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Abstract

Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the

transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in

response to salinity stress to identify salinity stress-responsive genes and mechanisms.

More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500

platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference

genome for different samples. The data analysis led to the identification of 98819 genes,

including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs)

were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes.

Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indi-

cated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcrip-

tion factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK

signaling might be involved in salt tolerance. The expression patterns of nine DEGs were

investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and sus-

ceptible cultivars, respectively. The obtained results were consistent with changes in tran-

script abundance found by RNA-sequencing in the tolerant cultivar. The results presented

here could be utilized for salt tolerance enhancement in wheat through genetic engineering

or molecular breeding.

Introduction

Plant growth and productivity are seriously threatened by abiotic stresses [1]. Among abiotic

stresses, salt stress is considered a serious threat to crop yield worldwide [2]. Wheat is the third

most important cereal crop in the world [3], and salinity levels of 6–8 dsm-1 cause to decline

wheat yield [4]. A practical approach to minimize salinity’s impact on global wheat production

is to enhance salt tolerance in wheat cultivars.

Ion toxicity, nutrient limitations, and oxidative and osmotic stresses are the adverse effects

of salinity stress on crops [5]. Plant salt tolerance is achieved through integrated responses at
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physiological, cellular, molecular, and metabolic levels. At the molecular level, genes coding

for transcription factors, ion transporters, protein kinases, and osmolytes are involved in salt

tolerance [6, 7]. Some signaling pathways, including plant hormones, salt overly sensitive

(SOS), calcium, mitogen-activated protein kinase (MAPK), and proline metabolism, play criti-

cal roles in salt stress tolerance, as well [8–12]. Salinity tolerance, as a quantitative trait, is

under the control of multiple genes [13]. Thus, it is necessary to discover key components

underlying the salt tolerance network to improve it through genetic engineering.

RNA-sequencing provides a much more accurate measurement of transcript levels and iso-

forms compared to other transcriptomic methods [14]. A few studies applied RNA-sequencing

technology to inspect the transcriptome profile of shoots under salt conditions in bread wheat

in recent years. Comparing the shoot expression profiling in a salinity tolerant mutant of Triti-
cum aestivum L and its susceptible wild type exposed to salt stress resulted in discovering some

salt tolerance involved genes like polyamine oxidase, arginine decarboxylase, and hormones-

associated genes, which were further up-regulated in the mutant. They also succeeded in find-

ing "Butanoate metabolism" as a novel salt stress-response pathway and indicated that oxida-

tion-reduction (redox) homeostasis was essential for salt tolerance [15]. In another study,

Mahajan et al. (2017) performed RNA-sequencing to prepare transcriptome profiling of flag

leaves in the salt-tolerant cultivar of Kharcha in response to salt stress. They indicated that the

up-regulated genes under salt stress were related to different biological processes like ion trans-

port, phytohormones signaling, signal transduction, osmoregulation, flavonoid biosynthesis,

and ROS homeostasis [16]. Luo et al. (2019) compared young and old leaf transcriptome of a

salt-tolerant bread wheat cultivar and a high-yielding cultivar with lower salt tolerance in

response to salinity. They found that the polyunsaturated fatty acid (PUFA) metabolism was

the most significant term/pathway in the salt-tolerant wheat cultivar according to the enriched

GO terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis.

They suggested that PUFAs could promote salt tolerance through the photosynthetic system

and JA-related pathways [17].

Zhang et al. (2016) compared root transcriptome response of a salt-tolerant and a salt-sensi-

tive cultivar and identified two NAC transcription factors (TFs), a MYB TF (homologous to

AtMYB33), a gene positively associated with root hair development (Ta.RSL4) and a gene cod-

ing for histone-lysine N-methyl transferase (homologous to Arabidopsis AtSDG16) as essential

genes for salinity tolerance in Triticum aestivum [18]. Amirbakhtiar et al. (2019) evaluated

transcriptome profile of a salt tolerant bread wheat cultivar in response to salinity. They identi-

fied pathways related to transporters, phenylpropanoid biosynthesis, TFs, glycosyltransferases,

glutathione metabolism and plant hormone signal transduction as the most important path-

ways involved in salt stress response [19]. Mahajan et al. (2020) sequenced root transcriptome

of a salt tolerant wheat cultivar at anthesis stage. They showed that genes involved in ROS

homeostasis, ion transport, signal transduction, ABA biosynthesis and osmoregulation up-reg-

ulated in response to salt stress. They also indicated that genes coding for expansin, dehydrins,

xyloglucan endotransglucosylase and peroxidases, engaged in root growth improvement, up-

regulated under salt stress [20]. Despite the valuable insight discovered by recent researches

about the cellular and molecular mechanisms engaged in salinity stress response and tolerance

in bread wheat, many aspects are still uncovered. In the current study, considering Iran as one

of the origin lands of Triticum aestivum and its wild lineages [21–24], deep transcriptome

sequencing was used for an Iranian salt-tolerant wheat cultivar (Arg) under normal and salin-

ity conditions to complement the insights regarding molecular mechanisms involved in bread

wheat salt-tolerance. We succeeded in providing a panel of the regulatory mechanisms at tran-

scriptional level in the leaves of the salt-tolerant wheat cultivar (Arg) under salinity stress by
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identifying all differentially expressed genes, novel salt-responsive genes, and diverse meta-

bolic pathways involved in response to salinity stress.

Materials and methods

Wheat culture conditions and salinity treatment

Seeds of the bread wheat salt-tolerant (Arg) and salt-sensitive (Moghan3) genotypes were

kindly supplied by Seed and Plant Improvement Institute (SPII), Karaj, Iran. After surface ster-

ilizing the seeds in 1% sodium hypochlorite, they were grown on moist filter paper for approxi-

mately 72 hours. The uniform germinated seeds were then selected and transferred to half-

strength Hoagland’s culture solution in the greenhouse. NaCl solution (150 mM) was used to

treat the three-week old plants for 12 and 72 hours. The leaves of the control and salt-stressed

plants were collected separately. The number of biological replicates was four, and each repli-

cate included three independent plants. The samples were frozen instantly in liquid nitrogen

and kept at -80˚C.

Measurements of Na+ and K+ concentrations

The leaves of the plants exposed to salt stress for 72 hr were harvested and dried at 70˚C for 48

hr. Flame spectrophotometry method was used to measure Na+ and K+ concentrations [25].

RNA isolation and Illumina sequencing

RNA was extracted from wheat leaves with four biological replicates under normal and salinity

conditions utilizing RNeasy Plant Mini Kit (Qiagen). Equal quantities of the total RNA of

every two biological replicates of Arg cultivar were pooled together to prepare two replicates

for the RNA sequencing. Agarose gel electrophoresis, nanodrop, and Agilent Bioanalyzer 2100

system (Agilent Technologies Co. Ltd., Beijing, China) were used to control the quantity, qual-

ity, and integrity of RNA. The RIN value of the samples used for sequencing was more than or

equal to 6.9. cDNA library preparation and sequencing were performed using an Illumina

Hiseq 2500 platform at the Novogene Bioinformatics Institute (Beijing, China). The generated

reads were paired-end with 150bp size. After sequencing, adapter-containing reads, poly-N-

containing reads (N> 10%), and low quality (Qscore< = 5) base-containing reads were

eliminated.

Read mapping and reference-based assembly

The FastQC toolkit was used to assess the quality of raw fastq data. Tophat software with stan-

dard parameters was utilized to map the high-quality reads to the wheat reference genome

(ftp://ftp.ensemblgenomes.org/pub/release-34/plants/fasta/triticum_aestivum/dna/). Cufflinks

with default settings was applied to create assembly based on the Tophat mapping files. The

individual assemblies were merged using Cuffmerge with default options, and a final assembly

was produced. The novel transcripts were recognized via Cuffmerge [26]. For functional anno-

tation, Blast2GO via BlastX with 1e-3 as an e-value cut-off was used to align all the transcripts

against NCBI’s non-redundant protein database. This software was also utilized to obtain the

gene ontology (GO) terms of transcripts with a p-value cut-off of 0.05.

Differential gene expression analysis

The gene/transcript expression was calculated using the FPKM method. Significantly differen-

tially expressed genes (DEGs) were identified applying Cuffdiff provided in the Cufflinks pack-

age based on |log2 fold change|� 1 and Q-value cut off� 0.01.
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Functional annotation and pathway enrichment analysis of DEGs

The Online KEGG Automatic Annotation Server (KAAS), http://www.genome.jp/kegg/kaas

[27], was utilized to identify metabolic pathways in which DEGs were engaged. The pathway

analysis of the DEGs was performed applying Mapman (version 3.5.1; http://mapman.gabipd.

org/web/guest) [28] with a p-value limit of� 0.05.

Confirmation of RNA-sequencing results by Real-Time PCR analysis

The extracted RNAs from three biological replicates were reverse-transcribed with qScript

cDNA Synthesis Kit (Quantabio, USA) for first-strand cDNA synthesis based on the manufac-

turer’s protocol. LightCycler1 96 Real-Time PCR System (Roche Life Science, Germany) and

SYBR Premix EX TaqII (Takara Bio Inc, Japan) were utilized to perform Quantitative Real-

Time PCR. Actin was used in place of an internal control gene in the RT-PCR experiment to

normalize the gene expression value [17, 19, 29, 30]. Genes with log2 fold change� 1 or log2

fold change� -1 were considered as significant DEGs.

Specific primers for the selected genes are listed in S1 Table. Each gene’s transcript level in

every genotype under control conditions was utilized as the calibrator for each time point. The

2−ΔΔCt procedure [31] was applied to calculate the relative expressions of the selected genes.

Results

Na+ and K+ content

The salt stress led to a significant increase in Na+ content and a significant decrease in the K+/

Na+ ratio in the roots and leaves of both genotypes. A significant increase was observed in the

K+ content of the roots in both genotypes under salinity stress, while no significant change was

observed in their leaves. As expected, less Na+ content and more K+/Na+ ratio were observed

in the leaves of the tolerant cultivar (Arg) compared to those of the susceptible cultivar

(Moghan 3) under salinity stress. A higher accumulation and maintenance of Na+ ion in the

roots than in the leaves may act as a tolerance mechanism by maintaining the essential osmotic

potential for absorbing water into the root and limiting Na+ ion flux into the shoot [32]. The

higher accumulation of Na+ ion in the root than in the leaf blade is a salt tolerance mechanism

in the grasses, limiting the transfer of sodium ions into photosynthetic cells and active meri-

stem tissues [33]. The higher amount of Na+ in the roots of Arg compared to those of Moghan

3 and the less amount of Na+ in the leaves of Arg compared to those of Moghan 3 under salin-

ity stress indicate that root can be considered as an important barrier to prevent the transfer of

Na+ to the leaves in Arg (S1 and S2 Figs). This result is consistent with the results obtained by

Davenport et al. (2007) [34].

Sequencing statistics and reference-based analysis

A total of 114.29 million raw reads were obtained by transcriptome sequencing. After remov-

ing adapters and low-quality reads, a total of 112.6 million clean reads were produced, while

more than 88.1% of clean reads had Phred-like quality scores at the Q30 level (Table 1). Acces-

sion numbers of SRR7975953, SRR7968059, SRR7968053, and SRR7920873 at the SRA

(Sequence Read Achieve) of NCBI include the raw transcriptome reads generated in the cur-

rent study.

Mapping the cleaned high-quality reads to the wheat reference genome (ftp://ftp.

ensemblgenomes.org/pub/release-34/plants/fasta/triticum_aestivum/dna/) showed that

around 81.9%-85.7% of the reads were mapped successfully to the wheat reference sequence,
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including 72.8%-79.3% uniquely matched (Table 2). The aligned reads were assembled using

cufflinks while 187003 and 98819 transcript isoforms and genes were identified, respectively.

Exploration of novel transcripts via mRNA sequencing

The discovery of novel genes/transcripts is one of the main benefits of RNA- sequencing

experiments [14, 35, 36]. The current study identified 27800 and 16339 novel transcript iso-

forms and genes, respectively. Conforming with other crops, including rice and maize [37, 38],

the mean length of the novel transcripts (1609 bp) was less than that of the annotated tran-

scripts (2304 bp). Based on the gene ontology analysis results, a putative function was assigned

to more than 53.1% of the novel transcripts.

The GO analysis of the novel transcripts revealed that these novel genes would play a role in

biological processes, including stimulus responses, localization, biogenesis, and biological reg-

ulation (S2 Table). Molecular function classification showed that the novel transcripts were

enriched in some terms such as transferase, oxidoreductase, catalytic, and hydrolase activities;

small molecule and ion binding; carbohydrate derivative binding; and organic cyclic and het-

erocyclic compound binding (S3 Table). The novel transcripts were also enriched in some cel-

lular component categories, such as intracellular membrane-bounded organelle, an integral

component of membrane, cytoplasm, mitochondrion, nucleus, and chloroplast (S4 Table).

Identification of DEGs involved in salt stress response

In total, 4290 genes were differentially regulated under salinity stress, of which 2346 and 1944

were up- and down-regulated genes, respectively (S5 Table). Among the DEGs, 110 and 98

genes were exclusively expressed under salt-stressed and normal conditions, respectively (S3A

Fig). Some essential genes engaged in response to abiotic stresses, including LEA proteins,

dehydrins, bHLH transcription factor, phosphatase 2C, peroxidase, and calcium-transporting

ATPase plasma membrane-type (S6 Table), were observed among the genes exclusively

expressed under salinity stress. Surveying the fold change distribution of the DEGs indicated

Table 1. Summary of sequencing results.

Sample name Raw reads (paired end) Clean reads (paired end) Q20% Q30%

Control-rep1 27,152,094 26,623,849 96.38 91.25

Control-rep2 31,085,137 30,489,825 96.38 91.23

Salt-stressed-rep1 26,752,355 26,460,382 94.69 88.1

Salt-stressed-rep2 29,307,102 29,030,761 94.37 87.5

Total 114,296,688 112,604,817 � 94.37 � 87.5

https://doi.org/10.1371/journal.pone.0254189.t001

Table 2. Results of mapping reads to the reference genes.

Reads mapping Reads number (%)

Control-rep1 Control-rep2 Salt-stressed-rep1 Salt-stressed-rep2

Total reads 53247698 60979650 52920764 58061522

Total mapped reads 45573294(85.6%) 52244911(85.7%) 43386060(82%) 47556787(81.9%)

Unique match 42239930(79.3%) 48007353(78.7%) 40090198(75.8%) 42283991(72.8%)

Multi-position match 3333364(6.3%) 4237558(7%) 3295862(6.2%) 5272796(9.1%)

Total unmapped reads 7674404 (14.4%) 8734739(14.3%) 9534704(18%) 10504735(18.1%)

https://doi.org/10.1371/journal.pone.0254189.t002
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that the most and least number of the genes had a fold change of 2–3 and 6–7, respectively

(S3B Fig).

GO categorization of DEGs

The gene ontology analysis indicated that GO terms were assigned to 3594 out of 4290 genes.

In biological process classification, the majority of the genes were involved in the metabolic

process (23.4%) followed by cellular process (20.4%), single-organism process (17.4%), stimu-

lus-response (6.7%), and biological regulation (6.6%). In molecular function categorization,

catalytic activity (45.9%), binding (37.7%) and transporter activity (7.5%) were the most fre-

quent terms and in the cellular component category, cell (22%), cell part (21.9%), and mem-

brane (16.1%) were the most dominant terms (Fig 1).

Functional identification of novel DEGs

Comparing the functional annotation of the novel salt responsive genes against NCBI’s non-

redundant (nr) protein database utilizing the Blast2GO tool indicated that 320 (70%) out of

the 457 novel DEGs were aligned to the NR protein database. In contrast, the rest of the genes

(30%) displayed no homology to database sequences. The GO classification showed that 230

novel DEGs (50.3%) were assigned to GO terms, and 205 novel DEGs (44.9%) were grouped

in significant GO terms (S4A Fig). In the cellular component category, cell part, cell, and mem-

brane were the prevailing clusters. However, the top three classes were catalytic activity, bind-

ing, and transporter activity concerning the molecular function. In biological process

categorization, most of the genes were involved in the metabolic and cellular processes fol-

lowed by regulating the single-organism process, regulating the biological process and

responding to a stimulus (S4B Fig).

Fig 1. GO classification of the DEGs in Arg cultivar. Percentage of the transcripts in cellular component, molecular function, and biological process

classifications are represented.

https://doi.org/10.1371/journal.pone.0254189.g001
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The genes coding for Phosphatase 2C [39], Delta-1-pyrroline-5-carboxylate synthase [40],

MYB transcription factor [41], Sodium/Calcium exchanger [42], Ribulose bisphosphate car-

boxylase large chain [43], Late Embryogenesis Abundant protein [44], Glutahione S-trasferase

[45], and cytochrome P450 monooxygenase [46] (S7 Table) with potential roles in salt stress

response were observed among the novel DEGs.

KEGG pathway classification of DEGs

In an attempt to map DEGs to various biological pathways, a single-directional BLAST search

showed that 1503 out of the 4290 DEGs were categorized into 227 KEGG pathways, located in

the five chief KEGG classes (Fig 2A). Pathways relating to phenylpropanoid biosynthesis,

transporters, transcription factors, plant hormone signal transduction, glycosyltransferases,

exosome, MAPK signaling pathway, peptidases, cytochrome P450, and sucrose and starch

metabolism included the highest number of DEGs (Fig 2B, S8 Table). The involvement of

these pathways in environmental stress response was confirmed in previous reports [29, 47,

48].

The phenylpropanoid pathway with the highest gene number is responsible for synthesizing

diverse secondary metabolites in plants such as lignin, flavonoids, and coumarins playing roles

in developmental and stress–associated processes [49, 50]. In the first step of this pathway, cin-

namic acid is synthesized from phenylalanine by the rate-limiting enzyme of phenylalanine

ammonia-lyase (PAL) [51]. In this study, 29 up-regulated DEGs coding for PAL were mapped

in this pathway.

Plants utilize deposition of lignin or modification of monomeric lignin composition in the

cell wall to defeat salinity stress [52]. In the present study, the up-regulated DEGs coding for

shikimate hydroxycinnamoyl transferase, cinnamoyl-CoA reductase, and caffeic acid 3-O-

methyltransferase, which were all involved in lignification, were mapped in the phenylpropa-

noid pathway, while their over-expression was also reported under salinity stress in prior

researches [53–55].

Functional analysis of salt-regulated genes using Mapman

The putative function of the salt-regulated genes was searched utilizing Mapman to visualize

salt-induced alterations in diverse metabolic processes. Metabolic pathway overviews based on

Fig 2. KEGG categorization of the DEGs. (A) Categorization of the DEGs into five chief KEGG classes. (B) The top 10 pathways with the highest gene

number.

https://doi.org/10.1371/journal.pone.0254189.g002
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the results of mapping salt-responsive genes indicated that photosynthesis and cell wall biosyn-

thesis pathways were among the enriched pathways (Fig 3, S9 Table). Most of the genes

encoded chlorophyll-binding proteins in the photosynthesis pathway, showing down-regula-

tion under salt stress. The decrease in photosynthesis efficiency under abiotic stresses was

reported in previous studies [56, 57].

Mapping the DEGs to the cellular pathways indicated that the misc pathway, including

genes regarding abiotic stress-related various enzyme families, was enriched under salt stress

(S5 Fig., S9 Table). Most of the misc pathway genes are Germin-like proteins (GLPs), which

code for ubiquitous plant glycoproteins and belong to the cupin superfamily. One of the main

roles of the proteins mentioned above is triggering the abiotic stress-tolerance in many plant

species. Li et al. (2016) revealed that GLP transcripts were plentiful after treatment with high

salinity, PEG6000, abscisic acid, and methyl viologen in soybean. Arabidopsis plants overex-

pressing a GLP from soybean indicated enhanced drought, salt, and oxidative tolerance [58].

Furthermore, Arabidopsis transgenic plants, which overexpressed genes encoding peanut

GLPs, showed increased tolerance to salinity. Complementary studies also showed that PR-

Fig 3. Metabolic pathway overview of the DEGs in Arg cultivar under salinity stress utilizing Mapman. The down- and up-regulated genes are

shown in red and blue, respectively.

https://doi.org/10.1371/journal.pone.0254189.g003
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defense genes and antioxidant coding genes, which can increase salt tolerance, showed up-reg-

ulation in transgenic plants [59].

Investigating the secondary metabolite pathways revealed that the genes playing roles in ter-

penoid, lignin, phenols, isoflavonoid, and wax metabolic pathways were significantly enriched

under salt stress (S6 Fig, S9 Table). Furthermore, the stress response pathways showed that the

transcription regulators and peroxidases and the genes relating to brassinosteroid signaling

pathways were enriched in Arg cultivar under salt stress (S7 Fig., S9 Table).

Confirmation of gene expression patterns by qRT-PCR

The expression pattern of nine candidate salt-regulated genes was examined by qRT-PCR to

validate the RNA-sequencing results (Fig 4). The high consistency between qRT-PCR and

RNA sequencing results was observed (R2 = 0.98), confirming the identified DEGs in the pres-

ent research. The candidate genes’ expression profile was assessed in the two salt contrasting

genotypes to obtain further insight. Based on the obtained results, Ta.bHLH35, Ta.CIPK23,

and Ta.P5CS were up-regulated significantly in the tolerant cultivar after 12 hr of salt stress,

while the increase in the expression of these genes was much less in the sensitive cultivar than

in the tolerant cultivar and was not significant (Fig 4A, 4B and 4F). Ta.ERF061 showed signifi-

cant up-regulation after 12 hr of exposure to salt stress in both cultivars. However, at the time

Fig 4. Validation of the candidate genes by qRT-PCR including bHLH transcription factor 35 (A), calcineurin B-like protein (CBL)-interacting protein

kinase 23 (B), ethylene responsive factor 061 (C), heat shock transcription factor B1 (D), NAC transcription factor (E), pyrroline-5-carboxylate

synthetase (F), salt response protein (G), Ribuluse biphosphate carboxylase small chain (H), and Phosphoglycerate Kinase (I). Refer to S1 Table to find

the gene ensemble IDs.

https://doi.org/10.1371/journal.pone.0254189.g004
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point of 72 hr, a more severe decrease in expression was observed in the tolerant cultivar com-

pared to the sensitive cultivar, which can be related to the quicker response of the tolerant cul-

tivar to salt stress. (Fig 4C). For Ta.HSFB1 at the time point of 12 hr, while the tolerant cultivar

indicated up-regulation, the sensitive cultivar showed down-regulation (Fig 4D). For another

transcription factor, Ta.NAC, significant up-regulation was observed in both cultivars at the

two-time points, and there was no significant difference between the cultivars (Fig 4E). For the

gene encoding salt response protein, while the tolerant cultivar showed up-regulation at the

two-time points, the sensitive cultivar indicated up-regulation after 12 hr of exposure to salt

treatment and down-regulation after 72 hr of exposure to salinity (Fig 4G). Furthermore, for

the gene coding for RUBISCO small chain involved in photosynthesis, a more severe decrease

was observed in the tolerant cultivar compared to the sensitive cultivar (Fig 4H). The decrease

in this gene expression may be due to the need to change the energy flow from the biosynthesis

of photosynthesis-engaged macromolecules toward respiratory paths to supply the energy

needed to overcome stress. A regulatory gene called phosphoglycerate kinase, with a possible

negative effect on stress tolerance, showed more severe down-regulation in the tolerant culti-

var than in the sensitive cultivar after 12 hr of exposure to salt stress (Fig 4I).

Discussion

Next-generation sequencing technologies with the ability to characterize transcriptome pro-

files of different organisms under different conditions can reveal the molecular basis of salt

stress response in plants. In general, genes engaged in salt stress response can be divided into

three classes, comprising stress sensing and signaling-related genes, transcriptional regulators,

and salinity-stress associated genes [60].

Signal transduction paths play crucial roles in the response of plants to different stresses.

Variation in cytosol’s calcium concentration is one of the early responses to various stimuli,

and calcium transporting elements actively maintain this flux and homeostasis [61]. In the

current research, two genes encoding calcium-transporting ATPases were up-regulated

under salt stress. One of them is a novel gene (represented as Ta.ACA7 in Fig 5 and S10

Table), expressed only under salt stress. Orthologous of the forenamed gene in rice, Os.
ACA7 (Os10g0418100), is activated by calmodulin (CaM) [61]. Ca2+-ATPases are involved

in maintaining Ca2+ homeostasis [61], and the up-regulation of them has been observed in

different plant species, including tomato, tobacco, Arabidopsis, and soybean, in response to

salinity stress [62–65]. Genes coding for glutamate receptors (GLRs), known as non-selec-

tive cation channels that can be engaged in Ca+2 transport [61], were also observed among

the DEGs in this study (Fig 5, S10 Table). Glutamate receptors are responsive to abiotic

stresses based on the previous reports [66, 67]. After an increase in the Ca2+ concentration

under salinity, CBL-interacting protein kinases (CIPKs) [68] with the ability to transduce

the signal to downstream protein activity and gene transcription may become activated

[69]. Among the DEGs, 13 genes coding for CIPKs were discovered. One gene coding for

CaM was up-regulated in response to salinity (Fig 5, S10 Table). CaM, known as a Ca2

+-sensing protein, is involved in the transduction of Ca2+signals. Conformational changes

occur in CaM after interacting with Ca2+, and then, CaM influences the activities of the pro-

teins which bind to it. Several CaM-binding proteins are engaged in plant responses to

salinity stress, showing that CaM plays a central role in stress adaptation in plants [70]. A

differentially expressed CaM-binding gene in the current study is Ta.MLO (Fig 5, S10

Table), encoding a plant-specific seven-transmembrane domain protein. A study on the

MLO family in rice concluded that environmental stresses might provoke alteration in the

H2O2 level via interaction between MLO and CaM. The resulting H2O2 might act as a
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messenger to stimulate the responsive genes’ expression to acclimatize to the stress [71].

CBP60, a CaM-binding transcription factor, was up-regulated under salinity stress in the

present study (Fig 5, S10 Table). It has been shown that the overexpression of CBP60
(At5g26920) in Arabidopsis resulted in increased defense response, hypersensitivity to

ABA, and drought tolerance, possibly through activating salicylic acid accumulation [72].

Previous reports indicated that the overexpression of GDSL esterase lipases (GLIPs) could

release fatty acids acting as hormone signal transduction molecules [73]. It has also been

reported that excessive GLIPs exhibited improved salinity stress tolerance in Oryza sativa and

Arabidopsis thaliana [74, 75]. Five genes coding for Ta.GLIPs were up-regulated under salinity

stress in the present study (Fig 5, S10 Table).

Receptor-like kinases (RLKs), as the largest gene family in plants, play crucial roles in sig-

naling networks [76]. Wall-associated kinases (WAKs), as a subfamily of RLKs, function as a

signaling linker between the cytoplasm and the extracellular region [77]. It has been reported

that WAKs are engaged in regulating plant adaptation to abiotic stresses. Arabidopsis plants

overexpressing AtWAK1 showed increased aluminum tolerance [78], and Arabidopsis plants

with the impaired expression of AtWAKL4 indicated more hypersensitivity to excessive Na+,

K+, Cu+2, and Zn+2 [79]. In the current study, six genes coding for WAKs were up-regulated

under salt stress (Fig 5, S10 Table). LecRLKs, another subfamily of RLKs, can be engaged in

salinity tolerance, including a plasma membrane-localized LecRLK from Pisum sativum.

Tobacco plants overexpressing PsLecRLK showed enhanced salt tolerance by increasing ROS

Fig 5. The model proposed for a response to salinity stress in Arg cultivar. Dark blue and purple colors were used to exhibit stress sensing and

signaling-related genes and transcription factors, respectively. Light blue, light green, and pink colors were utilized to depict genes involved in the

reaction to osmotic, ionic, and oxidative stresses caused by salinity, respectively.

https://doi.org/10.1371/journal.pone.0254189.g005
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scavenging activity and activating water channels, leading to reduced ROS accumulation and

enhanced water uptake [80]. In the present research, three genes coding for LecRLKs were up-

regulated in response to salinity stress (Fig 5, S10 Table).

Many TFs were observed among the DEGs, indicating their crucial roles in salt stress

response. They regulate the expression of downstream genes liable for salinity stress tolerance

in plants. ERFs, bZIPs, Zn-fingers, NACs, MYBs, and WRKYs were found among the differen-

tially expressed TFs, and some of them were discussed here.

MYB TFs are known as one of the largest and most diverse families of TFs in plants [81,

82]. The involvement of MYB TFs in salt tolerance has been reported in previous studies [83,

84]. Twenty-seven genes coding for MYBs were observed among the DEGs in the present

research (Fig 5, S10 Table).

Plant basic leucine zipper (bZIP) TFs are involved in regulating abiotic stress signaling

pathways mediated by abscisic acid (ABA) in plants [85]. Tomato SlbZIP38 regulates drought

and salinity tolerance negatively via regulating ABA signaling [86]. The overexpression of cot-

ton GhABF2, encoding a bZIP TF, significantly increased tolerance to drought and salinity in

Arabidopsis and cotton [87]. Two genes coding for bZIPs were differentially expressed in the

current study (Fig 5, S10 Table).

Four families of zinc finger proteins (ZFP), including C2H2, CCCH, C3HC4, and C4, have

crucial roles in regulating phytohormone and stress response in plants [88]. The engagement of

zinc finger TFs in salt tolerance has been reported in previous studies. Transgenic rice overex-

pressing OsZFP213 indicated improved salt tolerance via enhancing ROS scavenging ability [89].

Tobacco plants overexpressing GhZFP1, a CCCH-type zinc finger protein from cotton, showed

increased tolerance to salinity stress and resistance to Rhizoctonia solani [90]. In the present

study, around 17 differentially expressed zinc finger TFs were identified (Fig 5, S10 Table).

TIFY proteins are engaged in regulating many plant processes, including response to

stresses. JAZ proteins, working as the jasmonic acid signaling pathway’s key regulators, are the

best-characterized sub-group of TIFY proteins. Two genes coding for TIFY were found among

the DEGs (Fig 5, S10 Table). The involvement of TIFY TFs in wheat salt tolerance was reported

in a previous study [91].

In the present study, 31 genes coding for WRKY TFs were differentially expressed under

salt stress, among which only one gene showed down-regulation (S10 Table). WRKY TFs are

engaged in increasing salinity tolerance in plants via regulating stomatal conductance, ROS

levels, and auxin and ABA signaling [92].

In addition, 28 NAC domain-containing genes were differentially regulated under salt

stress in the current study, among which only four genes were down-regulated (Fig 5, S10

Table). NAC TFs take part in complicated signaling networks related to stress response in

plants [93]. Rice OsNAC022, induced by drought, high salinity, and ABA, enhanced drought

and salinity stress tolerance via regulating an ABA-dependent pathway in transgenic plants

[94]. TsNAC1 from a halophyte called Thellungiella halophila targeted positive ion transporta-

tion regulators and improved salt tolerance in both T. halophila and Arabidopsis [95].

Some ethylene response factors (ERFs) bind to dehydration-responsive elements, function

as a central regulatory hub, and incorporate ethylene, abscisic acid, jasmonate, and redox sig-

naling in abiotic stress response in plants [96]. In the present study, 15 genes relating to ERF

transcription factors were differentially expressed under salinity stress (S10 Table). Previous

studies have shown that the overexpression of ERFs by increasing salt-responsive genes’

expression leads to salt tolerance in plants [97, 98].

We also identified transcripts encoding homeodomain-containing transcription factors

(HOX) 7 and 22, which were significantly up-regulated under salt stress (Fig 5, S10 Table).
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According to the previous reports, the HOX family members as regulators of plant growth and

development were remarkably enriched in NaCl-induced transcripts in Oryza sativa [99, 100].

It has also been reported that ABA, GA, SA, and auxin enhance the transcript levels of some

HOXs [99].

A high ratio of cytosolic K+/Na+ is necessary to keep ionic homeostasis under stress and

increases salinity tolerance in wheat (Oyiga et al., 2016). Plants utilize various methods at dif-

ferent levels to retain this ratio in the cytosol. One selected approach in plants is sending out

Na+ from the roots. SOS1, a plasma membrane Na+/H+ antiporter, drives Na+ out from the

root. Evaluating the transcriptome response of the root in Arg cultivar under salt stress showed

the up-regulation of SOS1 under salinity stress [19]. Sustaining a high ratio of K+/Na+ in the

cell cytoplasm can also be performed by sequestrating Na+ into the vacuoles of root cells done

by the tonoplast Na+/H+ antiporter (NHX1). Hexokinase1 phosphorylates NHX1 and

increases its stability [101]. Transcriptome response analysis of the root in Arg cultivar under

salt stress showed a significant increase in the expression of hexokinase1 [19]. Evaluating the

transcriptome response of leaves to salt stress showed that 22 genes involved in transporting

sodium, potassium, or both significantly responded to salt stress. Among the up-regulated

sodium transporters in leaves, a gene indicated severe up-regulation under salt stress (repre-

sented as Ta.HKT1 in Fig 5 and S10 Table). An orthologue of the mentioned gene in Arabi-

dopsis, At4g10310, encodes the sodium transporter HKT1. This transporter shows a central

role in plant tolerance to salinity. It loads Na+ into the phloem sap in shoots and unloads it in

roots, leading to eliminating large quantities of Na+ from the shoot [102]. The other sodium

transporter is represented as Ta.HKT4 in Fig 5 and S10 Table. The orthologue of the fore-

named gene in rice is Os04g0607500 that encodes for the cation transporter HKT4. OsHKT4
acts as a low-affinity sodium transporter and is possibly engaged in regulating K+/Na+ homeo-

stasis [103]. Seven genes, coding for potassium transporters, were differentially expressed

under salinity stress. Among the potassium transporters, we can refer to a gene represented as

Ta.KT in Fig 5 and S10 Table. The orthologue in Arabidopsis, At2g30070, encodes AtKT1 and

acts as a high-affinity potassium transporter [104].

In order to deal with the osmotic stress caused by salinity, the genes encoding for LEA pro-

teins (Ta.LEA) and dehydrins (Ta.Dhn) as well as the genes involved in biosynthesis of organic

osmolytes like proline (pyrroline-5-carboxylate synthase; Ta.P5CS) and glycine betaine (beta-

ine aldehyde dehydrogenase; Ta.BADH) were up-regulated under salinity stress (Fig 5, S10

Table).

Furthermore, peroxiredoxin (Ta.PRX), peroxidases (Ta.POX), Cytochrome P450 (Ta.

CYP450), and Glutathione-S- transferases (Ta.GST) were differentially regulated in reaction to

oxidative stress arising from salinity (Fig 5, S10 Table). Cytochrome P450 (CYP) includes a

superfamily of heme-containing proteins that take part in redox homeostasis and numerous

biosynthetic pathways [105]. Eight genes belonging to the CYP71 family, as the largest CYP

family in plants, were up-regulated in the present research. This result is in line with those

obtained by another study on transcriptome response of wheat leaf to salinity stress [16], indi-

cating the CYP71 family might play a role in salinity stress tolerance.
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