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A B S T R A C T   

Tissue engineering (TE) is a rapidly growing interdisciplinary field, which aims to restore or improve lost tissue 
function. Despite that TE was introduced more than 20 years ago, innovative and more sophisticated trends and 
technologies point to new challenges and development. Current challenges involve the demand for multifunc-
tional bioscaffolds which can stimulate tissue regrowth by biochemical curves, biomimetic patterns, active 
agents and proper cell types. For those purposes especially promising are carefully chosen primary cells or stem 
cells due to its high proliferative and differentiation potential. This review summarized a variety of recently 
reported advanced bioscaffolds which present new functions by combining polymers, nanomaterials, bioactive 
agents and cells depending on its desired application. In particular necessity of study biomaterial-cell interactions 
with in vitro cell culture models, and studies using animals with in vivo systems were discuss to permit the 
analysis of full material biocompatibility. Although these bioscaffolds have shown a significant therapeutic effect 
in nervous, cardiovascular and muscle, tissue engineering, there are still many remaining unsolved challenges for 
scaffolds improvement.   

1. Introduction 

Currently, one of the most intensively studied field of medicine is 
regenerative medicine (RM), it is a broad field about the potential and 
ability to regenerate and replace damaged tissues and organs. Recently 
regenerative medicine has shown a number of promising results for the 
regeneration variety of tissues and organs including joints, bones, skin, 
cardiovascular and nervous system [1–8]. The main strategies of RM are 
i. cell therapies, that aim to injection of stem cells to induce direct 
regeneration and rebuild tissues and organs; ii. Immunomodulation 
therapies which involve biologically active molecules which stimulate 
tissues to regenerate; and iii. Tissue engineering. The tissue engineering 
(TE) field is mainly based on applying scaffold for cell attachment and 
growth by designing and fabricating three-dimensional cell-containing 
matrices that can be implanted into the body to disease treatment or 
defect repair [9]. Analogous to the natural extracellular matrix topog-
raphy of scaffold regulate cell behavior. Scaffolds morphology and 

composition influence on cell adhesion, proliferation, differentiation 
and migration. There are multiple requirements for scaffolds usage in 
TE. Such scaffolds should be biocompatible, immunologically inert and 
support the normal functioning of cells and tissues. The most important 
requirement of biomaterials for scaffold applications is biocompatibility 
which refers to a wide range of effects that access possible clinical usage. 
The most intensively studied is material cytotoxicity which is deter-
mined by cell lysis leading to apoptosis or the inhibition of cell prolif-
eration. Scaffolds should exhibit a lack of cytotoxic effect toward cells, 
which should be deeply investigated over a long period of time. Another 
aspect of biocompatibility is also the absence of genotoxicity in partic-
ular DNA destruction, chromosomal aberrations and gene mutations 
[10]. Carcinogenicity is another aspect of material biocompatibility that 
should be carefully investigated, especially according to tissue organi-
zation field theory (TOFT). TOFT claiming that cancer arises from the 
deregulation of extracellular matrix (ECM) architecture. It is 
well-known that changes in native ECM micro/nano environment and 
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composition lead to local stiffening, tissue fibrosis which enhanced 
cancer development [11]. Therefore materials structure, architecture 
and composition should imitate the architecture of native ECM as more 
precise as it’s possible to fully mimic target tissue environment. 
Furthermore, scaffolds should be immunologically inert or influence 
minimal immunological reaction. When biomaterial induce inflamma-
tory response by inducing foreign body reaction, that can lead to 
rejection of the implant [12]. The degradation products also cannot 
cause toxicity toward cells. It should be also considered while designing 
natural biomaterials due to their possible bioactive degradation prod-
ucts which can stimulate immunological response [12]. Therefore 
scaffolds for possible biomedical applications should be carefully 
examinated in terms of their long-term toxicity which can be crucial for 
their clinical trials. In vitro cell culture studies are valuable in investi-
gating the effects of biomaterial-cell interactions, while in vivo studies 
using animals permit the analysis of full material biocompatibility. 

There are numerous materials used to fabricate scaffolds, but 

polymers are the most popular basal materials for scaffolds production 
[13,14]. Those polymers can be categorized on two groups natural and 
synthetic which can be divided into biodegradable and non-degradable. 
Usage of certain polymer type and its composition depends on the target 
application. Table 1 compares the most popular polymers, their ad-
vantages, limitations and promising usage in different tissue engineering 
fields. Natural biomaterials are often processed from either whole ECMs 
or purified certain ECM components. Alternatively, pure ECM archi-
tecture and composition can be obtained by removing the cellular 
components from tissues by a process called decellularization of ECM. 
Many reports show the possibility of decellularization of tissues and 
even organs. Decellular scaffolds have no cells in structure and require 
recellularization by proper cell type. Their clinical use has been docu-
mented for TE applications such as blood, cardiac valves and renal 
bladders. Nevertheless, these acellular constructs differ depending on 
the source and isolation method which is one of the main disadvantages. 
The natural origin of that biomaterials is the potential danger of 

Table 1 
The most popular polymers for scaffolds fabrication, their main advantages and limitations and current potential application in different tissue engineering fields.  

POLYMER TYPE EXAMPLE ADVANTAGES LIMITATIONS PROMISING IN REF. 

Natural polysaccharides chitosan biocompatibility, hemostatic activity, 
biodegradability, antibacterial activity, 
easily metabolized 

stiff, brittle, low mechanical resistance skin, nervous, bone, 
cartilage, cardiac, liver, 
and muscle tissue 
engineering 

[17–23] 

cellulose biocompatibility, bioactivity, good 
mechanical properties depending on the 
source 

non-biodegradable skin, neural, bone, 
cardiovascular, muscle, 
tendons, cartilage 
regeneration 

[24–28] 

alginate biocompatibility, non-immunogenicity, 
biodegradability, non-antigenicity, 
bioactivity 

limited strength, toughness, difficulty in 
controlled gelation 

skin, cartilage, bone, 
neural regeneration 

[20, 
29–34] 

hyaluronic 
acid 

biocompatibility, biodegradability, easy 
chemical modification, bioactivity 

poor mechanical properties, rapid 
degradation 

neural, skin, 
regeneration 

[35–42] 

proteins collagen biocompatible, biodegradable, ECM 
mimicking, poorly immunogenic, 
bioactive 

poor mechanical properties, skin, cornea, dental, 
vascular, cartilage, bone 
regeneration 

[41, 
43–48] 

gelatin biocompatible, biodegradable, ECM 
mimicking, low immunogenic, 
inexpensive, water-soluble, bioactive 

poor mechanical properties, fast 
enzymatic degradation, low solubility in 
concentrated aqueous media 

skin, bone, cartilage, 
adipose neural, 
regeneration 

[49–54] 

fibrin biocompatible, biodegradable, ECM 
mimicking, low immunogenic 

rapid degradation rate, poor mechanical 
properties, expensive, risk of 
contamination 

liver, retina, cartilage, 
vascular, neural 
regeneration 

[55–59] 

silk fibroin biocompatibility, biodegradability, 
bioactivity, low immunogenic, high 
tensile strength, excellent mechanical 
properties, water-based processing, low 
cost 

Weak, brittle as scaffolds. skin, vascular, bone, 
cartilage, tendon, 
cornea, hepatic, Neural 
regenration 

[60–65] 

elastin biocompatibility, bioactivity, good 
biophysical and biomechanical 
properties 

Water-insoluble, difficult to manipulate 
in vitro, risk of contamination, risk of 
inflammation, difficulties in sourcing 

skin, cartilage, 
cardiovascular, tendon, 
skin, liver regeneration 

[66–72] 

Synthetic Biodegradable PCL biocompatible, easy to modificate and 
fabricate, good organic solvent solubility, 
controllable degradation rate, 
inexpensive, good mechanical 
properties, thermoplastic 

poor cellular adhesion due to 
hydrophobicity, relatively slow 
degradation rate (2–4 years), 

skin, bone, vascular [73–78] 

PLA biocompatibility, easy to modificate and 
fabricate, obtained from renewable 
sources, 

lack of bioactivity, low cell adhesion, 
biological inertness, acid degradation by- 
products, risk of inflammation, low 
porosity, low degradation rate (but faster 
than PCL) 

skin, bone, 
cardiovascular, cartilage, 
ligament, neural 
regeneration 

[79–85] 

PGA biocompatible, bioresorbability, high 
tensile strength, 

fast degradation rate, acidic degradation 
products, low solubility 

bone, cartilage, ligament 
regeneration 

[86–91] 

Non- 
biodegradable 

PDMS biocompatibility, easy to fabricate, 
flexible, thermo-tolerant, tunable 
hardness, good biostability, the high 
solubility of oxygen in PDMS, 

non-bioactivity due to hydrophobicity, 
non-biodegradable 

skin, bone, neural 
regeneration 

[92–96] 

PPy electrical conductivity, easy to 
synthesized, environmental stability, low 
inflammatory response, 

non-biodegradable, not easy to modify, 
non-thermoplastic, water insoluble, 
mechanically rigid, brittle, possible long- 
term toxicity, non-biodegradable 

neural cardiovascular, 
liver regeneration 

[97–104] 

PVDF piezoelectric properties, high flexibility, 
non-toxicity, chemical and physical 
resistance 

hydrophobicity, insufficient 
biocompatibility, non-bioactive, non- 
biodegradable 

bone, neural, bladder, 
skeletal muscle 
regeneration 

[105–110]  
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infection which potentially can lead to donor-derived infection. How-
ever, the main limitation is necessity for chemical usage during isolation 
and complicated preparation process. This can potentially trigger high 
immune response and inflammation [15,16]. 

Natural polymers can be classified as polysaccharides (chitosan, 
cellulose, alginate, chitin, hyaluronic acid, and dextran) and proteins 
(collagen, gelatin, fibrin, elastin, silk, keratin, actin, and myosin). The 
greatest advantage of scaffolds made of naturally derived sources is their 
great biocompatibility and more closely mimicking natural ECM. Bio-
scaffolds refer to naturally-derived scaffolds made by natural polymers 
or with the addition of active bioagents. Because of their natural origin 
natural polymers tend to be highly bioactive what support cell attach-
ment and growth. Scaffolds are environmental friendly what is another 
advantage of their usage in tissue engineering. However, materials 
derived from humans and animals hold a serious risk of potential dis-
eases. Moreover, most of the natural polymers exhibit poor mechanical 
properties and a fast degradation rate. Proper chemical modification as 
well as crosslinking can overcome these disadvantages, contributing to 
enhanced mechanical properties. On the other hand, synthetic materials 
are also often used as scaffolds. The main advantage of synthetic poly-
mers is their excellent mechanical properties, such as viscosity, strength, 
solubility and controllable degradation. There are many examples of 
synthetic polymers with conductive and piezoelectric properties which 
makes them attractive in electrically sensitive tissues such as nerve and 
heart muscle. Another benefit of some synthetic polymers is thermo-
plastic properties which make them easy-to-fabricate leading to versa-
tility in fabrication. However polymeric degradation products could 
induce long term toxicity causing inflammation. Another drawback is 
the lack of cell-binding sites due to their hydrophobicity which makes 
them unattractive for the biomedical field. Fully synthetic scaffolds are 
generally composed of manufactured polymers, metals, or other syn-
thetically derived substrates. Synthetic polymers can be precisely man-
ufactured and therefore their properties such as mechanical strength and 
degradation rate can be readily tuned. Consequently, multiple polymers 
can be easily integrated within one material to obtain composite. An 
especially promising approach is to combine synthetic polymers char-
acterized by good mechanical properties with natural biomaterials as 
they provide natural micro/nano environmental niche for functional 
tissue regeneration. To improve biological properties, scaffolds can also 
be enriched with bioactive signaling molecules. Commonly it could be 
adhesive peptides, extracellular matrix proteins, growth factors, cyto-
kines, or hormones. These bioactive agents can have profound biologic 
activity leading to direct cell adhesion, proliferation, modulate cell 
survival, vascularization and targeting differentiation fate of stem cells. 
Such bioscaffolds achieve both the 3D matrix structure of the native 
ECM and the natural ligand landscape [111]. Designing and fabricating 
an ECM scaffold that fully mimics the biochemistry and architecture of 
native tissue ECM can be achieved by careful selection of the materials, 
bioactive additives and fabrication technique. The proper method for 
obtaining the 3D bioscaffolds enables their desire application and 
functional character. Typical scaffold architecture is made by 3D 
printing, electrospinning, lithography methods that enable to obtain 
fibers, hydrogels, meshes, sponges or foams. 

Proper choice of a cell type model is another crucial aspect of basic 
research and possible transplantation success. Cell lines are broadly 
available, easy to maintain and cultivate. Mostly are immortalized 
through genetic manipulations by e.g. integration of relevant genes by 
viral transfections. Companies provide a wide range of immortal cell 
lines under constant growing conditions derived from healthy and un-
healthy donors. However, during numerous passages, cells exhibit al-
terations in morphology, growth rates and response to stimuli compared 
to lower passage cells. Mentioned alterations often occur in parallel with 
cellular mutations, therefore continual cell lines subculture intensify 
genomic instabilities. Additionally, because of high immunogenicity, 
cell lines are not proper for clinical use. Despite those disadvantages, cell 
lines are useful as a proof of concept and basic research study. Primary 

cells are mature cells derived directly from tissue or organ of interest 
without viral transfections and any modifications, representing a better 
physiological model than cell lines [15]. These cells can be isolated from 
certain patients, cultivated in vitro on the scaffold and then transplanted 
in the target place of the host body. Primary cell transplantation gives 
less immunogenic response than cell lines which gives great clinical 
potential. The main limitation of the use of primary cells in tissue en-
gineering tends to dedifferentiation followed by a low proliferation rate. 
On the other hand, primary cells have low capacity to differentiate, and 
many cell types should be isolated to rebuilding multicellular construct 
which could be challenging due to their limited quantity and accessi-
bility [112]. Another useful cell model is stem cells. A wide range of 
stem cells are used in tissue engineering, including mesenchymal stem 
cells (MSCs), embryonic stem cells (ESCs), cardiac stem cells (CSCs), 
neural stem cells (NSCs), muscle stem cells, dental pulp stem cells 
(DPSCs), and induced pluripotent stem cells (iPSCs). In general, their 
availability in hosts is limited and the origin of certain stem cells raises 
ethical doubts. Commercially available stem cells should be considered 
only as in vitro model, because of their immortalization and potentially 
triggering immune responses. Moreover, immortal stem cells, similar to 
cell lines often differ in function from their in vivo counterparts. iPSCs 
reprogramed from host somatic cells have gained increasing attention. 
That stem cells can differentiate into cell types of all three germ layers 
giving huge opportunities in tissue engineering. In the beginning, sci-
entists assumed no risk of rejection after iPSCs transplantation, but the 
immune rejection was observed after transplantation of autologous 
iPSC-derived cells. That suggests the impact of in vitro operations on the 
immunogenicity of the iPSC [113]. An interesting approach is that iPSCs 
offer the opportunity to correct pathogenic genetic variants in advance 
of transplantation in the mutation-carrying patient. The limitation is 
time-consuming protocols that require multiple complicated interme-
diate steps [15]. Despite that, iPSCs exhibit a low risk for teratoma 
formation and immune response but reveal the risk of tumorigenesis. 
Over that unknown is the impact of reprogramming somatic cells on the 
epigenetic modifications and their overall safety. 

Bioscaffolds beyond mimicking of native ECM and interaction with 
cells, can influence more than one cell type and provide additional 
advanced functions. This includes releasing bioactive agents such as 
antibacterial molecules to prevent infection; growth factors to induce 
direct cell differentiation and anti-inflammatory agents to prevent 
excessive inflammation. Specific cell types incorporation within scaffold 
structure also provide new function, by their active spreading, releasing 
their growth factors leading to active tissue regeneration. In this regard, 
highly desirable are multifunctional scaffolds that provide physico-
chemical support to many cell types and deliver bioagents/drugs/anti-
bacterial molecules. Such multifunctional bioscaffolds gained attention 
as the new generation of biomaterials for applied cardiovascular, ner-
vous, muscle and bone tissue engineering as shown in Fig. 1. This review 
highlight recent insights of multifunctional biomaterials fabricating in 
order to be applied in clinical practice. The review provides crucial in-
formation about the biological effect of biomaterials in cardiovascular, 
muscle and nervous tissues regeneration as electrical sensitive systems. 
Due to the many works in this area in recent years, the aim of the review 
was to identify the latest trends in this field, with particular emphasis on 
the role of primary materials, which not only provide scaffolds but also 
support that enhance cell adhesion, proliferation, and differentiation. 
This approach allows for a broader view of bioactive materials, both in 
the research context but also in the application context, and an analysis 
of the polymers used, taking into account their nature and structure. It 
should be noted that the authors deliberately omitted the aspect related 
to the regeneration of the bone tissue due to many interesting and very 
detailed reviews in this area [114–118]. These works include scaffolds 
based on hydroxyapatite, as well as a number of polymers, including 
bio-polymers (e.g. cellulose, chitosan, gelatin, alginate and fibroin as 
well as and synthetic polymers (e.g. poly(lacticacid) (PLA), poly(glycolic 
acid) (PGA), and their copolymers PLGA] [119–124]. The hybrid 
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solutions such as hydroxyapatite/collagen [125–127], poly L-lactic acid 
[128,129] or κ-carrageenan [130–132] scaffolds or lanthanide-doped 
hydroxyapatite [8,133–135] for bone and osteochondral regeneration 
were also proposed and described in literature. Therefore this review 
highlights the new achievements, emerging trends and strategies in the 
field of neural, cardiovascular and muscle tissue engineering. Chal-
lenges, limitations and future prospects in tissue engineering are 

discussed. 

2. Bioscaffolds for nervous system regeneration 

The nervous system is the most significant and complex tissue in the 
human body. The nervous system is a highly specialized network which 
can be divided into two main parts: the central nervous system (CNS 

Fig. 1. Multifunctional bioscaffold’s requirements and their possible usage in different areas of tissue engineering.  

Fig. 2. Recent strategies for regeneration of CNS (left) and PNS (right) by multifunctional bioscaffolds. CNS approach a) Scheme of cytokine-containing hydrogel 
embedded in a electrospun PCL scaffold composite b) Tissue bridging and neuronal axon regeneration observed by hematoxylin and eosin (H&E) staining and c) 
immunofluorescence staining of anti-microtubule-associated protein-2 (MAP2) neuron marker. PNS approach d,f) Scheme of fabrication of scaffolds composed of 
(− )-epigallocatechin gallate-loaded polycaprolactone using integrated molding and nerve conduit implantation in rat models e) anti-oxidant marker NF-E2-related 
factor (Nrf2) immunofluorescent staining for RSCs on EGCG/PCL scaffolds. Reproduced with permission from Ref. [136]. Copyright © 2019 Cell Proliferation 
published by John Wiley & Sons Ltd. Reproduced with permission from Ref. [137]. Copyright 2020 RSC. 
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includes the brain and the spinal cord) and the peripheral nervous sys-
tem (PNS include the spinal and automatic nerves). Hundreds of millions 
of people worldwide are affected by numerous neurological disorders. 
The symptoms of nervous system abnormalities depend on their locali-
zation and the generating factors. Neurological disorders such as trau-
matic injuries (spinal cord injuries), strokes and neurodegenerative 
disorders belong to incurable diseases. Neurological disorders can be 
caused by loss of neurons and glia cells functionality in the central 
nervous system (CNS) and peripheral nervous system. The most 
important stem cells for the nervous system is neural stem cells (NSCs), 
which are multipotent stem cells, precursors of both neurons and 
neuroglia (oligodendrocytes and astrocytes) during not only embryonic 
development but also in the adult mammalians Mentioned process 
called neurogenesis appears in specific brain regions. Lately developed 
strategies in PNS and CNS by using multifunctional bioscaffolds were 
presented in Fig. 2. 

2.1. Peripheral nervous system 

While the nervous system belongs to the most significant system with 
contemporaneously highly histological and anatomical structure and 
compound, the main issues with regeneration is a small number of NSCs 
and their progenitors in the specific niches. A low number of stem cells 
essential in CNS provide to the limited ability of the central nervous 
system regeneration. On the other hand, peripheral nerve axons have an 
intrinsic capacity to regenerate after injuries by making functional 
connections between two ends of a severed nerve. However, it is chal-
lenging to achieve full functional recovery after injury of the proximal 
nerve causing nerve gaps. Several approaches are typically used to 
induce increased regeneration in the gap between injured axons, 
including nerve autografts, nerve allografts and biologically-derived and 
synthetic scaffolds as an alternative. Autografts are the gold standard in 
PNI treatment however, it has several critical limitations, including 
donor site morbidity. Alternatively to autografts, nerve allografts are 
human decellularized nerve available commercially (e.g. Avance™). 
While traditional, artificial PNS scaffolds can occur in form of nerve 
guidance multi-channels and nerve guide conduits (NGCs) [43]. Guidant 
scaffolds for PNS regeneration have often tubular shape designed to 
bridge axonal gaps, prevent scarring and non-physiological accumula-
tion of neurotropic and neurotrophic factors locally, protect the injured 
nerve from mechanical disruption and finally mechanically guide 
regenerating axons from proximal and distal nerve segment. 

Many synthetic and naturally-derived NGCs have been approved for 
clinical use. Natural, biodegradable conduits based on collagen type I 
(Neuromatrix™, Neuroflex™) are fully biodegradable and widely used. 
Synthetic tubes made by synthetic biodegradable polymers such as: poly 
(glycolic acid) (PGA) (Neurotube™) and poly(d,l-lactide-co-e- 
caprolactone) (PLCL): Neurolac™, NeuroMend™) is resorbable and 
semipermeable. Non-biodegradable polyvinyl alcohol (PVA) polymer 
has been used as nerve grafts (SaluTunnel™, SaluBridge™), however 
clinical utilization of non-resorbable conduits has declined with the 
advent of absorbable natural and synthetic grafts. The main limitation of 
using those systems is their ability to bridge longer axonal gaps was 
highly questionable and non-optimal [138]. Nevertheless, the studies on 
the above conduits suggest that those scaffolds are effective in the case 
of only small gaps up to 3 cm which gives similar outcomes to nerve 
autograft. Moreover, traditional NGC remains insufficient for their 
effectiveness in nerve regeneration, and failures were reported due to 
persistent loss of nerve function and neuroma formation. Therefore the 
huge need for advanced multifunctional scaffolds for full PNI regener-
ation remains one of the principal goals of neural tissue engineering 
[139]. Advanced conduit should be biocompatible, biodegradable, 
flexible and additional have electrical conductivity. One of the prom-
ising electrical conductive materials are carbon-based nanomaterials, 
such as carbon nanotubes (CNT) and graphene (G) which have been 
widely used as neuronal electrodes. CNT and G have excellent electrical 

properties, which may have great potential in the development of 
scaffolds. Carbon-based materials are capable to increase the neural 
activity and these results were confirmed by experimental models [140]. 

Lately, Junggeon Park et al. fabricated conductive hydrogel-based 
NGCs by combining widely-used gelatin methacryloyl (GelMA) and 
conductive reduced graphene oxide (GO). Conductive r(GO/GelMA) 
hydrogel had excellent mechanical (flexibility and durability) and 
electrical properties. Biological in vitro studies performed on PC12 cell 
line after 5 DIV show relevant cell attachment via integrin binding and 
cell spreading on the construct. Cultured PC12 cells with differentiation 
medium result in significant neuritis outgrowth compared to GO-free 
GelMA. In vivo studies on adult male SD rats with a 10 mm peripheral 
injury successfully demonstrated facilitate neural myelination and 
regrowth after 4 and 8 weeks. Importantly, r(GO/GelMA) conduits 
supported functional regeneration of both nerve tissues and muscle 
tissues without long-term toxicity to other organs. A developed multi-
functional scaffold was as effective as traditional autografts in periph-
eral nerve regeneration positively influenced nerve regeneration in a 
relatively short period of time. The report strongly suggests the potential 
for the treatment of PNI using electrically conductive hybrid conduits 
[141]. It is well-known that scaffold morphology influences cell adhe-
sion, proliferation, differentiation and migration. Analogous to the 
natural extracellular matrix topography of the scaffold can regulate cell 
behavior and even stem cell fate. This phenomenon was used by fabri-
cating defined micropatterns of nerve tissue on the inner surface of the 
construct coupled with interconnected permeable pores. Conduit made 
by PLGA was coated by 3,4-dihydroxy-L-phenylalanine (DOPA) for the 
hydrophilicity of the inner surface (PP-NGC DOPA). Construct enhanced 
the neuritis elongation and migration of PC12 cells as well as neural 
differentiation of fetal mouse NSCs comparing to patterns without pat-
terns. In vivo studies on rats with a 12 mm peripheral injury show sig-
nificant acceleration of host neuronal tissue migration, improved 
neurofilament elongation, Schwann cell deposition at the distal region, 
contributing to enhanced neural regeneration. However sciatic function 
index and velocity of electrophysiological analysis were not significantly 
different comparing other groups. Nevertheless presented multifunc-
tional conduit not only promotes cell migration and alignment of nerve 
cells in vitro but also guiding Schwann cell deposition and accelerates 
nerve regeneration in vivo [142]. Multifunctional effect on axon and 
muscle tissue regeneration by using environmentally safe natural agents 
is especially desirable. An interesting approach was suggested by Yun 
Qian et al. about nerve repair after peripheral neuropathy caused by 
radiation treatment. They used a porous PCL scaffold loaded with active 
natural bioagents. An example of a polyphenolic compound is (− )-epi-
gallocatechin gallate (EGCG) which is abundant in green tea. EGCG is 
considered as one of the most natural effective free radical oxygen 
scavenger. Effect of EGCG loaded PCL with aligned pores (20 μm in 
diameter) was investigated in vitro on rat Schwann cells (ESCs) and rat 
skeletal muscle cells (RSMCs). Results indicated that hybrid scaffold 
reduced ROS levels and stimulated RSCs and RSMCs proliferation more 
discernably than the PCL scaffold without active bioagent. In a rat pe-
ripheral radiation injury model with 15 mm of 40-Gy radiation, studies 
on hybrid PCL-EGCG scaffold showed improvement of not only nerve 
but also muscle recovery with significantly increased nerve myelination 
as well as muscle fibre proliferation. Results proved reduced lipid per-
oxidation, macrophage infiltration, oxidative stress indicators, and 
inflammation. That combined strategy gives new insights into research 
on polyphenols for peripheral nerve regeneration [136]. 

2.2. Central nervous system 

Spinal cord injury (SCI) causes permanent sensory and motor 
dysfunction. Traumatic insults of the central nervous system (CNS) such 
as traumatic brain injury and spinal cord injury (SCI) often affect sen-
sory and motor function disorders [143]. This neuronal disturbance 
causes interruption of signaling pathways. Central nervous system 
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regeneration is more challenging than PNS, due to more complex 
anatomical and histological structure. In contrast to PNS, CNS axons do 
not spontaneously regenerate after injury in adult mammals. Moreover, 
the CNS environment acts inhibitory for axon outgrowth [144]. In place 
of CNS injury glia cells express inhibiting factors, that inhibitors of 
regeneration. That factors include specific CNS myelin proteins and 
molecules associated with the astroglial scar formation [144]. Axon 
growth-supportive effect can be achieved by a variety of molecules such 
as growth factors (e.g. glial-derived growth factor (GDNF)) and extra-
cellular matrix molecules (e.g. laminin) [145]. Lastly, Wang et al. 
fabricated a hybrid PCL-PEG based composite system, embedded with 
axonal growth factors. PCL provided physical curves for axonal 
outgrowth while growth factors (FGF2 and EGF) stimulated increase 
axon growth-supportive substrates (such as laminin). Additionally, for 
further chemoattract propriospinal axons GDNF was incorporated 
within the hydrogel. In vitro studies on PC12 cell line cultured with 
scaffolds exhibited no significant cytotoxicity after 3 DIV. However 
long-time toxicity studies were not performed. Neurite’s elonga-
tion/directional growth was not clearly presented enough. In vivo 
studies on rats with a 2 mm spinal cord injury show promoted the axon’s 
directional regeneration after 8 weeks of scaffolds implantation. Pro-
motion of the motor function recovery after SCI was observed and pre-
ceded by the production of laminin which played an important role in 
the axon growth-supportive substrates. This data indicates the utility of 
incorporating growth factors in bioscaffolds for increase regeneration of 
the spinal cord after SCI [137]. The composition of scaffold primary 
material is essential for mimicking nervous tissue followed by a proper 
regeneration process. Hyaluronic acid, known also as hyaluronan (HA) 
is one of the main, highly abundant natural compounds of the normal 
central nervous system. The presence of HA with bioactive agents 
(neurotrophic factors, growth factors) provides a pivotal role in axonal 
guidance formation of synapses. HA usage as bioscaffolds gives many 
advantages including biocompatibility, bioactivity, but also limitation 
due to its poor mechanical properties (Table 1). Nonetheless, HA is 
known for neuroprotective effect after SCI and reduction of the forma-
tion of the glial scar by inhibition the chemotaxis, migration and lym-
phocytes proliferation [146]. Interdisciplinary research publicated on 
ACS Nano presented new combined approach in biomaterial engineer-
ing for spinal cord regeneration. HA hydrogel with dotted MnO2 NPs as 
antioxidant bioactive agents was used as primary scaffold. Hydrogel was 
additionally modificated by the laminin-derived peptide called 
PPFLMLLKGSTR, that was chosen or possible promototion of stem cells 
adhesion and bridging of damaged nerve tissue. In vitro studies on MSCs 
derived from human placenta cultured on hydrogels after 3 DIV exhibit 
no obvious toxicity. Hybrid hydrogel with MnO2 NP significantly 
reduced the H2O2 content after MSC incubation for 1 and 2 h, indicating 
an efficient antioxidant function of hybrid scaffolds. In vivo investigation 
on a 4 mm rat transection SCI model with implanted multifunctional 
hydrogel-containing multipotent MSC cells exhibit scaffold integration 
and increased neural differentiation, followed by efficient spinal cord 
regeneration. Composition studies showed partial elimination of Mn 
from the site of the lesion during 4 weeks. Finally, a multifunctional 
construct containing MSC enhanced motor function restoration after on 
a long-span rat spinal cord transection, which remains one of the prin-
cipal goals of neural regenerative medicine [147]. Stem cells are widely 
used in regenerative medicine due to their differentiation capability and 
releasing their own growth factors [148]. But it should be carefully 
policed to enable ethical and safe usage. The main issue of introducing 
commercial multipotent stem cells to clinical use is possible immuno-
genicity, risk of teratoma, and tumorigenesis. Therefore for clinical 
application should be considered the only host-derived stem cells (iPSC, 
adult stem cells) which can significantly reduce the immune response. In 
general, undifferentiated stem cells (ESCs, iPS) by stemness potential 
have a relatively high capacity to form teratomas and tumors [149]. 
Therefore promising perspective for the treatment of neural disorders 
brings more specialized stem cell therapies. An example is neural 

progenitor cells (NPCs) which hold lower potential for tumorigenesis 
than e.g. ESCs. A combined approach of NPCs incorporation in person-
alized scaffold was recently investigated by J. Koffler et al. Complex CNS 
structure for spinal cord regeneration was printed using microscale 
continuous projection printing method (μCPP). Poly(ethylene glycol) 
diacrylate (PEGDA)–GelMa scaffold architecture was tailored precisely 
to the dimensions of 1.8 mm SCI rat lesion. NPCs suspended in the 
collection of fibrin matrix and growth factors (BDNF to support NPCs 
survival, bFGF to promote angiogenesis and calpain inhibitor for neu-
roprotection) were incorporated in scaffold channels. In vivo studies on 
rat SCI model at 1 month, post-implantation showed scaffold-NPCs the 
ability to support stem cell survival. Scaffolds loaded with NPCs induced 
host serotonergic axons regeneration, which modulates spinal motor 
systems. Injured host axons regenerated into multifunctional 3D bio-
mimetic scaffolds providing synapse onto implanted NPCs, which lead to 
restoring not only synaptic transmission but also improve functional 
outcomes [150]. After SCI in the damaged spinal cord occurs complex 
physiological and pathological changes. Conventional treatment of SCI 
focuses on preventing further injury by using potent anti-inflammatory 
drugs, such as corticosteroids. One of them is methylprednisolone (MP) 
which was used to improved neurological functions recovery after acute 
spinal cord injuries. However, since 2013 use of MP has decreased 
dramatically due to comparative recent studies that have shown the 
potential side effects, such as blood clots, respiratory, urinary tract, 
wound infections, and steroid-induced myopathy [151]. Despite that, 
MP was recently used to fabricate multifunctional scaffold. The hybrid 
scaffold was fabricated via electrospinning from both natural materials 
(Polysialic acid (PSA)) and synthetic polymer (PCL) with incorporated 
MP. The nanofiber scaffold was biodegradable, and actively release MP 
over a short period of time. In vitro cytotoxicity studies on human neu-
roblastoma cell line (SH-SY5Y) and primary astrocytes indicated no 
significant differences between different scaffolds composition for cell 
proliferation for 7 DIV. In vivo studies on rats with 2 mm SCI effectively 
showed that the transplantation of hybrid PCL/PSA/MP scaffold effec-
tively suppressed apoptosis and acute inflammation. Moreover, it 
attenuated glia scar formation. Construct supported axonal regenera-
tion, leading to improvement of the functional recovery after SCI. 
Actively releasing MP from a multifunctional scaffold could be incor-
porated in could be beneficial through lesion site-specific drug admin-
istration [152]. 

Multifunctional bioscaffolds have great potential in providing cell 
support, inhibiting the glial scar formation and damaged neurons 
guidance by tubular conduits, actively releasing bioagents and drugs 
and combining stem/progenitor cells therapy which stimulates the 
release of axon regeneration-promoting neurotrophic factors. It has been 
confirmed that multifunctional scaffolds are an effective strategy to 
improve therapeutic benefits in animal models, resulting in the func-
tional recovery of SCI rats in many cases. However, it is still a challenge 
to build an ideal scaffold for the full regeneration of damaged nervous 
tissue. 

3. Bioscaffolds for cardiovascular system regeneration 

Cardiac regeneration has been a subject of scientific reports for over 
100 years [153,154]. Heart regeneration can be defined as the restora-
tion of damaged heart tissues and their impaired function. Restoration of 
the injured human heart is limited in comparison with other vital or-
gans, such as muscles, skin, lung, or liver, and deteriorates with age 
[155]. There are many types of cardiovascular diseases (CVD) respon-
sible for heart tissue disorders, i.e. heart failure, myocardial infarction, 
dilated cardiomyopathy, or coronary artery disease [156]. According to 
the WHO data, CVD are the main cause of death worldwide and results 
in more than 50% of all deaths in Europe [157]. The WHO mortality 
statistics show also that most of these premature deaths could be avoi-
ded by changing a human lifestyle. Unfortunately, the change in 
health-related behavior is difficult, thus searching for new treatment 
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methods is extremely important. 
Numerous approaches for regeneration of injured heart tissues are 

currently investigated, ranging from surgical implantation of cardiac 
grafts over the biomolecules or cell injection, and advanced cell- 
modified scaffolds implementation. Heart surgeries entail various 
risks, such as infections, bleeding, stroke, or even death. Therefore, 
scientists are constantly looking for ways to boost current procedures 
and find new minimally invasive treatment methods based on the self- 
renewal of tissues [154]. Regeneration of heart tissues requires car-
diomyocytes proliferation, but the cardiomyogenesis is very slow (less 
than 1% of cardiomyocytes can renew per year) and decreases with age. 
Thus, cardiomyocyte’s loss exceeds its renewal, causing cardiac pa-
thologies [158]. 

Currently, one of the most extensively investigated strategies to 
stimulate cardiomyocytes generation is a therapy based on advanced 
bioscaffolds. There are two main strategies to employ bioscaffolds for 
cardiovascular system regeneration (Fig. 3). The first one is based on the 
direct implementation of bioscaffolds into impaired heart tissue. In the 
second strategy, bioscaffolds serve as cardiac cells (and/or bio-
molecules) delivery system for myocardial repair. 

In the last decade, the extracellular matrix (ECM) from myocardium 
tissues has been intensively examined to design new optimal ECM bio-
scaffold for cardiac tissue regeneration [159–161]. ECM plays a crucial 
role in the regulation of cell functions (such as survival, proliferation, 
differentiation, migration, and adhesion), both, in homeostasis, and a 
response to injury [162,163]. The composition of ECM is different 
among particular tissues. Generally, ECM consists of four types of pro-
teins, i.e. collagens, elastin, glycoproteins, and proteoglycans, as well as 
carbohydrates [161]. For instance, collagens (I and II) and elastin pro-
vide the strength and elasticity of tissues and organs. In turn, pro-
teoglycans and glycoproteins (mainly fibronectin and laminin) are 
responsible for various growth factors binding, and regulation of their 
activity [164]. The ECM-bioscaffold in tissue engineering is a promising 
one due to its basic functions: i) it provides tissue maintenance, ii) en-
sures the formation of boundaries between different tissues, iii) regu-
lates the activity of growth factors, and iv) regulates of signal 
transduction via cell interactions [165]. 

ECM bioscaffolds can be acellular or decellularized. Acellular ECMs 
bioscaffolds are usually surgically implemented into impaired heart 
region to facilitate the vasculogenesis and angiogenesis (endogenous 
cardiac regeneration) [165]. Additionally, these bioscaffolds can pre-
vent the infract-derived scar thickening via inhibition of cardiac fibro-
blast activation [166]. Svystonyuk and co-workers demonstrated the 

fibroblast-mediated post-injury remodeling of cardiac tissues, stimu-
lated by acellular ECM bioscaffold (neutralized SiS-ECM; porcine small 
intestinal submucosal extracellular matrix) [167]. The authors indicated 
that cardiac fibroblast combined with SiS-ECM-based bioscaffold may 
promote blood vessel formation and avoid scar expansion, due to 
upregulated gene expression and release of robust paracrine factors. 
There are some reasons to prefer decellularized ECM (dECM) bio-
scaffolds over the acellular ones for heart tissue engineering. The dECM 
bioscaffolds reveal the naturally bioactive composition and ability to 
partial recellularization in vivo. However, decellularization procedure is 
complicated and usually requires several physical, chemical, and enzy-
matic methods to remove all cellular components, while preserving the 
native ECM composition [168]. Several tissues or even whole organs can 
be decellularized to produce dECM bioscaffolds for regeneration of 
injured tissues, such as hearts, heart valves, lungs, kidneys, small in-
testine or urinary bladder [169–171]. Decellularization of tissues results 
in planar ECM sheets formation, which can be applied as patch graft 
materials [172] or processed into hydrogels [173]. Whole organ decel-
lularization is used for 3D ECM bioscaffolds preparation. These 3D 
biostructures after further repopulation with host-derived cells may help 
to design the human organs for transplantation. Decellularization can be 
also employed to harvest ECM components in vitro. Cell-derived ECM 
scaffolds are useful for regeneration of damaged tissues, but also to 
examine the stem cells differentiation and proliferation [174]. 

After successful decellularization, ECM scaffolds must be recellu-
larized by specific cell types to mimic the natural functions of tissue, 
such as drug response or electrical conduction. Moreover, cardiac dECM 
scaffolds should be modified with various pro-angiogenic factors and 
additional proteins to improve cell attachment/seeding and vasculo-
genesis (Fig. 4). For instance, pluripotent stem cells represent a source of 
cell that can differentiate into various cellular building blocks. There-
fore, they hold a promise for regenerative medicine. Wang and co- 
workers designed and prepared human cardiac patches based on 
dECM from rat heart, pluripotent stem cells-derived cardiac cells, and 
fibroblasts [175]. The authors showed that this cardiac scaffold can 
reduce the infarct area of the heart of rats with induced-myocardial 
infarction, as well as enhance its function, such as normal beating, 
electrophysiological activity, and pharmaceutical response. In turn, 
Chamberland et al. demonstrated that embryonic decellularized cardiac 
scaffold reseeded with specific progenitor cells can serve as efficient 
support for cardiac cell growth. These progenitor cells were able to graft 
into the scaffold structure and form beating cardiac tissue [176]. 

Godier-Furnémont designed a biological composite scaffold 

Fig. 3. Cardiac scaffolds classification based on materials and implementation techniques.  
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produced by seeding mesenchymal progenitor cells (MPCs) dispersed in 
fibrin hydrogel on decellularized ventricular human myocardium. The 
implanted scaffold improved the formation of the vascular network in 
the infarct area of the heart, leading to its functional recovery (rat 
ischemic myocardium model). The revascularization was related to 
MPCs migration and their ability to secrete SDF-1 (stromal cell-derived 
factors), which induced migration of further cells, and preservation of 
myocardial functions [177]. Some promising results were presented by a 
scientists team from Spain [178]. Perea-Gil et al. designed a 
cell-enriched myocardial graft based on a decellularized myocardial 
matrix modified with adipose tissue-derived progenitor cells 
(EMG-ATDPC) to regenerate the infarcted area of a swine heart. The in 
vivo studies showed that EMG-ATDPC- based bioscaffolds significantly 
enhanced cardiac function, promoted a new blood vessel formation, and 
inhibited progression of fibrosis in the impaired myocardium [178]. It 
should be pointed out that various types of cells can graft and differ-
entiate into functional cardiomyocytes in vitro and in vivo, including 
bone marrow-derived cells, skeletal myoblasts, or mesenchymal stem 
cells [179–182]. 

Most of the experimental studies suggest that the transfer of stem 
cells and progenitors may facilitate the regeneration of myocardium. 
The ECM offers an excellent source of various pluripotent cells, however, 
the decellularization and recellularization procedures still face many 
challenges. 

Generally, cardiac scaffolds can be classified into three main groups 
on the basis of the biomaterial type: i) natural materials, including ECM- 
based scaffolds, and biocompatible polymers, ii) synthetic materials and 
iii) hybrid materials (Fig. 3). 

Several natural polymers, such as collagen, chitosan, fibrin, hyal-
uronic acid, alginate, several self-assembling peptides, and polymer 
composites, can be applied as a structural template for heart tissue 
formation (Table 2). They are excellent candidates for tissue engineering 
due to their biocompatibility, biodegradability, renewability, and 
structure that can be easily modified with various stimuli and growth 
factors, or biomolecules to promote specific cell growth and 
proliferation. 

For instance, stem cells-collagen scaffolds modified with monoclonal 
specific antibody Sca-1, was applied as a patch to promote regeneration 
of surgical heart defects (C57/BL6 mouse, in vivo model). The authors 
highlighted the double efficiency of the collagen-based scaffold, i.e. it 
serves as a scaffold for stem cell proliferation and differentiation, and 
increases the enriching capacity for autologous stem cells [183]. In turn, 
Huang and co-workers reported the use of clot-binding pentapeptide 

(CRECA: cysteine-arginine-glutamic acid-lysine-alanine) to target the 
exogenous stem cells to the injured heart. Based on the fibrin-targeting 
theory, fibrin exhibits potential as a target in stem cell therapy for the 
myocardial infarction, due to its spatial-specific distribution in 
myocardial injury. The CRECA-functionalized stem cells injected to the 
left ventricle of the fibrin-rich rat heart (in vivo model of myocardial 
ischemia-reperfusion injury) revealed the ability to localize the 
damaged region and promoted the cardiomyocyte proliferation [201]. 
An interesting in vivo studies were published by Chi et al. [190]. Natural 
silk fibroin modified with chitosan and hyaluronan was examined as a 
cardiac patch to repair myocardial infraction hearts of rats. These three 
polymers were selected due to their biological activity and low inflam-
matory response. Silk fibrous proteins are known as a material for 
tendon regeneration. Chitosan is commonly applied for the regeneration 
of nerves and bones, and hyaluronic compounds can promote angio-
genesis and cartilage repair. The performed studies indicated that 
chitosan-hyaluronan-silk fibroin cardiac scaffold markedly increased 
the thickness of the left ventricle of heart walls and enhanced their 
fractional shortening. 

The application of natural polymers in regenerative medicine is 
limited to some extent, due to poor mechanical properties, low electrical 
conductivity, and rapid degradation in physiological conditions. The 
main challenge in myocardium tissue regeneration is to design advanced 
cardiac scaffolds, which is elastic and at the same time mechanically 
strong to endure the dynamic contractions of heart. Currently, synthetic 
polymers or hybrid materials consisting of synthetic and natural poly-
mers, polymers modified with micro- or nanoparticles, or surface- 
functionalized organic and inorganic nanostructures, may provide the 
enhancement of mechanical, electrical, and surface properties of bio-
scaffolds. However, their surface should be also functionalized with 
biomolecules or growth/differentiation factors to improve biocompati-
bility and provide a tissue-like environment for cell attachment, growth, 
proliferation, and differentiation (Table 2). 

High metabolic activity of cardiomyoblast cells was observed after 
the implementation of a porous scaffold made of poly(ester-ether ure-
thane urea) and poly-caprolactone blend (PEEUU-PCL scaffold) The 
PCL-additive provided excellent mechanical properties, similar to those 
of heart tissues. Based on in vitro and in vivo studies, it was proven that 
the designed scaffold was surrounded by connective tissue and new- 
formed blood vessels [191]. Chang and co-authors demonstrated the 
application of poly(D,L-lactide-co-glycolide) nanoparticles (PLGA) 
modified with insulin-like growth factor (IGF)-1 as a new scaffold for 
cardioprotection. The IGF-1 plays a crucial role in the regulation of 

Fig. 4. Preparation of bioscaffolds for cardiac tissue engineering.  
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myocardial functions, including cardiomyocyte survival, growth, and 
protection from ischemia. Additionally, IGF-1 can improve myocardial 
function after heart infarction. The authors indicated that PLGA-IGF-1 
NPs prolonged IGF-1 retention in heart tissue, and significantly inhibi-
ted the cardiomyocyte cells apoptosis (in vitro and in vivo studies) [192]. 
Another interesting biodegradable synthetic polymer for cardiac repair 
is polyurethane (PU). McDevitt et al. reported PU films as a scaffold for 
cardiomyocytes’ growth (in vitro studies). To improve the adhesion of 
cells to the PU layer, its surface was coated with proteins, i.e. laminin 
and gelatin. Cardiomyocytes cultured on the PU dishes formed a 
multilayered construct of tissues with mechanical properties similar to 
native heart matrix [193]. The mechanical and conductive properties of 
scaffolds can be also improved by functionalization with various nano-
particles [202]. For instance, the conduction of electrical signals 
through cardiac tissue was enhanced by the incorporation of electrically 
conductive carbon nanofibres into the chitosan matrix [196]. Chito-
san/carbon scaffolds supported the cultivation of the cardiac cells and 
improved their cardiogenic properties. In another study, a 
nano-patterned PEG scaffold was modified with graphene [203]. The 
authors indicated that the graphene-PEG scaffold improved the myofi-
brils and sarcomere structures and increased the electrical coupling of 
cardiac cells. Fleischeret and co-workers fabricated the conductive 
nanocomposite scaffold consists of gold nanoparticles and PCL fibers 
[199]. The addition of gold nanoparticles induced the formation of tis-
sue with structure resembled cardiac cell bundles in vivo. 

The structure of scaffolds allows delivering of nutrients, metabolites, 
nucleic acids, regulatory molecules, and cardioprotective drugs within 
the cells [204]. Delivery of active substances via nanocarriers is a 
promising tool to restore the injured heart function [205]. Somasun-
tharam et al. demonstrated DNAzyme gold NPs conjugates as a drug 
delivery system for the regulation of TNF-α expression in the rat model 
of myocardial infarction [206]. The authors showed that injection of 
DNAzyme gold scaffold in the myocardium resulted in the improvement 

Table 2 
Examples of natural polymers widely applied for cardiac regeneration (pre-
clinical stage).  

BIOSCAFFOLD COMPOSITION FUNCTION REF. 

NATURAL POLYMER MATERIALS 
Stem cell- 

capturing 
collagen scaffold 

Collagen scaffolds 
covalently 
conjugated with 
stem cell specific 
antibody Sca-1 

Collagen scaffold 
facilitated the 
regeneration of 
cardiomyocytes and 
improved the tissue 
regeneration 

[183] 

Chitosan-collagen 
(C/C) scaffold 

Stem cell-derived 
human 
cardiomyocyte 
seeded on the mico- 
structured chitosan- 
collagen scaffold 

C/C scaffolds allowed the 
attachment, spreading, 
and orientation of human 
cardiomyocytes 

[184] 

3-D collagen 
scaffold 

Porous collagen 
sponge (type I) 

Collagen scaffold 
promoted angiogenesis 
and arteriogenesis in the 
cryoinjured heart 

[185] 

Stem cells-CREKA- 
fibrin 

Bone marrow stem 
cells modified with 
CREKA peptides 

Stem cells-CREAKA- 
fibrin-targeting system 
revealed the ability to 
localize the stem cells to 
the fibrin-rich injured 
heart 

[186] 

Hyaluronic acid- 
based bioscaffold 

HA-based hydrogel 
and mesenchymal 
stem cells; mixed 
esters of HA with 
butyric acid and 
retinoic acid; 
HA/silk fibroin- 
based scaffold 

HA-based sponges, 
meshes and hydrogels 
improved the myocardial 
structure formation, 
promote cell survival, 
reduce the inflammatory 
reaction, and increase 
neovascularization 

[187] 

Peptide- 
functionalized 
alginate scaffold 

Embryonic stem cell- 
derived 
cardiomyocyte co- 
seeded with dermal 
fibroblast in 
macroporous 
alginate scaffolds, 
modified with RGD 
and HBP peptide 

RGD/HBP-modified 
alginate scaffolds 
promoted the formation 
of functional cardiac 
tissue from embryonic 
stem cell-derived 
cardiomyocytes co- 
cultured with dermal 
fibroblasts. 

[188] 

Self-assembling 
peptide scaffold 

VEGF combined 
with RADA16- 
heparin domain 

Combined RADA16- 
scaffold induced 
angiogenesis, 
recruitment, and 
differentiation of cardiac 
stem cells into 
cardiomyocytes 

[189] 

Chitosan- 
hyaluronan-silk 
fibroin cardiac 
scaffold 

Silk fibroin modified 
with chitosan, and 
hyaluronan (in situ 
formulated) 

Composite scaffold 
improved left ventricle 
functions and 
angiogenesis in 
myocardial infarction 
regions 

[190] 

SYNTHETIC POLYMER MATERIALS 
PEEUU-PCL 

scaffold 
Poly(ester-ether 
urethane urea) - 
poly-caprolactone 
blend 

PEEUU-PCL scaffold 
enhanced functional 
activities of the 
cardiomyoblast cells 

[191] 

PLGA-IGF-1 
scaffold 

Poly(D,L-lactide-co- 
glycolide) 
nanoparticles 
modified with 
insulin-like growth 
factor 

PLGA-IGF-1 NPs 
inhibited the 
cardiomyocyte cells 
apoptosis and reduced the 
infarct sizes 

[192] 

Cardiomyoctes- 
modified PU 
scaffold 

Polyurethane film 
modified with lamin 
and gelatin 

PU film supported the 
formation of 
cardiomyocyte 
multilayered construct of 
heart tissues 

[193] 

Stem cell-derived 
cardiomyocytes- 
modified PU 
scaffold 

Polyurethane film 
modified with lamin, 
gelatin and collagen 
(type IV) 

PU films supported the 
formation of fully 
contractile 

[194]  

Table 2 (continued ) 

BIOSCAFFOLD COMPOSITION FUNCTION REF. 

cardiomyocyte cells 
layers 

Protein- 
functionalized 
PLA:PGS scaffold 

Poly(lactic acid)- 
poly(glycerol 
sebacate) fibres 
modified by lamin or 
Matrigel 

PLA:PGS scaffold induced 
neovascularization after 
implantation into mouse 
heart 

[195] 

HYBRID MATERIALS 
Chitosan/Carbon 

scaffold 
Carbon nanofibres 
dispersed into 
chitosan matrix 

Chitosan/carbon scaffold 
improved the mechanical 
properties of cardiac 
tissue constructs and 
enhanced transmission of 
electrical signals between 
cells 

[196] 

PLL-GO scaffold Graphene oxide 
sheet coated with 
poly-L-lysine 

PLL-GO sheets improved 
electrophysiological 
function and mechanical 
integrity of tissue 

[197] 

rGO-GelMA 
scaffold 

Reduced graphene 
Oxide- gelatin 
methacryloyl hybrid 
hydrogels 

Cardiac cells cultured on 
rGO-GelMA scaffolds 
exhibited excellent 
biological activities, i.e. 
cell viability, 
proliferation, and 
maturation 

[198] 

Au NPs- PCL 
scaffolds 

Fibres modified 
embedded with gold 
nanoparticles 

Scaffold induced the 
formation of tissue with 
structure resembled 
cardiac cell bundles 

[199] 

AdSCs-statin-PLGA 
scaffold 

Adipose-derived 
stem cell and statin- 
modified poly(lactic- 
co-glycolic) acid 
nanoparticles 

Facilitated endogenous 
functional cardiac 
regeneration 

[200]  

J. Litowczenko et al.                                                                                                                                                                                                                           



Bioactive Materials 6 (2021) 2412–2438

2421

of acute cardiac function due to significant TNF- α gene silencing. 
Yokoyama et al. examined adipose-derived stem cells (AdCs) and 
statin-loaded PLGA nanoparticles as multifunctional bioscaffolds to 
stimulate the infarcted myocardium regeneration. The AdSCs were 
seeded to the scaffold structure to reduce the risk of inflammation, and 
statin was attached to recruit the circulating progenitor cells for 
angiogenesis [200]. The authors showed that AdCs-statin-PLGA scaf-
folds can facilitate cardiac regeneration, and may serve also as an effi-
cient statin (or other active substance) delivery carrier. Diaz-Herraez 
et al. formulated PLGA microparticles loaded with neuregulin-1 (NRG) 
and further modified with ADCs. The presence of NRG (growth factor) 
promoted cardiomyoctyes proliferation and reduced infarct size (rat and 
pig models). The authors reported that ADCs-PLGA-NRG delivery system 
allowed to control the release of NRG in the infarcted region, accom-
panied by stimulation of vessel, arterioles and capillaries formation 
[207]. 

Synthetic materials in comparision with natural biomaterials exhibit 
improved mechanical, elastic, and conductive properties, better dura-
bility, stability, and controlled degradation rate [208]. However, there 
are many concerns related to their toxicity and potential hazardous 
health effects. Regardless of the type of material used to heart tissue 
regeneration, bioscaffold must be biocompatible, biodegradable, and 
possess a naturally cardiac tissue-like environment to facilitate cell 
attachment, growth, proliferation, and differentiation into mature. The 
degradation rate must be sufficient to support cell integration with 
native tissues. Additionally, bioscaffold should act as a reservoir of nu-
trients, and regulatory molecules and provide their slow release. 

The outcomes of these in vitro, in vivo, and ex-vivo studies mark the 
future direction for the application of both, natural and synthetic ma-
terials for cardiac tissue regeneration. However, despite the positve 
premises, the use of bioscaffolds for cardiomyocytes regeneration is still 
lagging at the preclinical stage. 

4. Regeneration of muscle system 

There are three main types of muscle tissue: skeletal (or striated) 
muscle, smooth (or non-striated) muscle, and cardiac muscle. This 
chapter is focused on the first two types of muscles, while the last one is 
discussed in the chapter Bioscaffolds for cardiovascular system regen-
eration. The main difference between skeletal and smooth muscles is the 
presence or absence, respectively, of organized, regularly repeated ar-
rangements of myofibrillar contractile proteins – myofilaments. The 
skeletal muscles are used in locomotion and to maintain posture, while 
smooth ones are part of the walls of organs and structures such as the 
uterus, esophagus, stomach, blood vessels. Because, depending on the 
type of muscle tissues, their structure as well as their functions differ, the 
way of regeneration is different. It should be noted that repairing an 
injured muscle is a multi-stage process that uses immune, muscle, per-
ivascular and nerve cells. Without this repair, it leads to structural and 
functional deficits in the body, which in turn leads to a reduction in the 
quality of life not only due to a deficiency in the functioning of the 
muscles, but often also for aesthetic reasons. 

4.1. Hydrogels 

Hydrogels are water-swollen high-dimensional polymer chain net-
works which specific properties which depending on the origin source 
exhibit high biocompatibility, that makes them an ideal class of mate-
rials in tissue engineering. Hydrogels may display reversible structural 
or just volume deformations, induced by various stimuli, such as tem-
perature, pH, wave length of light, ionic strength, and specific molecules 
[209–212]. Moreover, they can withstand significant stress, which 
proves their flexibility, and combined with sensitivity to stimuli makes 
them ideal materials to compose artificial muscles [209,213–217]. The 
above features are important, however, not sufficient to fully replace 
natural muscle tissue. Actuation characteristics are required in special 

tissues reconstruction such as skeletal or to provide mechanical support 
to injured cardiac tissues [218–225]. Therefore over last years, structure 
modulation has become a crucial step for developing hydrogel-based 
artificial muscles. Various graft materials have been tested to promote 
skeletal muscle regeneration. Natural hydrogels are a popular choice for 
tissue engineering due to their low immunogenicity, porosity, good 
permeability, biodegradability and structural biocompatibility towards 
tissues, which minimizes the inflammatory response just at the outset. 
This type of hydrogel can not only act as a gentle scaffold for cell 
alignment in connective tissue, but also plays a dynamic and flexible role 
that determines cell behaviour and tissue function as scaffold for the 
growth of many types of tissue. Collagen is a fibrous protein found most 
commonly in the extracellular matrix and can be formulated as a scaf-
fold for the growth of many types of tissues [226] (Table 1). It supports 
proliferation, differentiation and myotube formation of immortalized 
and primary murine myoblasts [227–229]. Cheema et al. have indicated 
that contraction forces depend on mioblast morphology. At low 
contraction forces myoblasts maintained a rounded morphology, and 
when contraction forces increases, myoblasts started to align and form 
myotubes under uniaxial tension [230]. Disadvantage of the collagen 
scaffolds is lack mechanical strength and structural stability upon hy-
dration, which limit their applications in particular tissues. Problem can 
be solved throughout physical or chemical methods leading to inter-
molecular cross-linking of collagen scaffolds, but blending with other 
materials, such as synthetic polymers is also used. The effectiveness of 
myoblasts and mesenchymal stem cells in combination with fibrin gel in 
repairing volumetric muscle loss was also assessed by Matthias et al. 
[231] The obtained results have confirmed muscle mass restoration as 
well as fibrosis reduction with active contribution of transplanted cells 
in the muscle and vascular regeneration. In further studies Neal et al. 
have proposed method according which using fibrin hydrogel skeletal 
muscle tissue with a high volumetric density and perfect cell alignment 
along the axis can be created [232]. In these studies artificial muscle was 
accomplished by integration of gel fiber based fibrin containing mouse 
C2C12 immortalized myoblast cell line [232]. Fibrin scaffold with a 
populated satellite cell niche, enable to vascular integration and func-
tional in vivo maturation was also used to construct a highly functional 
biometric muscle tissue [233], and functional neuromuscular junctions 
[234]. It was also confirmed the applicability of fibrin hydrogel in 
seeding of human umbilical cord mesenchymal stem cells (HUCMSCs) 
[235], and in production an engineered skeletal muscle with structural 
resemblance to in vivo tissue [236]. The microfabrication of new skeletal 
muscle tissue using smooth muscle cells incorporated in fibrin hydrogel 
was also tested to fabricate ureteral replacements [237]. Although high 
potential fibrin gel has been demonstrated, the most promising seems to 
be fibrin scaffolds with microthread architecture, in which scaffolds 
favour the ingrowth of nascent myofibers into the wound site, and the 
functional regeneration of skeletal muscle [238]. Alginate hydrogels 
have also been tested as a material supporting the regeneration of 
muscle tissues [239]. This type of material is mostly chemically modi-
fied to provide tighter control over properties such as stiffness and de-
gradability. Its structure also allows for various types of use, e.g. in the 
form of a hydrated gel, microspheres or as highly porous, freeze-dried 
cryogenic gels [240,241]. Borselli et al. reported that an injected algi-
nate gel can provide long-term delivery of incorporated myogenic and 
angiogenic growth factors, and when injected into the hind limbs of 
ischemic mice, it promote functional muscle regeneration by stimulating 
myogenesis, angiogenesis, and re-innervation [242]. As cryogels, algi-
nate scaffolds promoted muscle regeneration by secreting bioactive 
factors that have a profound effect on the functioning of C2C12 
mouse-derived myogenic progenitor cell line [243]. The RGD-alginate 
porous hydrogel provided a sustained release of incorporated IGF-1 
and VEGF165 and adherence MSCs to the biomaterial walls (Fig. 5). 
Indeed the outward migration of muscle cells has been shown to be of 
vital importance on subsequent muscle regeneration. For example, Hill 
et al. have indicated that transplanting the cells with the highly porous 
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alginate scaffold that simultaneously delivers of growth factors (hepa-
tocyte growth factor (HGF) and fibroblast growth factor 2(FGF2)) led to 
increase in muscle mass and the overall extent of regeneration [244]. 
Passipieri and Chris have also shown that the alginate three-dimensional 
scaffolds can be used to deliver growth factors into a variety of volu-
metric muscle loss injuries [245]. But in newest work Quigley et al. have 
tested alginate fibers with enclosed muscle precursor cells for delivery of 
dystrophin-expressing cells to dystrophic muscle, and the constructed 
material reported more robust regenerative results than did myoblasts 
attached to synthetic fibers [246,247]. 

Hyaluronic acid is a popular scaffold material for the regeneration of 
different tissues because it is biocompatible, promotes skeletal myoblast 
proliferation, and differentiation, regulates tissue hydration and facili-
tates the diffusion of nutrients [248] (Table 1). However, fabrication of 
hyaluronic acid-based scaffolds has been achieved through different 
chemical modifications such as a Michael addition reaction with thiol as 
nucleophile [249,250], photopolymerization of methacrylated or thio-
glycated hyaluronic acid [251,252]. The first one is dedicated to fibres 
scaffolds formation, the second one to preparation of hydrogel beads. 
For example the hyaluronic acid based photopolymerizable hydrogel 
was used for transplantation satellite cells and muscle progenitor cells, 
which enable generation of new myofibers, and recovery of muscle 
contraction strength [253]. It was also shown that modifying hyaluronic 
acid with both methacrylate and 3,4-dihydroxyphenylalanine groups 
obtained materials, which can be use in minimally invasive procedures 
to foster maxillofacial tissue repair [254]. Tanaka et al. have found 
combination scaffolds of salmon fibrin and hyaluronic acid form 
compliant hydrogels matching the physical properties of most tissues 
[255]. Other natural polymers such as chitosan and gelatin have also a 
good capacity of supporting cell attachment, however, their main 

drawback is immunogenicity [256]. The potential was found for 
gelatin-based hydrogels stabilized through reaction with lysine diiso-
cyanate ethyl ester [257] or using gelatin as a component of other nat-
ural hydrogels e.g. cross-linked oxidized alginate-gelatin hydrogel 
[258]. 

The natural hydrogels due to their resemblance to native tissue are 
the preferred materials in tissue engineering especially for controlling 
cell growth, proliferation and differentiation, however as biological 
materials they have mostly and nonreplicable structural composition, 
limiting their in vivo application. Synthetic hydrogels mainly composed 
of poly(ethylene oxide) (polyethylene glycol), poly(vinyl alcohol), poly 
(lactic acid) or polypeptides, unlike their natural counterparts, can be 
closely adapted to certain requirements of a cell therapy application, in 
particular the mechanics that most closely resemble the native cellular 
microenvironment. Using synthetic polymers enables important mate-
rial properties such as viscoelasticity, modulus, permeability and de-
gradability. Another advantage over natural materials is that synthetic 
hydrogels have a relatively low risk of transmitting pathogens. Poly-
ethylene glycol is one of the most widely used macromers in tissue en-
gineering because its hydrophilicity, cytocompatibility, low non-specific 
protein adsorption, and is nondegradable under mammalian enzymes. 
Mechanical properties of PEG-based hydrogels can also be easy 
controlled, but active hydroxyl groups can be easily chemically func-
tionalized through photopolymerization or Michael addition. Example 
of using functionalized PEG as hydrogel Han et al. presented [259,260]. 
In the studies a synthetic bioactive hydrogel based on a branched poly 
(ethylene glycol) with ends maleimide functionalized groups was used 
for incorporation muscle satellite cells to dystrophic skeletal muscles 
also with comorbid trauma. This material may also be suitable for 
treating craniofacial and limb muscle trauma. In newest papers the 

Fig. 5. An engineered synthetic niche provides MSCs with a structural and chemical environment that is optimal for paracrine secretion. (A) Strategy of using porous 
alginate scaffold in muscle regeneration. (B) Representative SEM image showing the macroporous structure of the alginate scaffold. (C) Representative fluorescent 
image of rat bone marrow derived MSCs 24 h after seeding on the scaffold. Reproduced with permission from Ref. [243]. Copyright 2016 Elsevier. 
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co-delivery of muscle satellite cells and Wingless-type MMTV Integrated 
7a protein using the maleimide functionalized PEG hydrogel was stud-
ied. This work has confirmed that the hydrogel-encapsulated Wnt7a 
significantly increases hypertrophy of the muscle fiber, endogenous 
muscle satellite cells expansion, and exogenous cells migration during 
the implantation process [166]. The effect of the different Wnt7a-loaded 
PEG-4MA hydrogel on C2C12 myotubes hypertrophy is illustrated in 
Fig. 6. A major drawback of the polyethylene glycol-maleimide hydrogel 
is that the fast gelation speed can result in crosslinking heterogeneities. 
The decreasing of reaction kinetic and hence uniformity of particle 
dispersion can be achieved by the coupling a glutamate near the cysteine 
of the peptide crosslinker, as well as appropriate pH and ionic strength 
[261,262]. A wide range of protein-based hydrogels have also been 
developed as scaffold. They are very attractive due to their inherent cell 
adhesively as conferred by the presence of integrin-recoginizing peptide 
sequences [263]. The polysaccharides hydrogels are not bioactive and 
lack integrin binding domains, since such modification of poly-
saccharide molecules requires the attachment of chemical molecules 
that can facilitate cell adhesion [264,265]. 

An alternative approach to pre-vascularization of engineered muscle 
involves plating endothelial cells, fibroblasts, and myoblasts onto the 
poly(lactic-co-glycolic acid) scaffold [266]. This studies have confirmed 
that flap consisting both endothelial cells, fibroblasts and myoblasts 
underwent the most effective integration and caused the most advanced 
regeneration of host tissue. The used material enabled successful muscle 
flap engineering. Furthermore, the increased mechanical strength of the 
transplanted tissue, which was caused by the myocytes became vascu-
larized and innervated and finally, mature as myofibers. Worth attention 
are also hybrids natural and synthetic polymers. An example is photo-
polymerizable hydrogel based upon polyethyleneglycol and fibrinogen, 
which is enable to generate a complete and functional artificial muscle 
[267]. This type of hydrogel supports myogenic differentiation, cell 
survival after transplantation and angiogenic infiltration in vitro and in 
vivo [268]. The amine-reactive polyethylene glycol modified fibrinogen 
hydrogel with a decellularized extracellular matrix scaffold showed a 
high expression of ITGA5, ITGB1, and FN and a synergistic up-regulation 
of ang1 and tie-2 transcripts [269]. Scaffolds composed of collagen and 
polylactic acid is also a promising choice as it combines the good me-
chanical and processing properties of a synthetic component with the 
bioactivity of a natural polymer [270]. Conductive polymers such as 

polypyrrole, polyaniline, and polythiophene have formed hydrogels not 
only showing good biocompatibility, but also possessed suitable elec-
troconductivity [271]. Sasaki et al. have developed a series of molecular 
permeable electronic devices to help to regenerate the muscle tissues. 
The hybrid of poly(3,4-ethylenedioxythiophene) and polyurethane have 
been biocompatible with muscle, as well as neural cells. Moreover, this 
displays excellent stability and high conductivity over physiological 
strain levels, making them highly suitable for low-invasive electrical 
stimulation [272]. Poly(acrylic acid) were modified with polyaniline, 
which provided not only a microfluidic pattern, but also a 
three-dimensional environment of nanofiber tissue formation [273]. In 
another work as the main body polyaniline grafted quaternary chitosan 
and cross-linked with oxidized dextran was fabricated to obtain a 
conductive hydrogel [274]. C2C12 cells have also exhibited a higher 
proliferation on conductive hydrogel than, for example on the chitosan 
hydrogel, indicating their potential application in skeletal muscle tissue 
engineering [275]. The micro-patterned electrically conductive reduced 
graphene oxide-incorporated/polyacrylamide hydrogel was found as an 
ideal multifunctional and high performance biomaterial platform to 
construct muscle tissue scaffolds [276]. 

4.2. Electrospun 

The primary purpose of tissue engineering is to mimic the native 
tissue. This has been the reason for production of electrospun nanofibers 
via electrospinning. This method is, on the one hand, relatively simple 
and versatile, allowing the processing of solutions, suspensions or melts 
into nano-/micro-scale diameters’ continuous fibers, on the other hand, 
it is the only available method for the mass fabrication of long contin-
uous nanofibers [277–281]. Such solution allows to encouragement the 
regeneration of skeletal muscles by creating, similar to natural, orien-
tation scaffold, which is a pattern to alignment to encourage this orga-
nization in myoblasts by fuse and differentiate them to form 
multinucleated myofibers. In addition, this method can also be used to 
regenerate smooth muscles. The main advantage of the electrospinning 
technique is the possibility to control the properties of materials ob-
tained by this method [277,282–285]. For example, by changing the 
polymer concentration or operating conditions such as flow rate or 
distance from the needle to collector plate, it is possible to adjust the size 
of the fibres from nanometric to micrometric range. Moreover, by 

Fig. 6. Hydrogel-released Wnt7a retains its bioactivity in vitro. (a) Schematic diagram of the experiment. Differentiating C2C12 myotubes treated with (b) PBS, (c) Wnt7a 
(gel-free), (d) Wnt7a in 4% PEG-4MAL hydrogel, (e) Wnt7a in 6% PEG-4MAL hydrogel, and (f) Wnt7a in 8% PEG-4MAL hydrogel. Day 5. Scale bar 100 lm. Reproduced 
with permission from Ref. [259]. Copyright 2019 Elsevier. 
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changing the collector plate, it is possible to control the alignment of 
nanofibers from those randomly oriented when using a stationary or 
very slow-rotating collector plate, or in the case of a fast-rotating, 
aligned fibers. The flexibility of this method means that new improved 
methods of nanofibers creation are still being sought in both literature 
and commercial solutions. Recent proposals indicate that this technique 
still needs to be studied in order to reproduce natural solutions in the 
most realistic way. These researches are aimed at finding new materials 
with improved performance and biocompatibility with the body as well 
as improving muscle recovery methods based on novel techniques to 
engineer 3D muscle grafts for therapeutic treatments for volumetric 
muscle loss (VML). The investigations related to this technology are 
carried out in two ways: by looking for new materials or additives to the 
scaffolds production in order to improve its performance, including 
biocompatibility, or by enriching the scaffolds with cells and active 
compounds to enhance the regeneration effect. In addition, depending 
on the type of scaffolds produced, various modifications of the electro-
spinning technique are proposed in the literature, including cell elec-
trospinning (CE) or divergence electrospinning. The research directions, 
with particular reference to new trends, will be discussed below and 
summed up in Table 3. The first works related to the formation of 
scaffolds for muscle regeneration were based on poly(ε-caprolactone 
(PCL) [286,287], mainly due to its biocompatibility and low immuno-
genicity in body (Table 1). Current trends indicate the possibility of 
using synthetic copolymers, natural polymers or hybrid systems. In work 
[288] electrospun scaffolds from poly(butylene 1,4-cyclohexandicar-
boxylate-co-triethylene cyclohexanedicarboxylate) (P(BCE-co-TECE)) 
was proposed. The obtained results, based on in vitro and in vivo studies, 
showed that the presence of ether linkages had impact on mechanical 
properties, degradation rate, surface wettability, as well as density of 
cell anchoring points. Moreover this scaffolds enhance cell adhesion, 
proliferation, and differentiation by promoting cell orientation along 
fiber direction, as well as by enhance cell infiltration and oxygen and 
nutrient diffusion. Narayanan et al. [289] showed the possibility to use 
poly(lactide-co-glycolide) (PLGA) for scaffolds production. Authors 
concluded that control of mechanical properties and degradation ki-
netics could be obtain by changing the ratio of lactide to glycolide. In 
vivo study using an mdx mouse model, thus popular model for studying 
Duchenne muscular dystrophy, showed the potential of applying opti-
mized fiber scaffolds to enhance myogenic potential of transplanted 
cells. Whereas among the examples of natural polymers, the work of 
Manchineella and co-workers can be indicated [290]. Combination of 
silk fibroin and melanin allowed to obtain antioxidant and electroactive 
biomaterial scaffolds which improved the myogenic differentiation of 
myoblasts into myotubes in vitro. An interesting solution was presented 
by Laurencin and co-workers [291]. For the reason that fibrin, on the 
one hand, is an optimal scaffold for tissue engineering applications, 
because it mimics extracellular matrices, and on the other hand has poor 
mechanical properties, authors proposed to obtain a bilayer 
fibrin-polyurethane scaffold by combining the electrospinning method 
(in order to obtain a nanofiber structure of fibrinogen) and the spray, 
phase-inversion technique to prepare the synthetic layer. The final 
polymerization of fibrin by spraying thrombin solution on the electro-
spun nanofibers allowed to obtain nanostructured layer of fibrin fixed on 
microporous poly(ether-urethane) support layer. According to the au-
thors’ suggestion the obtained material can be used i.e. in soft tissue 
regeneration processes including muscle, skin. Moreover polyesterur-
ethane could be applied as potential scaffolds for skeletal muscle tissue 
engineering [292]. On the other hand, based on polyurethane it is 
possible to formation a hierarchical electrospun muscle inspired struc-
ture [293]. According to the results of citied work, it could be concluded 
that by applying the electrospinning method, materials development 
that mimic the alignment and geometry of nano- and micrometric sys-
tems, such as myofibers, myofibers/fascicles and surrounding mem-
branes, as well as the entire muscle was possible. The obtained materials 
indicated slightly higher yields to the passive muscles with a similar 

Table 3 
Recent trends in electrospinning technique in muscle tissue engineering 
strategies.  

SCAFFOLD/ 
METHODS 

TEST OBJECT MAJOR OUTCOME REF. 

Polycaprolactone 
(PCL) with outer 
polylactic acid 
(PLA) frame/ 
Divergence 
Electrospinning 

Nanofiber 
properties (spatial 
distribution of 
fiber density) 

Easy to control the fiber 
density by changing the 
experimental conditions 
(collector heights, 
inclination angle); Lack of 
in vitro and in vivo 
experiments. 

[297] 

PCL and nanoclays 
(phyllosilicate) 
to enhance the 
homogeneity of 
fiber 
distribution/ 
Divergence 
Electrospinning 

Nanofiber 
properties (fiber 
diameter, density, 
alignment) 

Addition of nanoclays 
improves the overall 
homogeneity of the 3D 
nanofiber scaffolds 
microstructure; Lack of in 
vitro and in vivo 
experiments. 

[298] 

PCL and 
decellularized 
bovine muscle 
ECM/ 
Electrospinning 

Male C57/BL6 
adult (14–16 
weeks old) mice 

Increased activity of anti- 
inflammatory M2 
macrophages (arginase+); 
Increased myofiber 
(MHC+) regeneration; No 
effects in muscle weights 
and force production. 

[299] 

PCL and gelatin 
functionalized 
with the addition 
of heparin/ 
Electrospinning 
with 
heparinization of 
PCL/gelatin 
scaffolds 

Male (weight 
280–300 g) 
Sprague–Dawley 
rats 

Addition of gelatin 
improves the 
hydrophilicity, 
cytocompatibility, and 
biodegradation, while 
heparin improves 
hemocompatibility; 
Heparin is covalently 
attached to the free amines 
of gelatin using the 1-ethyl- 
3-(3-dimethylamino-pro-
pyl) carbodiimide 
hydrochloride and N- 
hydroxysulfosuccinimide; 
Obtained small-diameter 
vascular grafts are 
beneficial to the 
development of small- 
diameter artificial blood 
vessels. 

[300] 

PCL modified with 
graphene oxide 
(GO) with 
skeletal muscle 
cells (C2C12)/ 
Cell 
Electrospinning 
and oxygen 
plasma 
modification of 
scaffold 

The cellular 
interaction, 
morphology, and 
orientation 
changes 

Oxygen plasma allows to 
change hydrophilic surface 
of electrospun fibers in 
order to improve the 
interaction with GO; GO- 
modified PCL nanofibers 
scaffolds impact cell 
elongation. 

[301] 

PCL and collagen 
struts with 
endothelial cells 
(HUVECs) and 
C2C12 cells/Cell 
Electrospinning 
and 3D printing 

The cellular 
activities 
(myoblast 
proliferation, 
alignment, and 
differentiation/ 
maturation) 

Higher degree of the 
myosin heavy chain (MHC) 
with striated patterns and 
enhanced myogenic- 
specific gene expressions 
(MyoD, troponin T, MHC 
and myogenin) is obtained 
for scaffold with myoblasts 
and HUVECs in comparison 
to scaffold without 
HUVECs; HUVEC- 
electrospinning with 
modification in fiber 
direction is simple and 
effective method to provide 
biophysical/biochemical 
cues for facilitating 
myoblast alignment and 
differentiation. 

[302] 

(continued on next page) 
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biomimetic non-linear behaviour which could closely resemble the 
complex morphology of skeletal muscle tissue. It can be assumed that 
the introduction of active components into the structure will allow to 
realize a highly biomimetic artificial muscle. Thus, in addition to the 
base of polymer scaffolds the incorporation of bioactive factors and cells 
is promising topic of investigation for muscle regeneration engineering. 
Guo et al. demonstrated the possibility of using the electrospinning 
process, based on aqueous solution-electrospinning method to encap-
sulate C2C12s and electrospin them into fibrin/polyethylene oxide 
(PEO) microfiber bundles, to evenly distribute immortalized mouse 
myoblast cell C2C12s inside the fibrin scaffolds, as well as the lack of 
inhibition of cell growth after the process [294]. Despite low density of 
myotube, this method allowed for the elongation and differentiation of 
cells inside the fibres as well as the expression of mature muscle markers 
e.g. myosin heavy chain (MHC). Moreover, in order to improve the cells 
growth on the scaffold, the use of gold coatings was proposed [295,296]. 
In this case, the properties of gold nanoparticles, such as their biocom-
patibility, good conductivity and possibility to functionalization with 
various organic and biological compounds are implemented. Zhang 
et al. [296] proposed application of 3D myotube guidance on hierar-
chically organized anisotropic and conductive fibers for regeneration of 
skeletal muscle based on aligned electrospun nanofibers and gold 
nanolayer coating. This solution allow to enhance myoblast alignment 
and the formation of myotubes thanks to gold nanolayer coating as a 
consequence of improving electrical signal transfer between cells. As 
suggested by the authors, on the one hand, hierarchically organized 
scaffolds and, on the other hand, their conductive properties allowed to 
create a platform that not only supports the desired growth but also 

myoblast differentiation, which translates into further assembly of the 
implantable fascia to repair skeletal muscle tissue. Enhancement of the 
muscle regeneration effect with the addition of active compounds was 
also confirmed by Liu et al. [287] for polycaprolactone (PCL) fibrous 
membranes coated by mussel-inspired poly norepinephrine (pNE), 
which originally functions in the brain and body as a hormone and 
neurotransmitter. Investigations showed a better effect of cell adhesion 
and proliferation both in vitro and in vivo. The tests on the rat skeletal 
muscle cell line L6 and in vivo experiments using six week 
Sprague-Dawley female rats showed the possibility of correct integra-
tion of the regenerated muscle layer with fiber membranes and sur-
rounding tissues at the site of the impairment. 

An important issue in tissue engineering is the application of an 
appropriate scaffolds production method. Here, modifications of the 
electrospinning technique come to the aid. Although 3D scaffolds is 
already widely used for tissue reconstruction [307] and electrospinning 
procedures are often used to generate scaffolds with alignment cues that 
lead to uniaxial alignment of seeded cells, there is still a problem due to 
the specificity of this solution. In this procedure, the cells mainly adhere 
to the outside of the scaffold, which results in uneven distribution on it. 
Therefore, it was proposed to include cells in the biomaterial during 
electrospinning. The answer to this is cell electrospinning (CE) that 
based on the basic process of electrospinning encapsulated viable cells in 
the micro/nanofibers [282,294,308]. This issue is difficult because 
traditional electrospinning subjects biomaterial to high voltages and 
currents that are harmful to cell survival [309]. The advantages of using 
electrospinning in formation of scaffolds for tissue engineering appli-
cations have contributed to the development of many methods based on 
this technique. In addition to mentioned above the cell electrospinning 
method, divergence electrospinning is proposed in the literature [297, 
298,310]. This technique allows to produce a scaffolding from nanofiber 
with a thickness of centimeter in a short period of time, showing the 
advantages of scalability in comparison with traditional electrospinning 
and high resolution in comparison with 3D printing techniques. By 
changing the height and angle of inclination of the two cone collector, 
the density of the produced fibers as well as microstructure gradient of a 
3D nanofiber matrix can be changed and controlled. This technique 
promote the development of biomimetic artificial tissues with patterned 
nanofiber structures, thus not only muscle but also ligament, cartilage, 
tendon. 

The development of such electrospun nanofiber materials has led to 
some of them being already in the commercialisation phase. For 
example, P&P Biotech Company offers patches as class III medical de-
vices based on the development of the He Group at Fudan University 
Affiliated Zhongshan Hospital, China [283]. Research has shown the 
possibility of using electrospun nanofibers made of a mixture of poly 
(L-lactide-co-caprolactone) and porcine fibrinogen as a patch for 
abdominal wall regeneration. In vivo experiments were carried out on 
dog showing that after 36 weeks the skeletal muscle regeneration of the 
abdominal cavity was effectively induced, while being restored within 
two weeks after implantation. 

It should be noted that electrospun nanofibers are proposed also as 
effective drug delivery system [284,291,311–313]. For example Bagheri 
et al. [314] proposed PVA/chitosan-aniline oligomer, which indicated 
suitable biocompatibility, cellular activity and cell adhesion. Addition of 
dexamethasone to the electrospinning solution allow to obtain new 
material which exhibit anti-inflammatory and immunosuppressive 
properties. Electrospun poly-L-lactide (PLA) scaffold with the cell 
death-inducing drug Diclofenac (DCF) encapsulated has been success-
fully tested on human dermal fibroblasts (HDFs) [315]. Controlled drug 
delivery allow to changes in cell morphology and glycolytic activity. The 
possibility to control the release of sirolimus, also known as rapamycin, 
drug which prevent organ transplant rejection has been proved using 
electrospun polyurethanes [316]. In the review focused on electrospun 
cellulose acetate [317], the possibility of its use as a drug carrier was 
indicated, including: anti-cancer, anti-inflammatory, antioxidant, 

Table 3 (continued ) 

SCAFFOLD/ 
METHODS 

TEST OBJECT MAJOR OUTCOME REF. 

Poly(L-lactideco- 
caprolactone) 
and poly(L-lactic 
acid) (PLCL/ 
PLLA)/Coaxial 
Electrospinning 

Vascular smooth 
muscle cells 
(VSMCs) 

Flow rates of the PLLA-core 
and PLCL-shell solutions 
determines modulus/ 
stiffness of the aligned 
fibers, without negative 
effects to the fiber 
topography and surface 
chemistry; Stiffness effect 
of electrospun fibers on 
phenotypic modulation in 
vascular smooth muscle 
cells (SMCs) is observed. 

[303] 

Poly(lactide-co- 
glycolide) 
(PLGA) with 
induced 
pluripotent stem 
cells (iPSCs)/ 
Electrospinning 

SMC 
differentiation by 
evaluation of the 
five SMC related 
genes and two 
SMC related 
proteins 

Enhanced smooth muscle 
cell (SMC) differentiation 
potential of the human 
iPSCs; iPSCs-seeded PLGA 
shows potential potential 
for use in bladder tissue 
engineering. 

[304] 

Decellularized 
extracellular 
matrix (dECM) 
scaffolds without 
the polymer 
carrier/ 
Electrospinning 

New Zealand 
White rabbits 

dECM contains many 
biochemical cues that help 
in cell adhesion, 
proliferation, and 
differentiation; There is 
possibility to produce 
dECM scaffolds with 
tunable physicochemical 
properties while retaining 
proregenerative matrix 
components. 

[305] 

Decellularized 
ECM- 
methacrylate 
with poly 
(lactide-co- 
glycolide) 
(PLGA) carrier/ 
Electrospinning 
and 3D printing 

Human muscle 
progenitor cells 
(hMPCs) 

Promotion of the cellular 
orientation and myotube 
formation of human muscle 
progenitor cells by dECM- 
MA/PLGA composite 
scaffold. 

[306]  
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antibacterial agents, as well as vitamins and amino acids. Such solutions 
can be applied in transdermal or local delivery systems, wound dressings 
and in biomedical applications. At the same time, the authors pointed 
out in this case that CA nanofibers cannot be completely biodegradable 
in the human body due to the lack of cellulase enzyme and are degraded 
by microorganisms, which in case of potential application should be 
improved. Khodadadi and co-workers [318] in their work summarized 
the possibility of using electrospun nanofiber in drug delivery system 
(with chemotherapeutic agents such as 5-fluorouracil, cisplatin, curcu-
min, dichloroacetate (DCA), docetaxel, doxorubicin (DOX), paclitaxel 
(PTX), and platinum complexes) for localized cancer chemotherapy. It 
was confirmed for DOX in the case of pH-sensitive polyvinyl alcohol/-
polycaprolactone (PVA/PCL) core-shell nanofibers obtained by coaxial 
electrospinning technique [319]. In works [320–322] authors have 
shown the possibility of applying these materials for ocular drug de-
livery, while for oral drug delivery system in works [323–326]. More-
over, electrospun nanofibers characteristics such as a large surface area 
with controlled conformation and relatively simple modification possi-
bilities, as well as complex pore structure and high biocompatibility 
make these materials a promising example for the construction of bio-
sensors at the nanoscale [277,327–331] as well as wound healing 
patches [332–335], i.e. multilayer alginate–polycaprolactone electro-
spun membranes [333]. The discussed works indicate the wide use of 
electrospun nanofibers in medicine, which at the same time indicates 
their high potential for muscle regeneration combined with specialized 
treatment methods. Going forward, based on the already existing 
knowledge in muscle tissue engineering and the cited work related to 
other medical applications of the electrospinning technique, significant 
work needs to be done to assess the potential use of these materials and 
its possible improvements and limitations in muscle regeneration. 

5. Perspectives in scaffold fabrication 

5.1. Additive manufacturing in scaffold fabrication 

An ideal scaffold for tissue engineering not only needs to be made 
from a biocompatible material but also supports cell adhesion, growth 
and migration by specific, designed micro/nanoarchitecture. Advanced, 
functional scaffolds should simultaneously provide structural support 
for cells and mimic the native tissue structure. The wide range of 
commonly used in laboratories scaffold fabrication techniques such as 
phase separation, solvent casting, soft lithography, molding, fiber 
bonding, gas foaming, emulsification, freeze-drying, membrane lami-
nation and particulate leaching enable to form 3D scaffolds, but has a 
major limitations [336], which includes difficulties in controlling com-
plex micro/nanoarchitecture, pore size, porosity and its network. 3D 
printing technologies overcome these issues, and enable the production 
of repetitive, customized scaffolds with controlled parameters and also 
provide highly complex shapes. There are more than 40 different types 
of 3D-printing techniques currently. The most promising techniques of 
3D-printing scaffolds for tissue engineering are presented below. 

5.1.1. Near-field electrospinning (NFES) 
NFES is an alternative approach to the traditional electrospinning 

method, where the electrode-to-collector distance is decreased to con-
trol the electrospun fibers deposition [337]. The shorter spinning dis-
tance causes that the fibers can be deposited in straight-line stage. 
Moreover, the short distance results in reduction of the applied elec-
trostatic voltage from hundreds to tens of volts, making this process 
cheaper and more safe. Several materials can be applied to formulate 
nanofibers by using NFES, for instance PEO, PVP, PCL, PVDF, PS, PMMA 
or bioactive glass [338,339]. Depending on the physical and chemical 
properties, they can be used as materials for fabrication of 3D bio-
mimetic scaffolds in the field of tissue engineering. Kolan et al. designed 
PCL/bioactive glass scaffold with microstructure similar to the cancel-
lous bone [339]. The authors improved that NFES scaffolds improved 

high human adipose-derived mesenchymal stem cell proliferation and 
distribution, compared to 3D printed scaffolds. Ren and co-authors 
fabricated PCL/collagen fibers in order to control the growth and dif-
ferentiation of human peridontal ligament stem cells (hPDLSCs) [340]. 
By using NFES technique, they produced ordered scaffold with unique 
topography (controlled intervals and directions of fibres). Ren et al. 
improved that differentiation of hPDLSCs into cementum-forming cells, 
collagen-forming cells, or bone-forming cells can be controlled by 
topographic guidance of prepared scaffolds [340]. The NFES provides a 
powerful, simple and low-cost technique for the ultrafine fibres depo-
sition. However, it still has some limitations: i) the small droplet size 
restricts the large-scale preparation of fibers, ii) the shortened distance 
between electrode and collector limits the thinning and stretching of 
fibres, iii) ambient (environmental) factors, such as humidity and tem-
perature, as well as viscosity, conductivity of polymer solution/mixture 
may also affect the morphology of nanofibres. 

5.1.2. 3D printing technologies 
Additive manufacturing, commonly known as 3D printing, estab-

lished several approaches, but each of them enables to form of highly 
complex 3D scaffolds. Conventional 3D printing involves producing of 
objects by a layer-by-layer approach. Most of additive manufactured 
scaffolds require two-step fabrication of acellular scaffolds which are 
further seeded with cells and cell-laden constructs developed to mimic 
their native analogs. 

5.1.3. Stereolithography (SLA) 
SLA is the first rapid prototyping process developed in the late 1980s. 

In SLA, the ultraviolet (UV) light is use to induce curing of a liquid layer 
of polymer resin via photopolymerization. UV light is irradiated on the 
photosensitive resin surface in precise patterns. Excitation of photo-
initiator molecules by UV light induces releasing reactive species such as 
free radicals upon causing polymerization of the resin which leads to the 
formation of a solid material. The first fabrication step involves the 
adhesion of the first layer of a photopolymerized polymer directly to a 
build platform. This important step provides support for 3D structures as 
they are fabricated. When the first layer is completely polymerized, the 
build platform is moved to defined step height for polymerization of the 
subsequent layer. The moving process then repeats, with each new layer 
cured onto the previous layer until the three-dimensional structure is 
completed. Once the 3D structure is polymerized, the scaffold should be 
rinsed in the solvent to remove the uncured resin [341]. The main 
advantage of using stereolithography is the control over the internal and 
external geometry of the scaffold structure, which involves pore size, 
porosity, patterns [342] as well as the ability to the remove of unpoly-
merized resin, and extremely high feature resolution (~1.2 μm). The 
disadvantage of SLA is the poor range of biocompatible resins that 
simultaneously have proper processing properties. Another drawback is 
the necessity of usage of photoinitiators and radicals which can be 
cytotoxic toward cells, possible entrapment of unreacted monomer and 
other residual photoinitiators, poor mechanical properties of photo-
polymerized resin and relatively long processing time. Finally in SLA 
challenging is the completely removal of support structures and the 
inability to fabricate compositional gradients along horizontal planes 
[343]. Besides that, scientists all the time publish improvements in the 
field of scaffolds 3D printing and new materials combination. Recently 
H. Kumar et al. presented digital light processing (DLP)-based SLA 
(DLP-SLA) bioprinting of biocompatible scaffolds made by gelatin 
methacryloyl (GelMA). GelMA synthesized in reverse osmosis (RO) 
filtered water (RO-GelMAs) results in rapid fabrication of high resolu-
tion and mechanically stable 3D constructs. Obtained bioinks exhibited 
excellent biocompatibility and cell-organization over three weeks in 
culture with 3T3 fibroblasts and U118 astrocytes [344]. 

5.1.4. Selective laser sintering (SLS) 
SLS is another 3D printing method, in which scanning laser fuses 
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particles with a diameter around 50 μm, in order to build a designed part 
layer by layer from a fine powder. The sintering (recrystallization) of 
fine powders takes place once illuminated by a high-power beam of a 
laser. The process is generally performed under inert atmosphere to limit 
contamination or undesired oxidation of powders [345]. It should be 
pointed out that SLS method, due to significant material restriction, is 
mainly applied to fabricate 3D scaffolds for bone tissue engineering 
[346]. For instance, the incorporation of biomolecules is limited due to 
the use of a high-power beam laser to sinter powdered material. Another 
major limitations of SLS are: i) poor surface finishing of designed parts, 
ii) presence of defects in the fabricated parts as a results of large 
shrinkage rates, and iii) need to apply post-processing treatments to 
improve the quality of the surface. Despite all these disadvantages, SLS is 
commonly applied to fabricate bioactive bone scaffolds [347–350]. Tan 
et al. demonstrated successful incorporation of hydroxyapatite into 
polyetheretherketone (PEEK) polymer matrix to enhance the bioactivity 
of designed scaffold. The authors highlighted that SLS provided excel-
lent control over the microstructures of scaffold by adjusting SLS process 
paramterers, such as temperature, and laser power [349]. Sun et al. 
reported fabrication of PLLA porous scaffold containing encapsulated 
dexamethasone (Dex) as a scaffold for bone regeneration. Based on the 
ex vivo studies, the authors showed that implantation of prepared scaf-
fold in rat cranium defects enhanced the formation of new bone and 
blood vessel, due to the controllable release of Dex molecule [351]. 

5.1.5. Bioprinting 
Generally, two strategies are in use: fabrication of acellular func-

tional scaffolds which are further seeded with cells and cell-laden con-
structs developed to mimic their native analogs. Different technologies 
that utilizes living cells to form 3D cell-laden scaffolds are known as 
bioprinting. The principle of this process consists the deposition of cells 
loaded in bioink by nozzle-based techniques or laser-assisted techniques: 

5.1.6. Nozzle-based 3D printing 
Nozzle-based techniques include material extrusion or Inkjet print-

ing, as described below. Inkjet bioprinters are frequently use for tissue 
engineering applications. Thermal inkjet bioprinting uses a prepolymer 
solution containing cells (the bioinks), loaded in an ink cartridge. Then 
printer head with cartridge eject droplets of ink through air bubbles 
created by the heat in the printing head. The advantages of those 
techniques are fast fabrication, their widespread usage caused by the 
affordability of the device. Extrusion Bioprinting is a type of inkjet 
bioprinting, which aims to dispense of bioink dispense by pneumatic (air 
pressure) or mechanical (piston, screw) systems. The most popular is the 
pneumatic system, where bioink is extruded from the nozzle or needle 
by continuously applying air pressure instead of single droplets. This 
approach provides structural integrity to the 3D structure [352]. The 
disadvantages of nozzle-based 3D printing is clogging of the nozzle 
because of high viscosity of the ink, cell aggregation and drying of the 
injected biomaterial in the nozzle. Moreover, the high mechanical 
stresses during extrusion may be harmful to cells and could lead to a 
decrease in cell survival [353]. Prototype on an innovative injectin-
g/extruding 3D cellular printer based on remote magnetic control for 
dual effect of 3D bioprinted scaffolds with controlled cells seeding via 
magnetic guiding was recently reported. The new approach of designed 
magnetic scaffolds with magnetic gradients, were able to orient and trap 
the magnetized cells on the chosen side of the scaffold fibres. In vitro 
separation of two cell populations MSCs and human umbilical vein 
endothelial cells (HUVECs), on the opposite sides of the magnetic scaf-
fold fibres were described for the first time which potentially can be used 
at in vivo environment [354]. 

5.1.7. Laser-assisted bioprinting (LAB) 
LAB is another possibility of advanced 3D printing of living cells. 

This approach involves the usage of the pulsed laser source, a donor 
layer, and a receiving substrate. The cells suspended in bioink are 

transferred to the donor layer, by focusing a laser on a membrane that is 
coated with cell-containing bioink. The pulsed laser source is focused on 
the laser absorbing-layer that generates a vapor bubble. This bubble 
forms pressure to deform the bioink and forms droplets. By this method, 
cells are transferred directly from the side of the membrane facing the 
printing surface to the donor layer (receiver) following by their cross-
linking. The main advantage of LAB is an absence of an orifice, which 
lead to the decreased shear stress on cells, also the resolution of printing 
is better than in other bioprinting methods [355]. 

5.2. Current advantages of multifunctional scaffolds 

The literature review shows a recent trend in scaffolds development 
especially using ECM-based or naturally derived biomaterials with 
incorporated active agents (e.g. growth factors) and delivering thera-
peutic agents (sections 2, 3, 4). Despite scaffolds clear biological po-
tential, it is challenging to compare those biomaterials due to lack of 
detail physico-chemical characterization (such as mechanical strength, 
viscosity, degradation rate, swelling rate, Young’s modulus etc.). Table 4 
describes selected publications which connect advanced scaffold pro-
cessing, accurate physico-chemical characterization and excellent bio-
logical properties. The obtained materials were found to be non- 
cytotoxic to skeletal, vascular or neural cells. Most of the developed 
biosystems mimic living tissues by improvement of architectural orga-
nization of artificial tissues [356–360]. The electrospinning and additive 
manufacturing were frequently used to develop tissue substitutes [356, 
357,359,361,362]. All the developed scaffolds for soft tissue engineer-
ing, was successfully examinated in vitro, ex vivo or in vivo systems [357, 
363]. Tissue-specific stem cells and progenitor cells, were frequently 
used as they are able to regenerate the tissue from which they are iso-
lated. Presented scaffolds induced accelerate cells growth and differ-
entiation [359,360,363]. 

In the future advanced biomaterials studies about specific physico- 
chemical characterization should be done prior to better understand-
ing of scaffolds performance. It seems that obvious physico-chemical 
parameters are overlooked by authors, which makes it difficult to 
learn about all the scaffolds properties and compare these systems. Lack 
of biophysical characterization hinder the full scaffolds potential. 

5.3. Future perspectives of the scaffolds 

Depending on tissue type there are requirements for different ar-
chitecture. The architecture including pores and topography of bioma-
terial regulates cellular behavior and determines stem cell fate. 
Biophysical properties of the natural nano/microenvironment where 
cells exist, such as topography and stiffness provide extracellular sup-
port for stem cells. This microenvironment denoted as “niche” modulate 
cell adhesion, growth, self-renewal, migration and differentiation of 
stem cells. In recent decades much more attention to developing 
biocompatible materials has been paid for extracellular matrix (ECM) 
mimicking. ECM mimicking not only rely on mimicking its composition 
(primary material, growth factors) but also stiffness and geometry. In 
vitro ECM-mimicking can be performed by a selection of pores and 
topographical cues (patterns) for controlling cell shape [366]. Such 
materials should have well-defined compositions, structures and prop-
erties. It was confirmed that both macro and nanotopography influence 
cell behavior by similarities to native ECM. The interaction of nano-
topographical features with cells integrin receptors alters cells adhesion, 
alignment and even differentiation [367]. The most promising ap-
proaches for scaffold fabrication connect controlled manufacturing of 
complex nano/microarchitecture and mechanical tuned scaffolds made 
up of bioactive material. This allows for scaffold integration with cells 
followed by transformation into the intended artificial organ or tissue. 

5.3.1. Neural engineering 
The main challenge in neural tissue engineering is the fabrication of 
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scaffolds with controlled topography, biochemical cues capable of 
directing damaged nerves and restoring the function of neuronal cells 
toward the recovery from neurological disorders and injuries [368]. 
Numbers of studies showed that the most effective topographical cues 
for neural cell adhesion, growth, migration, differentiation and regen-
eration are grooves, aligned fibers, or channels [369]. One of the most 
intensively studied are scaffolds for increased peripheral nerve regen-
eration after injuries. A nerve conduit is a tubular structure made of 
synthetic or biological materials designed to bridge the gap of a 
sectioned nerve. The purpose of the conduit is to protect the nerve from 

scar formation, to prevent fluid from leaking from the nerve stump and 
to guide the axon nerve cone into the distal nerve stump [138]. 
Patterned topographies influence attachment, alignment and orienta-
tion of stem cells by changes in the shape of the nucleus, in cytoskeleton 
rearrangement as well as by the expression level of genes. It has been 
reported that micro or nanopatterns can effectively induce neuronal 
differentiation of various stem cell types. Recently platform modified 
with homogeneous nanohole patterns of three different sizes (500 nm, 
700 nm, and 900 nm) by laser interference lithography (LIL), exhibit 
effective guiding neurogenesis of mouse neural stem cells (mNSCs). Such 

Table 4 
Comparison of recently fabricated scaffolds properties in nervous, cardiovascular and muscle tissue engineering.  

SCAFFOLDS FOR TISSUE ENGINEERING 

NERVOUS SYSTEM REGENERATION 
SCAFFOLD Photocured gelatin fibres packed with NGF, 

laminin and fibronectin [364] 
3D multichannel silk electrospun 
bifunctionalized with NGF and CNTF [362] 

Two-component collagen nerve guides (Neuromaix) 
[358] 

FABRICATION 
TECHNIQUE 

photopolymerization electrospinning commercial scaffold 

DEGRADATION TIME after 12 months without inflammantory 
reactions 

from 72 h to 168 h after 12 months without non-toxic degradation products 

MECHANICAL 
STRENGHT 

– 8.47 ± 1.33 MPa (elastic modulus) – 

BIOLOGICAL MODEL in vivo (Lewis rats) in vitro (neural cells) in vivo (Lewis rats) 
REGENERATION Functional recovery of nerve tissue after 6 

months 
it supports the growth, development and 
migration of cultured neural cells 

Functional recovery of nerve tissue after 12 weeks 

FUNCTIONAL 
RECOVERY 

10000 of myelinated axons/mm2 (after 24 
weeks)* 

– 200 of regenerated axons/mm2 (after 12 weeks)- 

ADDITIONAL 
COMMENTS 

diameters of the regenerated tissue prostheses 
(0.84 ± 0.2 mm) were close to the normal 
sciatic nerve (1.0 ± 0.2 mm) 

elastic modulus of scafflod was close to rat 
sciatic nerves (13.79 ± 5.48 MPa) 

it exhibits reduced myelin sheath thickness, it allows to 
axonal regeneration across large nerve gaps, the 
regenerating axons were able to functionally reinnervate 
the muscles 

CARDIOVASCULAR SYSTEM REGENERATION 
SCAFFOLD PU-based scaffold [363] ECM-based cardiac patch [359] PLGA/gelatin scaffolds [365] 
FABRICATION 

TECHNIQUE 
melt-extrusion additive manufacturing 
technique 

decellularization, solubilization, and 
electrospinning 

soft lithography 

DEGRADATION melt-extrusion AM technique helps to avoid 
PU thermal degradation 

degradation process starts below 100 ◦C after 15 days weight loss of about 50% 

BIOCOMPATIBILITY cardiac progenitor cell viability > 95% 7-fold increase in human bone marrow 
mesenchymal stem cell number after 4 
weeks 

long-term viability of hMSCs up to 15 days 

BIOLOGICAL MODEL ex vivo (CD117-positive CPCs isolated from left 
ventricle from pathological hearts with 
ischemic cardiomyopathy) 

ex vivo (left ventricular tissues, isolated 
from healthy commercial slaughter-weight 
pigs) 

in vitro (Human mesenchymal stem cells) 

PHYSICAL 
PROPERTIES 

Tg = 45.4 ◦C 
Tm1 = 76.0 ◦C, Tm2 = 155.0 ◦C 

Tpeak = 300.12 ◦C 
Tendset = 448.02 ◦C 

– 

MECHANICAL 
PROPERTIES 

10.2 ± 2.2 MPa (Young’s modulus) 203 ± 13.4 kPa (Young’s modulus) 0.78–1.20 MPa (Young’s modulus) 

ADDITIONAL 
COMMENTS 

it supports the adhesion and spreads of human 
cardiac progenitor cells (CPCs), whereas does 
not stimulate CPC proliferation 

it support proliferation and growth of 
human bone marrow mesenchymal stem 
cells (hMSCs) 

It promotes adhesion, ordered disposition and early 
myocardial commitment of hMSCs 

SKELETAL MUSCLE REGENERATION 
SCAFFOLD PCL/collagen nanofiber meshes [357] chitosan/PVA scaffold [361] cells into 3D constructs composed of PEG-Fibrinogen 

hydrogel fibers [356] 
FABRICATION 

TECHNIQE 
electrospinning electrospinning 3D bioprinting 

MECHANICAL 
STRENGHT 

3.06–4.88 MPa (tensile strenght) 6.63 MPa (tensile strenght) 48 kPa (tensile stiffness) 

BIOLOGICAL MODEL ex vivo (human skeletal muscle tissues taken 
from male patients, age 50–65) 

in vivo (New Zealand white rabbit) in vivo (Immunodeficient mouse) 

BIOCOMPATIBILITY the muscle cells readily adhered and 
proliferated to myotubes after 7 days 

there was not any significant 
immunological symptoms, i.e. fever, pain, 
or fainting until 2 weeks 

After 21 days myotubes underwented sarcomerogenesis, 
guarantees their proper contractile function 

VISCOSITY – 14563.85 cP (RT) 
CS/PVA solution (5% w/v) 

– 

DEGRADATION 
TIME 

– after 16 h after 5 days 

SWELLING 
PROPERTIES 

high fluid uptake ability (325 ± 7%) swelling ration more than 200% after 16 h – 

OTHER FEATURES it facilitates cell adhesion, proliferation and 
differentiation 

it promotes cell attachment, acts as 
mechanical support for muscle, helps to 
store nutrients for cell attachment and 
growth 

3D scaffold leds to a substantial improvement of 
architectural organization of artificial muscle tissue 

ADDITIONAL 
COMMENTS 

PCL/collagen scaffold is able to guide and 
orient skeletal muscle cells into organized 
structures 

it exhibits higher stress strength than native 
required strength for skeletal muscle tissue 
(0.2 MPa) 

Young’s modulus of scaffold is well above the optimal 
range of substrate modulus for myotube differentiation 
(8–11 kPa)  
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nanoplatforms could be useful for controlling various differentiation 
lineages of stem cells [370]. Additionally highly desired in neural TE are 
conductive scaffolds which have beneficial properties due to connecting 
the bioelectric flow in the body. External electrical stimulation of such 
constructs was confirmed to modulate cell migration, differentiation, 
maturation, synaptogenesis and finally enhance damage nerves regen-
eration [371]. Electrical stimulation was directly applied to electrospun 
nanofibrous scaffolds made by conductive block copolymer of PPy and 
PCL (PPy-b-PCL) to enhance the nerve regeneration process. Biode-
gradable and conductive 3D porous scaffold with superior was con-
structed by means of a novel electrohydrodynamic jet 3D printing 
technique. Authors obtained superior control over the pore size, 
porosity, precisely controlled fiber diameter and fiber alignment. 
PCL/PPy scaffolds supported the differentiation and maturation of 
hESC-NCSCs to peripheral neurons, exhibiting potential clinical value as 
cell-laden or cell-free NGCs for peripheral neuronal regeneration [372]. 
Novel 3D nanofibrous hydrogels have been recently demonstrated. 
Scaffolds were made by fibrin/polyurethane/multiwall carbon nano-
tube (fibrin/PU/MWCNT), for improve advanced scaffold electrical 
conductivity and mechanical properties. Results conformed an appro-
priate microenvironment for enhancing cell adhesion, proliferation and 
high viability [373]. Nanotopographical cues in combination with 
chemical cues are highly desired in 3D scaffold fabrication. Researchers 
have proposed various strategies to enhance or accelerate nerve 
outgrowth, however multidimensional regeneration of both neurons and 
glial cells is the real challenge. Regeneration of oligodendrocytes can 
reestablish myelin sheaths and restore their functions. Simultaneously 
preventing the formation of glial scars, and promoted axonal, myelin 
regeneration is highly desirable. Many scientific reports show the wide 
diversity of active biomaterials with topographical cues, but despite 
many studies in this field, the successful combination of material with 
high mechanical and biological properties is yet to be achieved. 

5.3.2. Cardiovascular engineering 
The challenge in cardiovascular engineering remains to create 

functional tissue constructs that can reestablish the structure and func-
tion of injured tissue by mimicking and regulating the microenviron-
ments, and physiochemical stimuli, to control the maturation of cells 
toward cardiovascular cell phenotypes [220]. Additionally, the critical 
aspect of cardiovascular tissue engineering is the lack of vascularization 
in constructs. Cardiac scaffolds should have a highly porous structure 
with efficiently interconnected pores to allow the vascularization, the 
flow of nutrients and the elimination of waste products. It was observed 
that pore parameters inside scaffold can enhance vascularization [374]. 
The last results show that poly(vinyl) alcohol (PVA) scaffold with a 
designed interconnected pore size ranging from 10 μm to 370 μm en-
ables spreading through scaffold and proliferation of human-induced 
pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) [375]. 
Another promising scaffold architecture refers to force direct cell 
orientation. By controlling the scaffold shape linearly, the cells are 
directionally influenced by patterning and tensile force which influence 
growth and maturation. Y. Tsukamoto et al. reported on a method for 
the fabrication of 3D cardiac tissue with heart-specific structure, 
exhibiting cell orientation and vascular network. Hydroxybutyl chitosan 
(HBC) scaffold were fabricated by combining orientation-controlled 3D 
tissue by using an LbL technique, cell accumulation method and 3D 
printing technology. Obtained by co-cultured hiPSC-CM, NHCF and 
human cardiac microvascular endothelial cells (HMVEC) native-like 3D 
cardiac tissue exhibit orientation and vascular network within the 
constructs [376]. Recently bio-inspired scaffolds made of the crosslinked 
gelatin and cellulose nanofibrils (CNF) were raported. Combining 
gelatin with biomimicry properties with structural reinforcement by the 
CNF and suitable pore size and interconnection allowed fibroblasts 
effective colonization and proliferation. The designed 3D nano-
composite polymers, exhibited chemical stability, good mechanical 
properties and biocompatibility [377]. An ideal cardiovascular scaffold 

should have proper architecture of interconnected pores, also should 
enable for effective cell migration and vascularization. Another prom-
ising strategy is the usage of electrostimulation, which was showed to 
enhance efficiency of cardiac differentiation and promote car-
diomyocyte maturation [378]. Recently M. Valls-Margarit from E. 
Martínez and A. Raya’s groups reported on implementation of a plat-
form for the production of engineered cardiac macrotissues from human 
pluripotent stem cells (PSCs) named ‘‘CardioSlice.’’ 3D porous scaffolds 
made by collagen and elastin-based sponges were used for culturing 
PSC-derived cardiomyocytes and human fibroblasts. Cell-laden scaffold 
was used under parallelized perfusion bioreactor together with electrical 
stimulation. Continuous electrical stimulation for 2 weeks promotes 
cardiomyocytes alignment, synchronization, and the development of 
cardiac tissue-like properties. Continuous electrical stimulation of car-
diac macrotissues resulted in minor (but measurable) improvements in 
cardiomyocytes maturation, however significantly enhanced matura-
tion at the tissue level. Developed in vitro system is highly promising in 
many applications including disease modeling, drug screening and 
toxicology, and regenerating damaged heart tissue [379]. 

Encapsulating, medical applications of 3D printing include the 
fabrication of anatomical models for pre-surgical studies, fabrication of 
acellular scaffolds, medical devices and finally direct 3D printing of cell- 
laden scaffolds and organs. Due to interactions between scaffolds and 
cells are a key to cell adhesion, viability, proliferation and differentia-
tion, detail characteristics of biomaterials such as viscosity, mechanical 
strength, charge, degradation, roughness, swelling, reactivity, hydro-
philicity/hydrophobicity need to be considered. 

5.3.3. Muscle engineering 
Skeletal muscle has ability to regenerate after injuries but endoge-

nous self-regeneration is impaired due to a complex and highly regu-
lated process included inflammatory or destruction phase, phase of the 
repair and remodeling phase. Crucial role in regeneration of inured 
muscle have basal lamina which acts as regenerative template, and 
secrete chemotactic factors which recruit stem cells to differentiate. 
When at the site of the injury, the basal lamina is damaged, occurs the 
harmful impact on the myogenesis process [380]. Additionally the 
natural regeneration process could be hindered due to volumetric 
muscle loss (VML) injuries. VML are caused by critical loss of skeletal 
muscle tissues which lead to severe functional impairment. Therefore 
scaffolds with incorporated biochemical cues (chemotactic factors and 
growth factors) which stimulate stem cells to differentiate and mature 
are highly promising for TE of muscle tissue. In addition, parallel 
alignment of regenerating muscle cells is essential for optimal tissue 
integration. Bioscaffolds which mimick the architecture and physico-
chemical cues was recently developed by N. Narayanan et al. Implant-
able glycosaminoglycan-based hydrogel made of thiolated hyaluronic 
acid (HA) and thiolated chondroitin sulfate (CS) scaffold cross-linked by 
poly(ethylene glycol) diacrylate offer appropriate biophysical cues for 
muscle engineering. Developed biomimetic scaffold support 3D encap-
sulation of murine myoblasts as well as progressive cell proliferation and 
facilitated myoblast to differentiate into myotube in vitro. Finally HA-CS 
scaffolds enhanced angiogenesis, innervation at the defect and promote 
skeletal muscle regeneration of VML injuries in mice [381]. Another 
important role in muscle regeneration process fulfill the satellite cells 
which are a skeletal muscle-specific stem cells. Satellite cells in normal 
conditions are quiescent between the basal lamina of the mature muscle 
fiber and sarcolemma. After muscle tissue damage, satellite cells play a 
major role in formation of new muscle cells and therefore reassembling 
of the contractile apparatus [382]. Cell-laden functional scaffolds were 
recently presented by Y. Zhang et al. Hierarchically organized, aniso-
tropic and conductive scaffold with microscale melt electrowriting 
(MEW) grooves were manually rolled with myoblast cells to mimic the 
fascicle assembly. Parallel aligned oriented nanofibrous mesh was con-
structed to guide myoblast cell alignment, elongation and differentiation 
into myotubes. Results demonstrated that aligned nanofibers were 
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crucial for myoblast alignment, while microgrooves were more effective 
in increasing both the elongation and maturation of myotubes, which 
brings new insight to development of novel scaffolds for muscle bio-
mimicing [296]. Consequently, bioactive or cell-laden advance scaffolds 
are promising tools for improving skeletal muscle cells proliferation. 

6. Conclusions 

The type of material used for the production of scaffolds, as well as 
the sources of cells and bioactive molecules, supports the regeneration 
process. Despite the encouraging premises, this area still requires further 
studies. Effective cell-based therapy is possible by using bio-synthetic- 
and hybrid-material scaffolds. The most promising bioscaffolds fulfill 
many biological functions, i.e. provide migration of a large number of 
cells towards the injured tissue, their successful engraftment, and dif-
ferentiation into mature, as well as serve as a delivery system to target 
growth factors, cytokines, genes, and other regulatory biomolecules. 
However, there is still a need to develop artificial scaffolds to success-
fully imposing in the clinical stage. 

One of the main limitations of the peripheral neural tissue engi-
neering is the incomplete alignment of axons from proximal to distal 
nerve segment due to insufficient regeneration properties of the scaf-
folds. This issue can be solved by topographical, mechanical and 
chemical guiding regenerating axons. Another obstacles with in vivo 
application of neural scaffolds are poor multidimensional regeneration 
of both neurons and glia. Lack of regeneration of Schwann cells for 
reestablish myelin sheaths and restore their functions is limitation in 
current peripheral neural tissue engineering. Simultaneously preventing 
the formation of glial scars and promotion of axonal, myelin regenera-
tion is highly desirable in advance central and peripheral TE. Dual 
regeneration effect can be achieved by using electrically conductive 
hybrid conduits with incorporated biochemical cues and topographical 
features which enhance multimodal tissue regeneration. Combined 
strategies gives new perspectives into not only axonal outgrowth but 
also nerve myelination and muscle regeneration. 

The current challenge in cardiovascular engineering remains to 
mimicking and regulating the microenvironments and physiochemical 
stimuli of native cardiovascular tissue. The critical aspect of cardiovas-
cular TE is the poor vascularization of constructs which can be improved 
by using of biomimicking interconnected porous scaffolds that allow the 
vascularization, the flow of nutrients and the elimination of waste 
products. Acceleration of cardiovascular tissue maturation was received 
by continuous electrical stimulation of the scaffold. Therefore bio-
mimicking, conductive, porous bioactive scaffolds are highly desirable 
in cardiovascular TE. 

Effective incorporation of hierarchically organized scaffolds with 
biochemical cues (chemotactic factors and growth factors) is currently a 
great challenge for providing parallel alignment of regenerating muscle 
cells. Therefore such bioactive scaffolds which stimulate muscle cells to 
differentiate and maturation are highly promising for TE of muscle tis-
sue. The potential of the use of electrospinning for muscle regeneration, 
including the possibility of targeting cell development and supporting it 
by strengthening cell infiltration and diffusion of oxygen and nutrients, 
is by far one of the most important trends to assume that such a solution 
is an opportunity to significantly improve the quality of life of patients 
with atrophy or damage to muscle tissue. 
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