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A B S T R A C T   

RNA-binding proteins (RBPs) are central to key functions such as post-transcriptional regulation, mRNA stability, 
and adaptation to varied environmental conditions in prokaryotes. While the majority of research has concen
trated on eukaryotic RBPs, recent developments underscore the crucial involvement of prokaryotic RBPs. 
Although computational methods have emerged in recent years to identify RBPs, they have fallen short in 
accurately identifying prokaryotic RBPs due to their generic nature. To bridge this gap, we introduce 
RBProkCNN, a novel machine learning-driven computational model meticulously designed for the accurate 
prediction of prokaryotic RBPs. The prediction process involves the utilization of eight shallow learning algo
rithms and four deep learning models, incorporating PSSM-based evolutionary features. By leveraging a con
volutional neural network (CNN) and evolutionarily significant features selected through extreme gradient 
boosting variable importance measure, RBProkCNN achieved the highest accuracy in five-fold cross-validation, 
yielding 98.04% auROC and 98.19% auPRC. Furthermore, RBProkCNN demonstrated robust performance with 
an independent dataset, showcasing a commendable 95.77% auROC and 95.78% auPRC. Noteworthy is its su
perior predictive accuracy when compared to several state-of-the-art existing models. RBProkCNN is available as 
an online prediction tool (https://iasri-sg.icar.gov.in/rbprokcnn/), offering free access to interested users. This 
tool represents a substantial contribution, enriching the array of resources available for the accurate and efficient 
prediction of prokaryotic RBPs.   

1. Introduction 

Ubiquitous across all living organisms, RNA-binding proteins (RBPs) 
play crucial roles for regulating a wide range of cellular functions 
including the regulation of post-transcriptional genes [1–5]. While the 
historical emphasis has been on eukaryotic RBPs, recent investigations 
have brought to light the critical significance of their prokaryotic 
counterparts [6–8]. By acting as a regulator of various cellular processes 
and playing crucial role in sculpting the dynamic landscape of bacterial 
gene expression, prokaryotic RBPs contribute significantly to the adap
tation of prokaryotes across diverse environmental conditions [9,10]. A 
noteworthy aspect of prokaryotic RBPs further lies in their participation 

in governing bacterial virulence and pathogenicity, pinpointing poten
tial targets for novel antibiotic development [11–15]. In sum, identifi
cation of RBPs in prokaryotes holds significant importance for 
deciphering the gene expression patterns and propelling the field of 
precision medicine forward. Traditionally, wet lab techniques have been 
used to identify RNA-protein interactions. However, wet lab experi
ments encounter challenges due to their expensive nature and complex 
biotechnological requirements [16,17], albeit proficient in accurately 
identifying RBPs. Thus, there is a growing demand for computational 
methods capable of proteome-wide prediction of RBPs, which warrants 
further experimental investigation. 

The existing approaches for identification of RBPs falls under two 
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major categories: (i) machine learning-based techniques and (ii) 
template-based techniques. Template-based techniques gauge the 
resemblance of a query protein to a template RNA-binding domain 
(RBD) or RBP to discern RBPs [18–21]. However, the pre-established 
RBDs are absent in nearly half of experimentally identified RBPs [5, 
22], and also the presence of RBDs in proteins does not always correlate 
with them being RBPs [3], implying ineffectiveness of the 
template-based methods. Conversely, machine learning-based methods 
have gained prominence in predicting RBPs that uses annotated datasets 
encompassing both RBPs and non-RBPs to train learning algorithms. 

For training of machine learning models, features derived from the 
protein sequences as well as from the three-dimensional structures have 
been employed in existing studies. Though some models like BindUp 
[23], NucleicNet [24], and NAbind [25] have utilized three-dimensional 
structural features, the algorithms currently in use have predominantly 
utilized sequence-derived features due to ease of getting sequence data 
compared to three-dimensional structure data. For instance, RNApred 
[26] employed support vector machine (SVM) coupled with 
position-specific scoring matrix (PSSM)-derived features to differentiate 
RBPs from non-RBPs. Zhang and Liu [27] devised RBPPred, for pre
dicting RBPs with SVM, incorporating physico-chemical properties and 
PSSM-derived features of the protein sequences. By integrating the 
sequence-derived information, an ensemble learning model named 
iDRBP-EL was developed by Wang et al. [28], for the discovery of RBPs 
and DNA-binding proteins (DBPs). Another computational model called 
IDRBP-PPCT was introduced by Wang et al. [29], where the random 
forest method was used for prediction using a novel feature represen
tation technique, referred as Position-Specific Frequency Matrix and 
Cross Transformation (PPCT). Feng et al. [30] developed iDRBP-ECHF 
for identifying DBPs and RBPs based on extensible cubic hybrid frame
work. A plant-specific RBP prediction model, RBPLight was developed 
by Pradhan et al. [31] using evolutionary features derived from PSSM 
profiles and light gradient boosting method (LightGBM). 

In addition to shallow learning algorithms, deep learning frame
works have also been employed for predicting RBPs. Zheng et al. [32] 
employed convolutional neural network (CNN) by incorporating the 
protein feature of RBPPred to develop Deep-RBPPred. To address 
cross-prediction challenges, Zhang et al. [33] established iDRBP_MMC, a 
multi-label learning model based on CNN, for predicting DBPs and RBPs. 
Fusing CNN with LSTM, Zhang et al. [34] devised a two-level compu
tational model for identification of DBPs and RBPs. In another investi
gation, Zhang et al. [35] developed PreRBP-TL computational model to 
detect species-specific RBPs, leveraging transfer learning. The RBP-TSTL 
[36] is another RBP prediction model which was developed by inte
grating knowledge from pre-trained RBP datasets and from a 
self-supervised pre-trained model. Another model iDRPro-SC was 
recently introduced by Yan et al. [37], for prediction of both DBPs and 
RBPs based on sequence information using an ensemble learning 
technique. 

Most of the above stated learning models have been utilized the RBP 
data from diverse eukaryotic species and a limited number of pro
karyotes, resulting in generic models. However, RBPs exhibit specificity 
not only to individual species but also to lineage-specific families [6,22, 
31,38]. Therefore, the current generic models may lack the information 
required for accurate prediction of prokaryote-specific RBPs. While 
some models like PreRBP-TL [35] and RBP-TSTL [36] have been tested 
on certain bacteria species, their accuracy in predicting RBPs for other 
prokaryotic species remains suboptimal. In other words, despite the 
notable progress in RBP prediction, the development of models specific 
to prokaryotes has been largely overlooked. Hence, there is a pressing 
need to devise computational methods tailored for predicting 
prokaryote-specific RBPs. Here, we proposed a new computational 
model, RBProkCNN, designed explicitly for predicting 
prokaryote-specific RBPs. 

2. Material and methods 

2.1. Retrieval and processing of sequence data 

Prokaryotes are broadly categorized into two taxonomic groups, 
bacteria and archaea. Protein sequences corresponding to bacteria 
(taxonomy id: 2) and archaea (taxonomy id: 2157) were sourced from 
the UniProt database [39] as of June 16, 2023. These sequences were 
utilized to construct datasets for RBPs (positive) and non-RBPs (nega
tive). The protein sequences that were confirmed to be annotated with 
the Gene Ontology (GO) term "RNA-binding" (GO: 0003723 and it’s 
child terms) were defined as RBPs, while proteins lacking this annota
tion were considered as non-RBPs. A total of 48,626 RBP sequences and 
2,80,033 non-RBP sequences available for 741 prokaryotic species were 
retrieved. Sequences with fewer than 50 amino acids as well as having 
non-standard residues were excluded from the analysis. To eliminate 
accuracy bias arising from the presence of homologous sequences, the 
CD-HIT algorithm [40] was applied to discard sequences with > 25% 
sequence identity to any other sequences in both positive and negative 
datasets. After processing, a set of 1480 RBP sequences and 29,971 
non-RBP sequences were retained for the analysis. 

2.2. Training and independent test datasets construction 

Out of the initial pool of 1480 RBP sequences, approximately 20%, 
totalling 280 sequences, were randomly chosen and set aside to form the 
positive independent test set. The remaining 1200 sequences, consti
tuting roughly 80%, were utilized as training set for the RBP class 
(positive). In order to minimize the biased effect of major class (class 
having larger number of instances) on prediction performance, a 
balanced training dataset was prepared with same number of instances 
of RBP and non-RBP (negative) classes. In other words, the training 
dataset was composed of an equal number of positive and negative in
stances, with 1200 negative instances randomly selected from the pool 
of 29,971 non-RBP sequences. From the remaining 17,971 non-RBP 
sequences, 280 sequences were randomly chosen to construct the 
negative independent test set. In summary, the training dataset 
comprised of 1200 RBP and 1200 non-RBP sequences, while the inde
pendent test set included 280 RBP and 280 non-RBP sequences. 

2.3. Evolutionary feature generation 

The PSSM profile for each protein sequence was generated by 
running PSI-BLAST [41] on the non-redundant database NRDB90 [42] 

with e-value 0.0001. If we let P=
((

pi,j

))
be the PSSM matrix repre

sentation for a given protein sequence of L amino acids long, P will be of 
dimension L× 20. Using the PSSM profile of each sequence, we gener
ated k-separated bi-gram features (KBGM) and tri-gram features 
(TRGM), respectively called as KBGM_PSSM and TRGM_PSSM features. 
The mathematical derivation of both feature set is as follows: 

In a protein sequence of L amino acids long, the KBGM_PSSM feature 
fm,n(k) for the amino acid pair (m, n) with distance k, can be computed as 
fm,n(k) =

∑L− k
i=1 pi,mpi+k,n; 1 ≤ m, n ≤ 20, where pi,m is the scoring value of 

the PSSM corresponding to ith position and the amino acid m. Since the 
total possible combination of amino acid pair (m, n) is 400, there will be 
400 elements representing 400 amino acid transitions in the resultant 

feature vector such as 
{

f1,1(k), f1,2(k),…, f1,20(k), f2,1(k),…,

f2,20(k), ..., f20,1(k),…, f20,20(k)
}

. In this study, we considered the value 

of k = 2. Using the same PSSM profile, the TRGM_PSSM feature f(m, n, r)
corresponding to the amino acid trio (m, n, r) can be computed as 
f(m, n, r) =

∑L− 2
i=1 Pi,mPi+1,nPi+2,r; 1 ≤ m, n, r ≤ 20. Since three are 8000 

possible combinations of the amino acid trio (m,n,r), there will be 8000 
element in the resultant feature vector. 
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2.4. Prediction algorithms and feature selection 

Initially, we evaluated the performance of 8 shallow learning models 
for prediction of prokaryotic RBPs. Then, the best performing shallow 
learning models were compared with that of 4 deep learning models. 
The details of the software used and the parameter setup for imple
menting these learning models are shown in Table 1. Feature selection 
strategy was also applied to alleviate computational load and enhance 
classification accuracy by eliminating redundant and irrelevant features 
[55]. Two feature ranking algorithms such as extreme gradient boosting 
variable importance measure (XGB-VIM) [56] and light gradient 
boosting machine variable importance measure (LGBM-VIM) [46], were 
utilized to select significant and pertinent features. The performance of 
the selected learning algorithms was then evaluated using the 
top-ranked features. Though there are several feature selection tech
niques available, we chose to focus on XGB-VIM and LGBM-VIM because 
(i) XGB-VIM and LGBM-VIM are the feature selection models based on 

gradient boosting algorithms and are known for their robustness in 
identifying relevant features while reducing the effects of noise and 
irrelevant variables, (ii) by focusing on variables that contribute most to 
model performance, XGB-VIM and LGBM-VIM help improve model 
generalization and reduce over fitting and, (iii) XGB-VIM and 
LGBM-VIM algorithms are computationally efficient, suitable for 
handling large datasets with high-dimensional feature spaces (in the 
present case >8000 features). 

2.5. Evaluating the performance through cross-validation 

We followed a 5-fold cross-validation procedure to evaluate the 
performance of the learning algorithms, where the metrics of the 
learning algorithms were obtained by averaging their performance 
across the five validation sets of the cross-validation. Following per
formance metrics were employed for quantitative assessment of the 
performance of the learning models. 

Accuracy =
T+ + T −

T+ + F− + T − + F+

Precision =
T+

T+ + F+

F1 − Score =
2T+

2T+ + F+ + F−

Matthews Correlation Coefficient(MCC)

=
(T+ × T − ) − (F+ × F− )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(T+ + F+)(T+ + F− )(T − + F+)(T − + F− )

√

Area under receiver operating characteristic curve(auROC)

=

∫ 1

0

T+

F− + T+
d
(

F+

T − + F+

)

Area under precision − recall curve(auPRC)

=

∫ 1

0

T+

T+ + F+
d
(

T+

F− + T+

)

In the above defined metrics, T+,T− , F+ and F− stands for the true 
positive, true negative, false positive and false negative, respectively. A 
schematic flowchart illustrating each step of the proposed approach is 
presented in Fig. 1. 

3. Results 

3.1. Analysis of shallow learning algorithms and evolutionary features 

Performance of 8 shallow learning models were evaluated with 15 
different PSSM-derived feature sets. The LightGBM, RF, SVM and 
XGBoost models achieved higher accuracy across the feature sets, as 
compared to the other learning models. As far as feature set is con
cerned, higher accuracies were observed for TRGM_PSSM and 
KBGM_PSSM feature sets for most of the learning algorithms. The 
highest auROC (97.99%) was achieved by SVM with TRGM_PSSM fea
tures, followed by RF (97.71%) with KBGM_PSSM features (Fig. 2.). 
Similarly, SVM achieved the highest auPRC (98.26%) with TRGM_PSSM, 
followed by RF (98.01%) with KBGM_PSSM features. If the performance 
metrics were averaged across the feature sets, the highest accuracy 
(89.45%), auROC (95.49%) and auPRC (95.34%) were observed with 
the LightGBM followed by XGBoost (accuracy: 88.81%, auROC: 95.10%, 
auPRC: 94.89%) (Fig. 2.). Similarly, while performance metrics were 
averaged across the learning algorithms, the highest accuracy (90.11%), 
auROC (95.73%) and auPRC (95.62%) were obtained with KBGM_PSSM 
features (Fig. 2.). Taking all the performance metrics into account, the 
TRGM_PSSM and KBGM_PSSM features were selected for further 

Table 1 
Parameter configuration and software utilized for implementation of both 
shallow and deep learning models.  

ML models Parameter setting Software used 

Support Vector 
Machine (SVM)  
[43] 

kernel = “rbf”, 
γ = 1/ #column, cost = 1 

e1071 R-package 

Extreme Gradient 
Boosting (XGBoost) 
[44] 

max_depth = 3, η = 1, nrounds = 2, 
objective = “logistic” 

xgboost R- 
package 

Random Forest (RF) 
[45] 

ntree = 1000, 
mtry =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
#column

√
randomForest R- 
package 

Light Gradient 
Boosting 
(LightGBM) [46] 

objective= ‘binary’, 
boosting= “gbdt”, learning_rate 
= 0.1, num_leaves = 31, 
nrounds = 1000 

lightgbm R- 
package 

Stochastic Gradient 
Descent(SGD) [47] 

learning rate = 0.01, max_iter= 1000, 
batch_size= 32, tol= 1e-3 

scikit-learn 
Python library 

Gradient Boosting 
Decision Tree 
(GBDT) [48] 

n_estimators= 1000, 
learning_rate= 0.01, max_depth= 3 

scikit-learn 
Python library 

Adaptive Boosting 
(AdaBoost) [49] 

v = 5, mfinal = 1000 adabag R- 
package 

Bagging [50] nbagg= 25 ipred R-package 
Convolutional Neural 

Networks (CNN)  
[51] 

1st Conv1D: 5× 1, 5 kernels; 1st 
Maxpooling1D: 2× 1; 2nd Conv1D: 
5× 1, 10 kernels; 2nd Maxpooling1D: 
2× 1; ReLU activation function; 
Dense layer neurons = 500; 2 dropout 
layers with rate 0.2, Adam optimizer, 
Softmax loss function, Binary cross- 
entropy, epoch = 100, batch size 
= 20, learning rate = 0.001 

TensorFlow 
python module 

Long Short-Term 
Memory (LSTM)  
[52] 

LSTM units = 64, time step = 10, with 
dropout = 0.2; Dense layer neurons 
= 500; ReLU activation function; 2 
dropout layers with rate 0.5, Adam 
optimizer, Softmax loss function, 
Binary cross-entropy, epoch = 100, 
batch size = 20, learning rate = 0.001 

PyTorch module 
of python 

Bidirectional LSTM 
(Bi-LSTM) [53] 

LSTM units = 64, time step = 10, with 
dropout = 0.2; merge-mode 
= “average”; Dense layer neurons 
= 500; ReLU activation function; 2 
dropout layers with rate 0.5, Adam 
optimizer, Softmax loss function, 
Binary cross-entropy, epoch = 100, 
batch size = 20, learning rate = 0.001 

PyTorch module 
of python 

Gated Recurrent Unit 
(GRU) [54] 

GRU units = 64, time step = 10, with 
dropout = 0.2 and recurrent dropout 
= 0.2; Dense layer neurons = 500; 
ReLU activation function; 2 dropout 
layers with rate 0.5, Adam optimizer, 
Softmax loss function, Binary cross- 
entropy, epoch = 100, batch size 
= 20, learning rate = 0.001 

TensorFlow 
python module  
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analysis with the four best performing models such as LightGBM, RF, 
SVM and XGBoost. 

3.2. Evaluation of deep learning models for predicting RBPs 

The performance of the 4 best learning models (SVM, RF, LightGBM 
and XGBoost) were compared with that of 4 deep learning models 
(LSTM, Bi-LSTM, CNN and GRU) using the KBGM_PSSM, TRGM_PSSM 
and KBGM+TRGM_PSSM features. It was observed that performance 
metrics enhanced while combined features (KBGM+TRGM_PSSM) were 
employed, as compared to the individual feature sets (KBGM_PSSM, 
TRGM_PSSM), for almost all the machine learning models (Fig. 3.). All 
the 4 deep learning models achieved > 90% accuracy, > 95% auROC 
and auPRC for all the three feature sets (Fig. 3.). Among the deep 
learning models, GRU achieved the highest accuracy (94.66%) and 
auROC (98.28%) with TRGM_PSSM features and the highest auPRC 
(98.28%) with KBGM+TRGM_PSSM features (Fig. 3.). It was also 
observed that the deep learning model GRU achived a little higher 
auROC (98.24%) and auPRC (98.28%) as compared to the best per
forming shallow learning model RF (auROC: 97.96%, auPRC: 98.25%) 
(Fig. 3.). 

3.3. Feature selection analysis 

Though higher performance metrics were achieved with 
KBGM+TRGM_PSSM features, the feature dimension is very high (8400 
features) which may lead to over prediction. Thus, variable importance 
measure of XGBoost and LightGBM were utilized for selection of 

relevant and non-redundant predictor variables. We selected the top 
1400 features and performance metrics (auROC and auPRC) were 
computed through 5-fold cross-validation by accounting 10 selected 
features sequentially. It was seen that CNN achieved the higher perfor
mance metrics followed by LightGBM across the selected features, 
though GRU was seen to be the best performer with full 8400 features 
(Fig. 4.). In particular, CNN achieved the highest performance metrics 
with 920 XGB-VIM selected features (auROC: 98.04%, auPRC: 98.19%) 
and 1320 LGBM-VIM selected features (auROC: 97.99%, auPRC: 
98.21%) (Fig. 4). 

3.4. Prediction analysis for independent test set 

The CNN model trained with 920 XGB-VIM and 1320 LGBM-VIM 
selected features was further employed for prediction of the indepen
dent dataset which comprises 280 sequences from both RBP and non- 
RBP classes. The accuracy of the independent dataset was found 
higher with the XGB-VIM selected features (90.45%) as compared to the 
LGBM-VIM selected features (89.76%) (Table 2). The auROC and auPRC 
with XGB-VIM features (95.77%, 95.78%) was found a little higher than 
that of LGBM-VIM selected features (95.07%, 95.38%) (Table 2). The 
precision with XGB-VIM features (91.82%) was found ~4% higher than 
compared to the LGBM-VIM features (87.97%) (Table 2). 

3.5. Comparison with existing models 

Using the independent dataset, performance of the proposed 
approach (CNN with 920 XGB-VIM selected features) was further 

Fig. 1. Flow diagram depicts the different steps followed to develop the proposed RBP prediction model.  
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compared with 10 existing prokaryotic RBP prediction models. None of 
the existing models were able to achieve > 90% accuracy. Among the 
existing models, PreRBP-TL achieved the highest performance metrics 
(Table 3). However, the accuracy of the proposed model (90.45%) was 
found ~1% higher than that of PreRBP-TL (89.43%) (Table 3). Though 
auROC of the proposed model (95.77) was found at par with that of 
PreRBP-TL (95.44%), the auPRC (95.78) was found ~2% higher than 
that of PreRBP-TL (93.84%) (Table 3). Similarly, the F1-Score of the 
proposed model (89.98%) and PreRBP-TL (89.28) was found at par, but 
the proposed model (80.93%) achieved ~2% higher MCC than that of 
preRBP-TL (78.90%) (Table 3). 

3.6. Comparative analysis using the training dataset of PreRBP-TL 

From Table 3, it was observed that the PreRBP-TL achieved higher 
accuracy among the existing RBP prediction models. Thus, to further 
make a comparison with PreRBP-TL, the performance of RBProkCNN 
was evaluated using the training dataset of PreRBP-TL. Since the cross- 
validation accuracy of PreRBP-TL have been reported for two species 
(E. coli and Salmonella), the performance of RBProkCNN was evaluated 
using the training dataset of E. coli (351 RBPs and 2819 nonRBPs) and 

Salmonella (206 RBPs and 1107 nonRBPs) following five-fold cross- 
validation and compared with that of PreRBP-TL. It was found that for E. 
coli, auROC of RBProkCNN (93.62%) achieved a little higher accuracy 
than that of PreRBP-TL (93.33%), whereas for Salmonella, PreRBP-TL 
achieved higher auROC (95.20%) than that of RBProkCNN (93.87%) 
(Table 4). As far as auPRC is concerned, RBProkCNN achieved better 
accuracy as compared to the PreRBP-TL, for both E.coli and Salmonella 
(Table 4). Since the dataset is imbalanced, auPRC is a better measure 
than auROC as it takes into account the information of both positive and 
negative classes. Thus, on the basis of auPRC measure, it can be said that 
the proposed model may achieve higher accuracy than that of PreRBP- 
TL. 

3.7. Comparison with PreRBP-TL using another independent dataset 

The performance advantage of RBProkCNN over PreRBP-TL was 
observed to be small, which may be due the initial large language 
generative model of PreRBP-TL where the test data set of RBProkCNN 
were included in the model training. Nonetheless, to further validate the 
higher performance of RBProkCNN over PreRBP-TL, we prepared 
another independent test dataset comprising prokaryotic RBP sequences 

Fig. 2. Heatmaps of the performance metrics of different shallow learning algorithms while prediction was independently done with individual PSSM- 
derived features. 
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Fig. 3. Bar plots of the performance metrics of the shallow learning and deep learning models with KBGM_PSSM, TRGM_PSSM and KBGM+TRGM_PSSM features.  
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of four different species such as Haemophilus Influenzae (116), Myco
bacterium tuberculosis (97), Shigella flexneri (108) and Yersinia pestis (96). 
It was ensured that none of these species were present in the training set 
of RBProkCNN as well as PreRBP-TL. From Table 5, it was observed that 
RBProkCNN achieved higher accuracy as compared to the PreRBP-TL 
model, for all the four species. 

4. Discussion 

The establishment of a suitable dataset is pivotal in machine 
learning-based classification tasks, especially in the context of compu
tational biology and bioinformatics [57]. In other words, utilization of a 
dataset encompassing a larger number of species holds the potential to 
capture a broader range of conserved patterns in prokaryotic species. 
For RBP prediction task, the existing models utilised protein sequences 
from both eukaryotic and prokaryotic sources [26–30,32–34,36,37], 
where the eukaryotic dataset’s size significantly exceeds that of pro
karyotic species. This likely contributes to the lower accuracy observed 
in prokaryotic-specific RBP prediction in existing tools. To enhance 
generalizability across diverse prokaryotic species and capture universal 
features among them, our study incorporates 741 prokaryotic species, a 
substantial increase compared to the fewer than 100 prokaryotic species 
considered in earlier studies. 

The RBPs and non-RBPs were subjected for the removal of highly 

Fig. 4. Dot plots of the auROC and auPRC of the machine learning models while prediction was made using the XGB-VIM and LGBM-VIM selected features.  

Table 2 
Performance metrics of the CNN on independent dataset while the prediction 
was performed using 920 XGB-VIM and 1320 LGVM-VIM selected features.  

Feature Accuracy Precision F1- 
Score 

MCC auROC auPRC 

XGB-VIM 
(920) 

90.45 91.82 89.98 80.93 95.77 95.78 

LGBM-VIM 
(1320) 

89.76 87.97 89.67 79.58 95.07 95.38  
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similar sequences using the CD-HIT program because the presence of 
highly similar sequences introduce homologous bias in the prediction 
accuracy which in turn leads to the overestimation of the prediction 
accuracy. Another advantage of using CD-HIT is reduction in compu
tational complexity due to the removal of redundant sequences. There is 
no thumb rule to select the sequence identity threshold. In this study, we 
preferred to set the threshold 0.25 which means the sequences that 
shared more than 25% similarity with other sequences gets eliminated. 
In several existing studies, the threshold has been set to 0.4. However, a 
higher threshold will result in less stringent clustering, allowing for 
more sequences to be grouped together, even if they are not more 
similar. This can lead to a loss of sequence diversity within clusters, 
potentially overlooking important variations or subtypes present in the 
dataset. To study the effects of different thresholds, the prediction 
analysis was performed using the training datasets at 3 different 
sequence identity threshold such as 0.3, 0.35 and 0.4. It was observed 
that with increase in the sequence identity threshold, the prediction 
accuracies were increased (Supplementary Fig. 1). 

Given the limited availability of structural information for RBPs, the 
majority of existing prediction models relied on sequence-derived fea
tures and employed machine learning algorithms for prediction. 

Notably, among sequence-based features, those derived from PSSM 
profiles of protein sequences have demonstrated effectiveness in various 
studies [26–37]. This improvement may stem from the capability of 
PSSM-based features to capture context-dependent information, con
servation patterns, and evolutionary insights. Though we initially 
considered fifteen distinct PSSM-based evolutionary features, two 
PSSM-derived feature sets, namely KBGM_PSSM and TRGM_PSSM, were 
selected to harness the complementary information provided by PSSM 
and other sequence-derived features. While previous RBP prediction 
models have also incorporated PSSM-derived features like PSSM-400 
[27,32,58,59], BLOSUM62 [28,29,33–35], and PSSM-TPC [31,60], the 
features KBGM_PSSM and TRGM_PSSM have not been explored for RBP 
prediction in earlier studies. 

In addition to using of KBGM_PSSM and TRGM_PSSM feature set 
independently, performance of the learning algorithms were also eval
uated with combined feature set (8400 features). While ensemble of 
multiple features effectively encodes protein sequence data, it may 
introduce redundancy and noise, potentially diminishing the model’s 
effectiveness. Therefore, selection of relevant and non-redundant fea
tures is essential. Among existing RBP prediction models, only the 
RBPpred model [27] utilized the minimum redundant maximum rele
vant criteria (mRmR) [61] for feature selection. For the current study, 
we employed two different feature selection techniques, LGBM-VIM 
[46] and XGB-VIM [56], to choose pertinent and non-redundant fea
tures. It was observed that CNN achieved higher performance accuracy 
with 920 XGB-VIM selected features, although GRU demonstrated the 
highest accuracy with the full 8400 features. Therefore, CNN with 920 
XGB-VIM selected features was chosen for developing the RBProkCNN 
model. The CNN model has also been identified as the most successful 
algorithm for RBP prediction task [32,33]. 

There was an obvious imbalance in the positive and negative data, 
with larger size for the negative set. However, we utilized the balanced 
dataset for prediction analysis that comprises equal instances from both 
positive and negative sets, where the instances of the negative set were 
sampled from the whole negative dataset. Using of balanced dataset has 

Table 3 
Comparison of the performance metrics of the proposed approach with that of existing RBP prediction models, using an independent test dataset.  

Models Accuracy Precision F1-Sscore MCC auROC auPRC 

RNApred  69.15  64.33  72.01  40.12 - - 
RBPPred  68.80  73.36  63.56  38.16 78.98 73.13 
Deep-RBPPred 

(Balanced)  
60.83  57.46  64.80  23.19 66.11 64.57 

Deep-RBPPred 
(Unbalanced)  

64.12  64.20  61.45  28.11 70.21 68.31 

iDRBP_MMC  84.75  96.15  81.97  71.55 - - 
DeepDRBP-2 L  87.18  85.03  87.11  74.45 - - 
iDRBP-EL  66.90  73.06  59.62  34.80 - - 
iDRBP-ECHF  54.25  76.67  14.84  13.19 - - 
IDRBP-PPCT  78.68  77.16  78.38  57.40 - - 
PreRBP-TL (E. coli)  89.43  87.89  89.28  78.90 95.21 92.59 
PreRBP-TL (Salmonella)  88.73  91.19  87.99  77.58 95.44 92.44 
PreRBP-TL (Bacillus)  85.27  90.46  83.69  71.05 95.03 93.84 
PreRBP-TL (Staphylococcus)  84.75  89.67  83.14  69.97 93.55 89.62 
iDRPro-SC  58.40  59.43  51.21  16.63 - - 
Proposed  90.45  91.82  89.98  80.93 95.77 95.78 

The auROc and auPRC could not be computed for some tools due to the unavailability of probability of prediction. 

Table 4 
Performance comparison of PreRBP-TL and the RBProkCNN using the training datasets of PreRBP-TL.  

Model Species Accuracy Precision F1-Score MCC auROC auPRC 

RBProkCNN E. coli 87.54 84.21 80.32 78.14  93.62  83.57  
Salmonella 87.35 81.11 79.54 75.86  93.87  85.19 

PreRBP-TL E. coli - - - -  93.33  81.25  
Salmonella - - - -  95.20  84.52 

Only auROC and auPRC have been reported in PreRBP-TL paper 

Table 5 
Species-specific prediction accuracy of PreRBP-TL and the proposed model 
RBProkCNN.  

Species PreRBP-TL RBProkCNN 

E. coli Salmonella Bacillus Streptococcus 

Haemophilus 
Influenzae  

91.38  87.07  76.72  63.79  93.10 

Mycobacterium 
tuberculosis  

88.66  81.44  77.32  69.07  91.75 

Shigella flexneri  93.52  91.67  79.63  65.74  94.44 
Yersinia pestis  92.71  88.54  81.25  70.83  98.96 

The results show the percentage of correctly predicted RBPs among all the RBP 
sequences 
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certain advantages over the imbalanced dataset that (i) it ensures that 
the model is trained on a representative sample of each class, preventing 
bias towards the majority class, (ii) machine learning algorithms often 
perform better with balanced datasets and (iii) appropriate for evalu
ating the performance of the model across all classes, as each class has an 
equal contribution to the evaluation metrics. Nonetheless, the perfor
mance of RBProkCNN was also evaluated using the imbalanced training 
datasets of best performing existing model PreRBP-TL and was found to 
perform better than that of PreRBP-TL. Thus, it may be said that the 
RBProkCNN may perform better both with balanced and imbalanced 
datasets. 

The performance RBProkCNN was also assessed on a blind test 
dataset to demonstrate its robustness and generalization ability, where 
the performance metrics were found to be closer to that of cross- 
validation. To further validate the model’s reliability, we compared 
RBProkCNN’s performance with existing state-of-the-art methods using 
the same blind test dataset. The RBProkCNN exhibited higher accuracy 
compared to the other available methods. In other words, the existing 
methods were observed achieving less accuracy for predicting 
prokaryotic-specific RBPs than that of eukaryotic species like humans 
and mice. The RBPs are known to be highly tissue- and lineage-specific 
[31,38,62,63], whereas the existing models have been developed based 
on protein sequences of several eukaryotic and few prokaryotic species, 
making them less accurate for predicting prokaryote-specific RBPs. 
Thus, RBProkCNN is believed to address this gap by providing a model 
tailored for predicting prokaryote-specific RBPs, underscoring the 
importance of accurate predictions in unravelling gene expression pat
terns and enhancing our understanding of prokaryotic gene regulation. 

5. Conclusion 

RNA-binding proteins (RBPs) are indispensable elements across 
diverse life forms, influencing crucial cellular functions. While the ma
jority of research has centered on eukaryotic RBPs, recent insights un
derscore the pivotal role of prokaryotic RBPs in bacterial gene 
regulation, virulence, and adaptation to environmental conditions. The 
present study introduces RBProkCNN (https://iasri-sg.icar.gov.in/rbpr 
okcnn/), a novel computational tool specifically tailored for predicting 
prokaryote-specific RBPs. Utilizing a CNN-based deep learning model 
with an ensemble of evolutionary features, RBProkCNN addresses the 
specificity of RBPs to individual species and lineage-specific families, 
providing more accurate predictions. Experimental validation of pre
dicted RBPs, especially prokaryote-specific ones, will be crucial for 
confirming predictions and unravelling the functional significance of 
these proteins. Future endeavours should strive for continuous 
improvement, collaboration, and the integration of diverse data sources 
for a more comprehensive understanding of RBP functions in 
prokaryotes. 
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