Remodel during Circuit Wiring
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Purkinje cells were assayed at P18 or P25. Some CFs were found

to associate with the soma or the proximal end of the primary stem

dendrite of a GFP-labeled Purkinje cell (Figure 3A). Consistent

with previous observations, the ascending CFs ramified into a few

branches that twisted around thick Purkinje dendrites. The tendril

fibers formed numerous varicosities that overlapped with punctate

expression of VGluT2, a vesicular glutamate transporter specific to

CF terminals in the molecular layer [36,37]. Notably, the

multiplanar Purkinje cells were often approached by multiple

distinct CFs besides the major ascending fiber (Figure 3B). The

minor CFs often appeared to appose to the soma of a nearby

unlabeled Purkinje cell: they entered the molecular layer without

Figure 1. Confocal analysis of dendrite arborization in developing Purkinje cells. A: Sagittal (left) and coronal (right) views of developing
Purkinje cells labeled with adeno-associated virus (AAV)-derived GFP. Three-dimensional images were compiled from 20–50 z-serial sections taken at
1 mm intervals. Dendritic processes at P7 orient randomly in the molecular layer. At P9 and thereafter, Purkinje cells bear a single to a few primary
stem dendrites which extend branches along the sagittal axis of the molecular layer. B: Confocal and graphic images of typical Purkinje cells at P18.
Sagittal (left panels) and coronal (right panels) views are shown. Some dendrites extrude from the sagittal plane filled by main arbors, and further
branch in distinct parallel sagittal planes (pseudocolored in yellow and blue in graphic images; see also Video S1). C: The P22 Purkinje cell arborizes
dendrites in a single sagittal plane (see also Video S2). Scale bars: 20 mm.
doi:10.1371/journal.pone.0020108.g001
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Figure 2. Remodeling of Purkinje dendrites in the third postnatal week. A: Confocal and graphic images of dendrites in a P35 Purkinje cell.
Some branches extrude from the main sagittal plane and overpass other branches (magenta circles). Scale bar: 10 mm. B–F: Quantitative analyses of
dendrite development in Purkinje cells in lobules IX and X. The number (B) and total length (C) of branches per cell rapidly increase over the first 18
postnatal days. Both the number and length significantly decrease between P18 and P22, and further increase into adulthood. D: Overpassing
branches per cell peak at P18, sharply decrease by P22 and plateau thereafter. E: The mean length of each dendritic branch decreases between P7
and P9, constantly increases until P35 and then slightly decreased by P50. F: The total sagittal-sectional area of the molecular layer covered by the
dendrite increases until P35 with a plateau between P18 and P22. Purkinje cells per data point in C–G: P7, P14–P50, n = 14; P9, n = 20. Error bars
indicate s.e.m. G: Histogram showing the developmental change in percentages of multiplanar Purkinje cells. The percentage of multiplanar Purkinje
cells peaks at P18 in both early and late maturing lobules (lobules IX, X and lobules III–VIII, respectively). The number of cells analyzed is indicated in
parentheses.
doi:10.1371/journal.pone.0020108.g002
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contacting with the cell body of the labeled Purkinje cell and

directly approached to its distal dendrites near the border of the

CF innervation territory. In all cases examined, VGLuT2+
terminals made by minor CFs were on distal branchlets and

isolated from those of the main CF on proximal shafts (Figure 3C).

In a coronal view, the multiple CFs apposing to a Purkinje cell ran

roughly in parallel along distinct sagittal planes. The dendrite tree

in the main sagittal plane was mainly associated with the primary

ascending CF, while those in minor sagittal planes were

approached by both the primary CF and the terminals of other

CFs (Figure S4A, B). The terminals of these minor CFs were

apposed to the distal branches in minor planes and formed a few

VGluT2-positive varicose swellings, suggesting that they may form

presynaptic terminals on the distal dendrites (Figure 3C). Since not

all CFs were labeled by dye injection, we could not examine

whether multiplanar Purkinje cells were always associated with

multiple CFs. However, even in the multiplanar cells that were

apparently associated with a single tracer-labeled ascending CF,

the arbors in minor sagittal planes were often apposed to VGluT2-

positive puncta that were separate from the tracer-labeled

ascending CF (Figure S4C). We also compared morphological

CF association to multiplanar and monoplanar Purkinje cells.

Figure 3. Multiple CF associations to multiplanar dendrites of Purkinje cells. A: Triple fluorescence for AAV-GFP-infected Purkinje cells
(pseudocolored in blue), BDA-labeled CFs (magenta) and vesicular glutamate transporter VGluT2 (green). A CF targets the soma of a Purkinje cell and
ramifies into several tendril fibers that run along thick stem dendrites (low magnification views on left). The varicose swellings along the CF overlap
with VGluT2-positive puncta indicating CF terminals (high magnification views on right). B: Confocal (left) and graphic (right) images of CFs and a
multiplanar Purkinje cell at P18. Cell-1 and Cell-2 are associated by at least 2 and 3 CFs, respectively. The main ascending fibers are indicated by
arrowheads in confocal images and by yellow in graphic images. The minor CFs apposing distal dendrites (asterisks in confocal images; light and dark
pink in graphic images) innervate the soma of nearby Purkinje cells (circles in confocal images). Dendrites in minor planes are pseudocolored in blue
and green in graphic images. Coronal views of graphic images on right indicate that both dendrites and CFs extend in multiple sagittal planes. C: A
multiplanar Purkinje cell associated with multiple CFs. This Purkinje cell extends dendrites in three distinct sagittal planes (arrows in the coronal view)
and receives inputs from at least three different CFs (asterisks, filled and blank arrowheads in the sagittal view). The boxed region in the left panel is
enlarged in right panels. In addition to the ascending CF in the proximal part of the dendrite (asterisks), a CF from a different origin is closely apposed
to the distal part of the dendrite (arrowheads). Triple staining suggests that both the main and minor CFs form VGluT2-positive synapses on the
Purkinje dendrite. Scale bars: 20 mm in B and left panels in A, C; 10 mm in right panels in A, C.
doi:10.1371/journal.pone.0020108.g003
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Almost all multiplanar Purkinje cells appeared to appose to

multiple CFs, while a large majority of monoplanar Purkinje cells

were associated with a single CF at P25 (Figure S5; multiple CF

associations, 16 out of 19 multiplanar cells analyzed vs. 4 out of 16

monoplanar cells analyzed). The difference in apparent CF

association between multiplanar and monoplanar cells at P25 as

revealed by tracer labeling was statistically significant (p,0.001;

Fisher’s exact test). In contrast, Purkinje cells at P18 tend to be

apposed to multiple CFs at distal dendrites regardless of their

configurations (17 out of 22 multiplanar cells vs. 7 out of 12

monoplanar cells; p.0.1, Fisher’s exact test).

Taken together, these results suggest a correlation of CF

association and dendritic remodeling of the Purkinje cell.

Purkinje cells in the sulcus retain multiplanar dendrites
In studying Purkinje cell morphology, we noticed that cells in

the sulcal fundus often exhibited multiplanar arrangement even

in adult stages. We thus compared dendritic configurations in

three distinct subdivisions of the cerebellar folia (gyrus, bank and

sulcus). Purkinje cells were arranged radially so that their

dendrites densely overlapped with each other due to the concave

shape of the molecular layer in the sulcus. Purkinje cells in the

sulcus consistently exhibited multiplanar structures at higher

percentage than in the gyrus and bank, and the difference was

statistically significant (Figure 4A; P25–35; 48.8%, n = 41, sulcus

vs. 23.9%, n = 201, bank; p,0.05; x2 test). The multiplanar

Purkinje cells in the sulcus were apposed to multiple CFs

extended from the overlapping dendrites of other Purkinje cells

(Figure 4B,C).

Dendrite remodeling of Purkinje cells is impaired in
mutant mice with aberrant afferent projections

We next explored the conditions under which dendrite

remodeling is impaired. We analyzed the dendritic configuration

of Purkinje cells in GluRd2-deficient mice to assess the

correlation with normal Purkinje cell connectivity. Glutamate

Receptor d2 subunit is a member of the ionotropic glutamate

receptor that is highly enriched in Purkinje cells. GluRd2-

deficient mice exhibit significant reduction in PF-Purkinje cell

synapses, expansion of CF territory and ectopic CF innervation.

Further, long-term depression of PF-Purkinje cell synapses, motor

learning and motor coordination are impaired in GluRd2-

deficient mice [13,38,39]. In contrast to previous observation

that Purkinje dendrite morphology was unaffected in GluRd2-

deficient mice, the monoplanar arborization was significantly

disrupted in mutants as compared to wildtype littermates

(Figure 5A, C; multiplanar cells; 22.3%, n = 112, P30 wildtype

vs. 47.3%, n = 112, P30 GluRd2-deficient mutant, p,0.01; x2

test). From a sagittal view, dendritic branches significantly

overpassed one another in GluRd2-deficient mice (Figure 5B).

Quantitative assessments revealed that GluRd2 deficiency

induced a marked increase in branch overpasses, and a slight

decrease in the area occupied by the dendrite in a sagittal plane

(Figure 5C). Other aspects of dendrite morphology including the

number, total length of branches, and the mean branch length

were not affected by GluRd2 deficiency.

Dendritic configuration in Purkinje cells was also analyzed in

GLAST null mutants. GLAST is a major glutamate transporter

expressed in Bergmann glia that is responsible for removal of the

Figure 4. Purkinje cells are consistently multiplanar in the sulcus. A: The percentage of multiplanar Purkinje cells in distinct foliar
subdivisions. The number of cells analyzed is indicated in parentheses. Remodeling from multiplanar to monoplanar dendrites is retarded in Purkinje
cells in the sulcus. B: Confocal (left) and graphic (right) images of CFs and a multiplanar Purkinje cell in the sulcus. CFs in the sulcal region are radially
arranged so that minor CFs tend to access the lateral side of the Purkinje cell. C: The Purkinje cell shown in B dissociated in three different sagittal
planes. Scale bars: 20 mm.
doi:10.1371/journal.pone.0020108.g004
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released glutamate at CF-Purkinje cell synapses [40]. GLAST

knockout mice exhibit motor discoordination caused by ectopic

inputs to Purkinje dendrites from adjacent CF synapses of other

Purkinje cells [24,41]. Consistently, Purkinje cells in GLAST-

deficient mice extended multiplanar dendrites in contrast to the

monoplanar dendrites of the wildtype littermates at P30

(Figure 5A, B; multiplanar cells; 22.2%, n = 36, P30 wildtype

vs. 48.7%, n = 115, P30 GLAST-deficient mutant; p,0.05; x2

Figure 5. Impaired remodeling of Purkinje dendrites in GluRd2- or GLAST-deficient mice. A: Cellular morphology of P30 Purkinje cells in
wildtype, GluRd2-deficient (d22/2) and GLAST-deficient (GLAST2/2) mice from sagittal (left panels) and coronal (right panels) views. The coronal
views show irregular, multiplanar arrangement of dendrites in the GluRd22/2 and GLAST2/2 mice in contrast to the monoplanar appearance in the
wildtype mouse. Dendrites in minor sagittal planes are pseudocolored in graphic images. B: High power sagittal views of dendrites in wildtype and
mutant mice in respective boxed regions in A. Dendrites significantly overpass one another in sagittal views in GluRd22/2 and GLAST2/2 mice. C:
Quantitative comparison of dendrite morphology of GluRd22/2 and GLAST 2/2 Purkinje cells with respective wildtype littermates. Cells in the bank
region of lobules IX and X were analyzed. n = 10 cells for each data point, mean6s.e.m., Student’s t test, *p,0.01. Scale bars: 20 mm.
doi:10.1371/journal.pone.0020108.g005
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test). The branch overpasses were specifically increased despite

no apparent abnormalities in overall dendrite development

(Figure 5C).

Thus, monoplanar arborization of Purkinje cells was similarly

disrupted in two lines of mutant mice with abnormal Purkinje cell

connectivity.

Abnormal activity of CFs disrupts dendritic remodeling of
Purkinje cells

We next examined the effect of abnormal afferent activity on

Purkinje cell morphology. Systemic administration of harmaline

induces a synchronous and enhanced firing of inferior olive

neurons in mice [42,43,44]. It has also been shown that chronic

application during the second postnatal week induces sustained

multiple CF innervation in rats until adult ages [45]. We

administered harmaline (30 mg/kg) by daily intraperitoneal

injections for 6 days during the second (P9–P14) or the third

(P15–P20) postnatal week, and assayed Purkinje cell morphology

at P30. Harmaline treatment caused no gross abnormalities in

mouse cerebellar cortex as previously reported [46]. We found

that chronic application of harmaline during the second or the

third postnatal week induced association of ectopic CFs in distal

dendrites at P30 in mice (Figure S6). A majority of Purkinje cells in

animals treated with harmaline either in the second or third

postnatal week displayed multiplanar morphology at P30, while

those in untreated control animals had mostly completed

monoplanar rearrangement at this stage (Figure 6A, B; multi-

planar cells; 27.1%, n = 96, control vs. 54.6%, n = 108, harmaline

P9–P14, p,0.01; 25.3%, n = 75, control vs. 49.4%, n = 89,

harmaline P15–P20, p,0.05; x2 test). Overall dendritic growth

was unaffected by harmaline treatment except for the striking

increase in overpassing branches in a sagittal view (Figure 6C, D).

These results strongly suggest that normal afferent inputs are

critical for dendritic remodeling of Purkinje cells from multiplanar

to monoplanar configurations.

Discussion

We demonstrated that Purkinje cells undergo remodeling of

dendrites from a multiplanar to a monoplanar configuration in

late postnatal stages. Purkinje dendrites were often apposed with

multiple CFs in the third postnatal week, and were then confined

to single CF association concomitant with dendritic remodeling

into a monoplanar arrangement. The remodeling of Purkinje

dendrites was severely impaired in mutant mice where Purkinje

dendrites receive aberrant afferent projections or by pharmaco-

logical disruption of normal afferent inputs. These results implicate

afferent connectivity in patterning monoplanar dendrites of the

Purkinje cell.

Remodeling of Purkinje dendrites in late postnatal
development

The murine cerebellar cortex undergoes dynamic develop-

mental changes during the second and third postnatal weeks.

These include the appearance and deepening of the fissures and

lobules, gradual disappearance of the external granule layer,

and enlargement of the molecular layer and the granule layer

[35]. Since Purkinje dendrites show a rapid increase in size and

complexity until P18, transient heterotopic extension of

dendrites in a multiplanar arrangement might be a consequence

of extensive arbor growth beyond the spatial limit of the

growing molecular layer during the second and third postnatal

week. Multiplanar dendrites might thus emerge more frequently

in the sulcus than other subdivisions due to steric crowding of

dendrites in the concave molecular layer in this region.

Transient biplanar arrangement of Purkinje dendrites was also

observed in the second postnatal week in cat cerebellum by

previous Golgi impregnation studies [16]. Contrary to the

previous suggestion that this morphological variation is

attributed to species difference, the present results indicate that

the remodeling of Purkinje cell from a multiplanar to a

monoplanar arrangement during late postnatal development is

fundamental in mammals.

How are the multiplanar dendrites rearranged in a single plane

during the short interval between P18 and P25? One possibility is

that dendrites in minor planes seen around P18 are selectively

retracted and only those in the main sagittal planes are retained.

Alternatively, the minor dendrites might be kept and translocated

to fill spaces within the main sagittal plane. If the latter were the

case, the sagittal-sectional area in the molecular layer covered by

each Purkinje cell should significantly increase between P18 and

P25. In fact, there was no increase in the area covered by dendrites

but rather a significant decrease in the number of dendritic

branches between P18 and P25 (Figure 2B, F). These static

analyses suggest that dendritic stratification occurs via loss of

arbors in minor planes. This will be more carefully illustrated by

improved long-term imaging studies in the future.

Dendritic remodeling and refinement of afferent
connectivity

The second important finding is that dendritic remodeling of

Purkinje cells is correlated with circuit assembly with afferent

CF terminals. It is known that each Purkinje cell is innervated

by multiple CFs in the first postnatal week, and activity-

dependent elimination of minor CFs proceeds until mono-

innervation is completed by P20–21 [47,48]. We currently do

not know if the ectopic CF associations to P18 dendrites evoke

synaptic inputs, since previous electrophysiological studies have

shown that more than 80% of Purkinje cells receive single CF

input after P14. We surmise that the transient ectopic CF

associations to multiplanar Purkinje cells at P18 are distinct

from electrophysiologically identified multiple CF innervations

in early postnatal life: Developmental elimination of multiple

CF innervation has been shown to be initiated by activity-

dependent competition of several equivalent CFs that share

their innervation fields in the soma of a Purkinje cell in the first

postnatal week [49,50]; One of those CFs is selectively

strengthened and extends from the soma toward dendrites,

while other perisomatic CFs are mostly eliminated from the

soma in the second postnatal week [51,52]. This is in contrast to

our observation that minor CFs are originated from ascending

fibers of nearby Purkinje cells and directly accessed the distal

dendrites of the multiplanar Purkinje cell in the third postnatal

week (Figure 3). Thus, the transient ectopic apposition by

adjacent CFs innervating nearby Purkinje cells in the third

postnatal week is likely distinct from the perisomatic minor CFs

seen in earlier stages. De novo addition of multiple CFs during

the later phase is suggested by previous studies of GluRd2-

deficient mice in which supernumerary CFs arise from nearby

Purkinje cells and contact small distal regions of the dendrite

[39,53]. It has also been shown that CFs retain structural and

functional plasticity into adulthood [54,55].

The flat arborization of Purkinje dendrites was severely

impaired in GluRd2 and GLAST mutants where Purkinje cell

dendrites form aberrant circuits with multiple CFs. Abnormal

activation of CFs by chronic application of harmaline during the

second or third postnatal week also disrupted dendritic remodeling

and ectopic CF elimination. Notably, dendritic remodeling was
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retarded in the sulcus of wildtype mice where Purkinje cells receive

ectopic CF association (Figure 4)[29]. These results are in

accordance with the hypothesis that maturation of the correct

wiring of afferents is coupled with organization of Purkinje

dendrites in monoplanar conformation. However, we currently do

not know if CF association has instructive roles in dendrite

remodeling. The mechanism underlying the local rearrangement

of afferents and dendrites remains to be elucidated [56].

Figure 6. Disrupted remodeling of Purkinje dendrites in harmaline-treated mice. Cellular morphology of P30 Purkinje cells in mice treated
with saline (A) and harmaline (B) at P9–P14. Dendrites become irregular and multiplanar by harmaline treatment compared to the control littermate.
Dendrites in minor sagittal planes are pseudocolored in graphic images. C: High power sagittal views of dendrites in respective boxed regions in A
and B. Dendrites significantly overpass one another in harmaline-treated mice. D: Quantitative comparison of dendrite morphology in mice treated
with saline or harmaline during P9–P14 or P15–P20. Overpassing branches are significantly increased by harmaline treatment in either period. Cells in
the bank region of lobules IV and V were analyzed. n = 10 for each data point, mean6s.e.m, Student’s t test, *p,0.01. Scale bars: 20 mm.
doi:10.1371/journal.pone.0020108.g006
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The possible mechanisms and significance of dendritic
configuration of Purkinje cells in the cerebellar circuit

CF axon terminals run along the flat Purkinje dendrites in a

sagittal plane [12]. The monoplanar arborization would circum-

vent aberrant innervation from multiple adjacent CFs and thus

provide a spatial framework for cerebellar neural circuits, which

are coded in fine parasagittal subdivisions in the cerebellum. It

would also serve to maximize the inputs from PFs. The activity-

dependent refinement of dendrite configuration might contribute

to optimization of local neural circuits during postnatal life.

On the other hand, the planarity of Purkinje dendrites is likely

regulated by other mechanisms, since dendrites retain flatness

along multiple sagittal planes in animals with abnormal CF

innervation. Vertical contacts with PFs would be good candidate

regulators of flat arborization of Purkinje dendrites as was

suggested in earlier studies [33]. Likewise, interactions between

branches of the same and adjacent Purkinje cells would also be

involved in patterning the space-filling array of Purkinje dendrites

with minimal overlaps and contacts (Figure 2A). The mechanisms

of dendrite self-avoidance that ensure non-redundant coverage of

the planar receptive field have been well studied in Drosophila

sensory neurons and in murine retina [57,58]. Analogous repulsive

mechanisms might regulate non-overlapping and/or monoplanar

branching of Purkinje dendrites. Analyses of dendritic configura-

tions under various manipulations of afferent activities and

molecules would address these hypotheses.

Supporting Information

Figure S1 Transduction of Purkinje cells in vivo with
AAV-GFP. A: Schematic drawing depicting virus injection site.

AAV-GFP was injected in the molecular layer in the area of

developing lobules IV–VI with a microsyringe. B: GFP fluores-

cence in a sagittal section of the cerebellar vermis at P30. AAV-

GFP spread to all lobules and preferentially transduced Purkinje

cells. Panels are oriented with the rostral side to the left. C:

Magnified views of nearby labeled Purkinje cells at P26. A coronal

view of 3D reconstruction shows parallel alignment of dendrites

along the sagittal axis. Scale bars: 100 mm in B; 20 mm in C.

(TIF)

Figure S2 Dendrite development in early postnatal
weeks. Confocal and graphic images of Purkinje cells at P7, P9

and P14. Respective sagittal (left) and coronal (right) views are

shown. Remodeling from random, stellate dendrites to flat,

oriented dendrites occurs between P7 and P9. Heterotopic

dendrites extruded from the main sagittal plane of the stem

dendrites are evident at P14 (pseudocolored in graphic images).

Scale bars: 20 mm.

(TIF)

Figure S3 Analyses of dendrite remodeling in tracer-
labeled Purkinje cells. Sagittal (left) and coronal (right) views

of Purkinje cells at P18 (A) and P25 (B) labeled with BDA tracer.

Arrows in (B) indicate background staining. The P18 Purkinje cell

extends dendrites in multiple sagittal planes, while the P25

Purkinje cell arranges dendrites in a single sagittal plane, consistent

with the results obtained by AAV-mediated expression of GFP.

Scale bars, 20 mm. C: The proportion of multiplanar Purkinje cells

as revealed by AAV-derived GFP and BDA labeling. The number

of cells analyzed is indicated in parentheses. The results obtained

by the two methods show no statistically significant difference

(N.S. p.0.1; x2 test). The percentages of multiplanar cells are

significantly different between P18 and P25 (** p,0.001; x2 test).

(TIF)

Figure S4 Multiple CF innervation to dendritic arbors in distinct

sagittal planes. A: AAV-GFP-infected Purkinje cell (pseudocolored

in blue) receiving inputs from multiple CFs (magenta) shown in

Fig. 3C. This Purkinje cell extends dendrites in three distinct

sagittal planes (white, light and dark blue in graphic images on the

right) and receives inputs from at least three different CFs

(asterisks, filled and blank arrowheads in the confocal image on the

left; also indicated by yellow, light and dark pink in graphic

images). B: The Purkinje cell shown in A dissociated in three

different sagittal planes. The main dendritic arbors in plane 1

(white) are only associated with the ascending CF (yellow). The

minor dendritic arbors in plane 2 (light blue) and plane 3 (dark

blue) are associated with respective minor CFs (light and dark

pink) in addition to the ascending CF (yellow). C: A multiplanar

Purkinje cell at P18 associated with only one BDA-labeled CF.

The boxed region in the upper panel is enlarged in lower panels

(double-, triple-staining and graphic images). Asterisks indicate the

serial vesicular glutamate transporter VGluT2-positive puncta that

are closely apposed to the tips of dendrites independent of the

labeled ascending CF (arrowheads in confocal and graphic images;

also indicated by yellow in graphic image). Scale bars: 20 mm.

(TIF)

Figure S5 Mono-CF innervation in monoplanar Pur-
kinje cells. A: Confocal images of a monoplanar Purkinje cell

(green), CFs (blue), and VGluT2 (magenta) at P25. The main

ascending fiber is indicated by arrowheads. Scale bar, 20 mm. B:

Graphic images of the CFs and Purkinje cell shown in A. The

main ascending CF (yellow) innervates the monoplanar dendrites

(white). C: A coronal view of the Purkinje cell and juxtaposing

CFs. Except for the main ascending CF (yellow), none of other

adjacent CFs (pseudocolored in red, green and pink) contact the

Purkinje dendrites (white). D: The proportion of Purkinje cells

innervated by multiple CFs. BDA-labeled CFs bearing vGluT2-

positive terminals associating with GFP-labeled Purkinje dendrites

were counted. The majority of Purkinje cells are associated by

multiple CFs regardless of dendrite configuration at P18. In

contrast, a large majority of monoplanar Purkinje cells receive

inputs from a single CF, while almost all multiplanar cells receive

multiple CF inputs at P25.

(TIF)

Figure S6 Persistent multiple CF innervation induced
by chronic application of harmaline. A: Confocal and

graphic images of an AAV-GFP-infected Purkinje cell and CFs in

P30 mice treated with harmaline between P9–P14. Triple

fluorescence for Purkinje cells (pseudocolored in blue), BDA-

labeled CFs (magenta) and vesicular glutamate transporter

VGluT2 (green) is shown. This Purkinje cell is apposed with at

least two different CFs (yellow and pink in graphic images). B:

High power views of dendritic arbors in the boxed region in A. In

addition to the ascending CF in the proximal part of the dendrite

(arrowheads), a CF of different origin is closely apposed to the

distal part of the dendrite (asterisks). Both the main and minor CFs

form VGluT2-positive synapses on the Purkinje dendrite. C: The

Purkinje cell shown in A dissociated in two different sagittal planes.

The main dendritic arbors in plane 1 (white) are only associated

with the ascending CF (yellow). The minor dendritic arbors in

plane 2 (blue) are associated with both the ascending and minor

CFs (yellow and pink, respectively). Scale bars: 20 mm in A, C;

10 mm in B.

(TIF)

Video S1 Rotational 3D movie of P6 Purkinje cell.

(AVI)
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Video S2 Rotational 3D movie of P9 Purkinje cell.
(AVI)

Video S3 Rotational 3D movie of P18 Purkinje cell.
(AVI)

Video S4 Rotational 3D movie of P22 Purkinje cell.
(AVI)
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