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Striatal prediction errors support dynamic
control of declarative memory decisions
Jason M. Scimeca1,2, Perri L. Katzman1 & David Badre1,3

Adaptive memory requires context-dependent control over how information is retrieved,

evaluated and used to guide action, yet the signals that drive adjustments to memory

decisions remain unknown. Here we show that prediction errors (PEs) coded by the striatum

support control over memory decisions. Human participants completed a recognition

memory test that incorporated biased feedback to influence participants’ recognition

criterion. Using model-based fMRI, we find that PEs—the deviation between the outcome and

expected value of a memory decision—correlate with striatal activity and predict individuals’

final criterion. Importantly, the striatal PEs are scaled relative to memory strength rather

than the expected trial outcome. Follow-up experiments show that the learned recognition

criterion transfers to free recall, and targeting biased feedback to experimentally manipulate

the magnitude of PEs influences criterion consistent with PEs scaled relative to memory

strength. This provides convergent evidence that declarative memory decisions can be

regulated via striatally mediated reinforcement learning signals.
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T
he human brain is capable of efficiently retrieving useful
information from long-term memory and using this
information to guide action. A challenge to any memory

system is to retrieve and act on information that has high utility,
given the current circumstances. The human memory systems
have some intrinsic features related to basic encoding, retrieval,
and consolidation that partly confront this information retrieval
problem1,2. However, strategic cognitive control processes
supported by frontoparietal brain networks can further shape
retrieval by using current goals and context to adaptively guide
retrieval toward high utility information and outcomes3–7.
Memory disorders arising in patients with compromised
cognitive control systems are often traceable to a failure of
strategic guidance, evaluation and use of memory8. Yet a striking
observation from both real life and the laboratory is that healthy
individuals routinely apply memory retrieval strategies to positive
effect, despite having little explicit training or instruction1,3,9–11.
The declarative memory literature has identified a variety of
control processes that guide retrieval, and the neural systems that
implement this control are relatively well recognized1,3,9–11.
However, a fundamental open question concerns how the brain
acquires, evaluates, and adapts memory control processes. Here
we show that reinforcement learning (RL) mechanisms can
support the evaluation and adjustment of memory control
processes.

Outside of the declarative memory domain, RL mechanisms
are thought to contribute to the acquisition and adjustment of
policies for strategic action selection. Frontostriatal circuits
are central to this process, with frontal cortex supporting
maintenance of task relevant information and the nigra–striatal
dopamine system mapping value to the selection of appropriate
actions and policies. Ventral striatum has been widely associated
with receipt of primary and secondary rewards12,13 as well as
reward prediction error (PE), which reflects the degree to which
an experienced outcome value deviates from the expected value
(EV). Across many experiments, these striatal value signals have
been shown to drive learning of cognitive control for action
selection and nondeclarative learning12,14–17.

Thus, one hypothesis is that cognitive control of declarative
memory is similarly acquired through an RL (that is,
nondeclarative learning) process, wherein positive PEs reinforce
a reliance on a prevailing memory strategy and negative PEs
punish the strategy6,18. Despite a large literature on RL and value-
based decision-making, these nondeclarative learning processes
are not typically considered in the context of declarative memory
retrieval. Thus, connecting these divergent research areas may
provide insight into the mechanisms that regulate cognitive
control of memory retrieval. Further, declarative memory
provides a novel domain in which to test the generalizability of
RL principles. Importantly, however, the application of RL
mechanisms to regulating cognitive control of declarative
memory is complicated by several unknowns regarding how
value is assigned to memory decisions and outcomes18–21.

We focus here on how human participants learn to relate
evidence from memory to a decision and response; specifically,
we address adjustments of the recognition memory criterion.
Recognition memory involves classifying a stimulus as novel
(new) or previously encountered (old). Recognition memory
theory commonly assumes that all items will elicit at least some
match to long-term memory and thus will provide some evidence
of oldness, termed memory strength (MS)5,22–26. Old items
(that is, items studied during learning) will have higher MS than
new items (that is, unstudied items), although the distributions of
MS for old and new items can overlap (Fig. 1a). The recognition
decision criterion specifies the threshold level of evidence above
which an old decision is made (Fig. 1a). Criterion setting is a form

of mnemonic control in that it relates retrieved evidence to a
context-dependent decision and response.

Having a dynamic recognition criterion provides the primary
means by which an individual can balance errors due to
misidentifying a new item as old (false alarms) or failing to
recognize an old item (misses). A neutral criterion falls at the
intersection of the studied and unstudied distributions (Fig. 1a).
A conservative criterion requires more evidence for an old
decision, while a liberal criterion requires less evidence for an old
decision. The optimal criterion placement depends on an
individual’s context and goals27. For example, depending on
whether you are at a professional conference or vacationing in a
foreign country, you may be more or less likely to approach
someone who is only vaguely familiar. The expectation that the
person is someone you have met, the EV of speaking to them, and
the costs of being wrong can all differ across these two scenarios.
Thus, expectation and value arise at multiple stages in the
retrieval and decision process.

One manipulation that produces dynamic adjustments in
recognition criterion is biased feedback28. For example, providing
false positive feedback following incorrect old responses biases
the overall pattern of feedback and drives individuals to adopt a
more liberal criterion. We used this paradigm to induce
adjustments to decision criterion and identify the underlying
neural mechanisms. We hypothesized that feedback elicits PE
signals in striatum, and these PEs drive adjustments in
recognition criterion by reinforcing or punishing the preceding
memory decision. However, a challenge to testing this hypothesis
is that the source of value associated with a memory decision is
unknown. Using the framework of value-based decision-making
models, we thus considered two alternative models of how the EV
and PE are determined for memory decisions.

The first alternative, which we term the expected response
outcome (ERO) alternative, holds that the EV of a memory
decision is directly related to the expected outcome of the full trial
following a particular response. As such, this EV can be estimated
directly from the confidence in the memory decision. That is, a
high confidence rating reflects a high expectation of getting the
trial correct, and so receiving positive feedback. This relationship
holds equivalently for both new and old responses. In
signal-detection terms, higher confidence ratings correspond to
memory decisions for items further from the criterion (Fig. 1a)22.
Figure 1b shows four possible responses under this alternative.
For example, positive feedback following a high confidence
new response would result in a relatively small-positive PE
and reinforce a modest conservative shift in criterion (Fig. 1b,
top row).

The second alternative, which we term the MS alternative,
holds that the EV of a memory decision is linked to the retrieved
MS that led to that decision, such that greater retrieved MS is
linked to greater EV. That is, more evidence of oldness confers
higher EV regardless of the response that follows. Under this
alternative, the EV of a decision is related directly to MS: while
EV will be positively correlated with confidence ratings for old
decisions, it will be negatively correlated with confidence for new
decisions (Fig. 1a). Figure 1c shows four possible responses under
this alternative. For example, positive feedback following an item
with low MS (that is, a high confidence new response) would
result in a relatively large positive PE and thus reinforce a large
conservative shift in criterion (Fig. 1c, top row).

Both of these alternatives are couched in the framework of
existing decision-making models and have plausible support
from the existing memory literature. Individuals in recognition
tasks typically demonstrate reliable metacognitive accuracy:
high confidence responses are more likely to be followed by a
positive outcome than are low confidence responses22,29. This is
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consistent with the ERO alternative and is largely analogous
to the conceptualization of EV in conventional RL domains,
in particular Q-learning models in which PE is response
dependent30. The MS alternative is consistent with theories that
argue that successful memory retrieval elicits approach or further
processing (for example, familiarity gated retrieval)31,32 or that

achieving the goal of retrieval is inherently rewarding5,18–20.
Striatal activation is associated with retrieval success and has been
linked to the rewarding character of memory retrieval18–20.
Likewise, the source monitoring framework stresses the
behavioural value of retrieving specific information from
memory: memory is often probed in the service of action, and
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Figure 1 | Two alternative models of computing the expected value (EV) and prediction errors (PE) for memory decisions. (a) Standard signal detection

model of recognition memory decisions depicting memory strength distributions for unstudied (new) and studied (old) test items. Memory strength

increases along the horizontal-axis from left to right; confidence increases for responses further from the criterion. The neutral criterion shown here falls at

the intersection of the memory strength distributions for unstudied and studied items. The four circles correspond to four example memory test items of

varying memory strength. The scale for confidence and memory strength depicted in a is directly mapped onto the scales for EV in b and c. (b) The EVs

(black bars) for responses to the four example items under the expected response outcome alternative. EV values under this alternative are derived directly

from the confidence ratings given for each test item and the magnitude of the black bars corresponds to the magnitude of the EV. (c) The EVs for responses

to the same four items under the Memory Strength alternative. EVs under this alternative are derived from the memory strength associated with each test

item and the magnitude of the black bars corresponds to the magnitude of the EV. (b,c) PEs are calculated as the difference between the feedback outcome

and the EV. The PEs depicted here (coloured arrows) correspond to the magnitude of positive PEs following a positive feedback outcome on each example

trial. Blue arrows correspond to positive PEs following a new decision and thus reinforce a more conservative criterion. Orange arrows correspond to

positive PEs following an old decision and thus reinforce a more liberal criterion. The degree to which each positive (or negative) feedback instance

will reinforce (or punish) a particular decision depends on the magnitude of the PE. On each trial, the EV and PE values were calculated using as input the

old/new decision, confidence, and feedback outcome. See the Methods section for details regarding specific calculations for EV and PE values under the

ERO and MS alternatives.
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successful retrieval attempts give rise to positive outcomes
(for example, searching memory for your mental grocery list
while shopping)5. The MS alternative is similar to the
conceptualization of value in actor-critic flavours RL, in which
PE is computed relative to a state value rather than response-
dependent value30.

We used the logic described in Fig. 1 to test the hypothesis that
striatally mediated PEs drive adjustments in the recognition
criterion. First, using fMRI and trial-by-trial estimates of MS-PEs
and ERO-PEs, we test the hypothesis that striatum tracks PE and
these PEs drive shifts in memory criterion. In a follow-up
behavioural experiment, we target false feedback to different
levels of confidence across experimental groups. This allows us to
experimentally manipulate the magnitude of PEs elicited by false
feedback and demonstrate that this manipulation influences
the magnitude of criterion shifts across groups. Finally, using
computational modelling and a free recall transfer protocol,
we provide evidence that learning is localized to the evaluation of
retrieved memory evidence, as opposed to a response bias.

Results
Biased feedback influences recognition memory criterion.
Participants completed a recognition memory test during fMRI
scanning (Fig. 2a; see Methods). For each test item, they made
an old/new decision and indicated their confidence using a
continuous confidence scale. Overall, participants accurately
performed the task (mean proportion correct¼ 76.41%; s.e.m.
¼ 1.21%) and fewer than 5% of trials were non-response errors.
The mean response time was 993 ms (s.e.m.: 12 ms).

Following a jittered delay, positive (‘Correct!’) or negative
(‘Incorrect!’) feedback was provided on each trial. False-positive
feedback was provided on B70% of incorrect old responses
(false alarms). All other responses received veridical feedback.
This biased feedback drove participants to adopt a more liberal
criterion over the course of the experiment (Fig. 2b). The
criterion shift effect was supported by a main effect of time on
criterion (F(3.3,59.9)¼ 2.938, P¼ 0.036, ZP

2¼ 0.140), and the
direction of the shift was confirmed by planned t-tests comparing
the terminal criterion against the initial criterion (t(18)¼ 2.848,
P¼ 0.011, Cohen’s d¼ 0.692) and against a neutral criterion of
zero (t(18)¼ 3.730, P¼ 0.002, Cohen’s d¼ 0.859).

Whereas veridical feedback does not typically impact
recognition criterion28,33, the biased feedback paradigm
successfully drove changes in recognition decision criterion.
Furthermore, the continuous confidence ratings and biased
feedback protocol in the present experiment were designed to
provide a wide range of PE values from trial to trial. Altogether,

these features allow us to identify the neural correlates of PEs
during memory decisions and link these neural PEs to behaviour.

Striatum codes prediction errors for recognition decisions. To
identify PE signals in the brain we used the old/new response,
confidence rating and feedback outcome for each trial to calculate
trial-by-trial EVs and PEs under the logic of the MS and ERO
alternatives (Fig. 1; see Methods). EVs and PEs were calculated
for all trials on which participants made a decision, including
false feedback and veridical feedback trials. We constructed a
separate general linear model (GLM) for each of the ERO and MS
alternatives using the respective EV and PE values generated from
each alternative (Methods). This approach allows the regressors
in each GLM to capture both the shared and unique variance for
each alternative.

We first considered the neural circuitry that tracked
trial-by-trial MS-PEs at feedback. As predicted, the striatum,
along with other brain areas, tracked MS-PEs following memory
decisions (Fig. 3b; Supplementary Fig. 1; Supplementary Table 1).
The signal across an anatomical region-of-interest (ROI)
encompassing the whole striatum (Methods) was significantly
associated with MS-PE (t(18)¼ 4.858, Po0.001, Cohen’s
d¼ 1.114). Next, we tested whether striatal PEs are related to
behaviour in the recognition test. The striatal signal from the ROI
predicted individuals’ terminal criteria (correlation between
MS-PE parameter estimates and terminal criterion: R¼ � 0.547,
P¼ 0.015; Fig. 4a), such that individuals with greater PE-related
activation of striatum had more liberal criteria at the end of the
experiment.

We found a similar pattern of results for the neural correlates
of ERO-PEs. ERO-PE also activated striatum, among other brain
regions (Supplementary Fig. 1; Supplementary Table 2). However,
as will be discussed below, this similar pattern is likely due to the
large degree of shared variance between the MS-PE and ERO-PE
predictors (Fig. 3a).

Memory strength PEs are linked to striatal signal. We
constructed a third GLM that included both MS-PE and ERO-PE
regressors (Methods). This approach allows the regressors to
compete for variance and thus activity associated with either
regressor in this model will be due to the unique variance above
and beyond their shared variance. We found that the unique
variance of MS-PE was tracked by striatum (Fig. 3c;
Supplementary Fig. 1; Supplementary Table 1). The unique
variance of ERO-PE was not significantly associated with any
activity in striatum. Instead, the unique variance of ERO-PE was
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Figure 2 | Behavioural task and results from fMRI experiment. (a) Participants completed a recognition memory test during fMRI scanning. On each trial,

they made an old/new decision by pressing one of two buttons. They indicated their confidence using a continuous confidence scale: holding down the

response button caused a black bar to move within the rectangle below their chosen response. They released the button to lock-in their confidence rating

such that high confidence corresponded to the top of the rectangle. Positive (‘Correct!’) or negative (‘Incorrect!’) feedback was provided on each trial

following a jittered fixation delay. In the fMRI experiment, false positive feedback was provided on B70% of incorrect old responses. Veridical positive and

negative feedback was provided on all other trials. (b) The biased feedback paradigm elicited a liberal shift in criterion (that is, more negative criterion

values) over the course of the recognition test. Error bars are s.e.m.
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associated with activation in bilateral inferior parietal cortex and
right inferior frontal gyrus (Fig. 3d; Supplementary Fig. 1;
Supplementary Table 1).

We complemented this voxelwise analysis with ROI analyses.
We first extracted the signal from the anatomical striatum ROI
(Fig. 3e). Activity across the entire striatal ROI was significantly

associated with unique MS-PE (t(18)¼ 4.172, Po0.001, Cohen’s
d¼ 0.957) but not with unique ERO-PE (t(18)¼ 1.162, P¼ 0.260,
Cohen’s d¼ 0.266), although the difference between the two
predictors did not reach significance (t(18)¼ 1.558, P¼ 0.137,
Cohen’s d¼ 0.357). Then, to assess the pattern of unique variance
across the striatum relative to other regions in the brain, we tested
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variance of the memory strength alternative. (c,d) When the predictors are restricted to unique variance, MS-PE is coded in striatum and ERO-PE is coded

in right inferior frontal gyrus and bilateral inferior parietal cortex. (e,f) Signal extracted from anatomical regions of interest (ROIs; shown inset; see text for

definitions) reveal a significant ROI� predictor interaction. Whole-brain statistical maps are thresholded at Po0.05, FDR cluster corrected. Colour maps

represent t-statistics with a range from 0 to 8. Parameter estimates are in arbitrary units. Error bars are s.e.m. **Po0.01 versus zero.
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for a predictor� region interaction34. Guided by the functional
activations observed for unique ERO-PE, we used the AAL
database to construct a second anatomically defined ROI by
combining bilateral inferior parietal masks with a mask of
right inferior frontal gyrus opercularis (Fig. 3f). Activity in this
anatomical ROI was not significantly associated with unique
MS-PE (t(18)¼ � 0.224, P¼ 0.825, Cohen’s d¼ � 0.051);
although there was a reliable association with unique ERO-PE
(t(18)¼ 3.355, P¼ 0.004, Cohen’s d¼ 0.770) and a reliable
difference between ERO-PE and MS-PE (t(18)¼ 2.114,
P¼ 0.049, Cohen’s d¼ 0.827). We submitted the parameter
estimates for unique MS-PE and unique ERO-PE from these two
ROIs to a 2� 2 ANOVA and found a significant predictor�ROI
interaction (F(1,18)¼ 13.224, P¼ 0.002, ZP

2¼ 0.424). Taken
together, these results show that the signal in striatum is better
explained by the MS-PE predictor than by the ERO-PE predictor,
relative to the opposite pattern observed in frontoparietal regions.

This result is bolstered by several control analyses addressing
the relative pattern of predicted PEs within old and new
responses (see Methods; Supplementary Fig. 2). MS-PE is
associated with striatal activity even after controlling for the MS
alternative’s prediction that PEs for positive feedback will always
be larger following old than following new responses (compare
orange versus blue arrows in Fig. 1c). Similarly, MS-PE is
associated with striatal activity even when constraining the
analysis to only feedback following new responses, when the MS
and ERO alternatives make categorically opposite predictions
(compare pattern of blue arrows in Fig. 1b,c).

Expected value is coded by both retrieval and value regions. We
found that the MS-EV regressor of shared and unique variance
was coded in a broad network that included precuneus,
medial prefrontal cortex (PFC), caudate, posterior cingulate and
amygdala (Supplementary Fig. 3; Supplementary Table 2). This
network overlapped with the ‘core’ recollection network20,35,36

and regions typically exhibiting retrieval success effects4,18,36.
Many of these regions have also been implicated in representing
subjective value during choice tasks37–39. The ERO-EV regressor
of shared and unique variance was correlated with a similar
network of regions (Supplementary Fig. 3; Supplementary
Table 2), overlapping with regions identified in previous studies
of recognition confidence29. As a control analysis, we conducted
the standard retrieval success contrast (correct old4correct new
responses), which allows for comparison between the activation
in this contrast to the activation associated with the various EV
and PE signals (see Methods; Supplementary Fig. 2).

When we included MS-EV and ERO-EV in the same analysis
(GLM 4; see Methods; Supplementary Fig. 3; Supplementary
Table 2), we found that the unique variance of these regressors
was represented in overlapping areas of ventromedial PFC
(vmPFC) and precuneus38. ERO-EV, but not MS-EV, was
represented in the left anterior frontal pole, left superior frontal
gyrus, and left putamen. MS-EV, but not ERO-EV, was
represented in a more posterior portion of vmPFC.

Targeting feedback to manipulate the magnitude of PEs. The
link between MS-PEs, striatal activation, and individuals’ terminal
criterion provides support for the role of PEs in regulating
recognition criterion and favours the MS alternative. In a
follow-up between-groups behavioural experiment, we used the
logic of Fig. 1 to test the hypothesis that targeting false positive
feedback to specific levels of confidence will result in either small
or large PEs, which will in turn drive small or large shifts in
criterion. Participants in this experiment also completed a
recognition memory test with a continuous confidence rating and
biased feedback (see Methods; Fig. 2a). Although all instances of
positive and negative feedback result in a PE, targeting false
feedback allows us to experimentally bias the overall pattern of PE
experienced by each group.

Importantly, the design allows us to differentiate between the
different behavioural patterns predicted by the ERO and MS
alternatives (Fig. 5a,b). Two groups received false positive
feedback following incorrect new responses. Because this feed-
back reinforces the preceding decision, we predicted this would
reinforce new decisions and result in a more conservative
criterion28. Critically, one group received false feedback targeted
to high-confidence new errors (for example, striped-blue circle
in Fig. 1a; new—High Confidence group) and the other
received false feedback targeted to low-confidence new errors
(for example, solid-blue circle in Fig. 1a; New–Low Confidence
group). The two alternatives make different predictions regarding
the average magnitude of positive PEs elicited in each group. The
ERO alternative predicts larger PEs and a more conservative
criterion for the New–Low Confidence group (relative magnitude
of blue arrows in Fig. 1b and Fig. 5a), as positive feedback
following low confidence would elicit larger PEs. In contrast, the
MS alternative predicts larger PEs and a more conservative
criterion for the New–High Confidence group (relative
magnitude of blue arrows in Fig. 1c and Fig. 5b), as positive
feedback following low-MS would elicit larger PEs.

Two groups received false positive feedback following incorrect
old responses, similar to the fMRI experiment, which we
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predicted would result in a liberal criterion28. Critically, one
group received false feedback targeted to low-confidence old
errors (for example, solid-orange circle in Fig. 1a; Old–Low
Confidence group) and the other received false feedback targeted
to high-confidence old errors (for example, striped-orange circle
in Fig. 1a; Old–High Confidence group). Both alternatives predict
that false feedback will elicit larger PEs for the Old–Low
Confidence group than for the Old—High Confidence group
(relative magnitude of orange arrows in Fig. 1b,c) and result in a
more liberal criterion in the Old–Low Confidence group
(Fig. 5a,b).

Figure 5 shows the terminal criterion for the four false-
feedback groups and a control group that received completely
veridical feedback on all trials. Our results are consistent with the
MS alternative: the larger magnitude criterion are observed in the
New—High Confidence and Old–Low Confidence groups.
We submitted the terminal criterion values from the four biased
feedback groups to a two-way analysis of variance (ANOVA) with
factors of targeted response group (old/new) and targeted
confidence (low/high). In support of the MS alternative,
we found a main effect of targeted confidence (F(1,60)¼ 6.612,
P¼ 0.013) and no interaction between the factors
(F(1,60)¼ 0.901, P¼ 0.346). Note that the effect of PEs under
the MS alternative manifests as a main effect because the two
High Confidence groups show more positive criteria than the two
Low Confidence groups (striped arrows/bars are more positive
than solid arrows/bars in Fig. 5b,c). The two alternatives differ
specifically in their predictions for the two New groups and a
comparison between these groups confirmed that the New–High
Confidence group adopted a more conservative criterion
(t(30)¼ 2.622, P¼ 0.014), bolstering support for the MS
alternative.

Control analyses confirmed that this result could not be
explained by changes in response confidence between groups
(Supplementary Note 1; Supplementary Table 3). Analysing

criterion as a function of time revealed that initial learning occurs
rapidly and continues throughout the test phase (Supplementary
Note 1; Supplementary Fig. 4). Finally, an individual differences
analysis that took into account the PE across all trials (veridical
and false feedback) found that this net PE metric was correlated
with participants’ terminal criteria (Supplementary Note 1;
Supplementary Fig. 5).

The psychological locus of learning is in memory evaluation.
Because the criterion measure in signal-detection theory is based
on false alarms and misses, differences in criterion reflect
differences in the proportions of old and new responses. As such,
there are (at least) two possible psychological loci where learning
could occur. Consider the liberal shift observed in the fMRI
experiment: one explanation is that the adjustment simply
involved an increased propensity to make old responses because
old responses more frequently led to positive-feedback outcomes.
Thus, individuals learned to bias their responding towards old
responses regardless of the retrieved memory evidence, akin to
the learning observed in typical RL and decision-making
paradigms. We term this response-level learning. An alternative
explanation is that the more liberal criterion reflects adjustments
to the evaluation of retrieved memory evidence. That is,
individuals learned to adjust the threshold above which they
considered a given level of memory evidence as old. We term this
memory-level learning. (This logic can likewise be applied to the
more conservative criterion observed in the New groups of
the behavioural experiment.) Thus, although the imaging and
behavioural data suggest that memory-level PE is the learning
signal used to regulate criterion, it remains important to test
whether changes in criterion actually reflect the adjustment of
memory process (that is, the interpretation of evidence from
memory) versus motor or response learning.

To probe the psychological locus of learning, we applied
computational modelling to the behavioural data collected during
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about the relative magnitude of PEs elicited by positive feedback targeted to different confidence levels for each response type (cf. Fig. 1). Thus, the two
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two groups that received false feedback on new responses will show a conservative criterion (blue arrows) and that the two groups that received false

feedback on old responses will show a liberal criterion (orange arrows). Any difference in criterion between the Low Confidence and High Confidence
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the fMRI experiment and separately to the data from the
follow-up behavioural experiment. A criterion shift due to either
memory-level or response-level learning will have the same result
on response proportions (increased proportion of old or new
responses) and thus standard signal-detection theory analyses
cannot distinguish between these two alternatives. However, the
drift diffusion model (DDM) framework accounts for both
response proportions and the distribution of response times
associated with response types26,40, and includes separate
parameters that correspond to the memory-level learning and
response-level learning alternatives26,40.

In the DDM, drift criterion (dc) determines whether a given
level of retrieved evidence is considered evidence of oldness or
evidence of newness. The response bias (z) parameter determines
whether an old or a new response is more likely, regardless of
the level of evidence. As such, shifts in dc or z map to the
memory-level versus response-level accounts of criterion shift,
respectively. These parameters are identifiable because they make
distinct predictions regarding the response time distributions for
old and new responses26 (see Methods for more details regarding
these DDM parameters).

We first applied two DDM models to the data from the fMRI
experiment: one in which the drift criterion was allowed to vary
across participants and over time (memory-level learning), and
one in which response bias was allowed to vary across
participants and over time (response-level learning). The Drift
Criterion model provided a better fit to the data (see Methods;
Supplementary Table 4; Supplementary Fig. 6). Using the same
logic, we applied a Drift Criterion model and Response Bias
model to the data from the behavioural experiment. Again,
the Drift Criterion model provided a better fit to the data
(see Methods; Supplementary Table 4).

Finally, in the imaging experiment, the MS-PE striatal signal
(shared and unique variance) across participants was correlated
with the terminal drift criterion values estimated from the Drift
Criterion model (R¼ 0.55, P¼ 0.016; Fig. 4b). Taken together,
this replicates the DDM results across two independent data sets,
indicating that shifts in drift criterion better fit the behavioural
data and are closely linked to the MS-PE signal in the brain.
We note that this does not rule out the possibility of a
simultaneous and complementary role for response-level learning
in recognition (see Methods; Supplementary Fig. 7). Furthermore,
here we interpret the drift criterion parameter as reflecting an

evaluation process that monitors retrieved evidence26,41 but the
specific psychological interpretation of changes in drift criterion
via different experimental manipulations remains an area of
active research26,41–44.

Transfer of recognition memory criterion to free recall. To
further distinguish between response-level and memory-level
learning and to demonstrate the generalizability of learning, we
conducted a follow-up behavioural experiment to test whether
learning that occurs during the recognition test extended to
mnemonic evaluation processes involved in monitoring free recall
performance. An individual’s recognition criterion is predictive of
that individual’s false recall rate (that is, critical lure recall) in the
Deese–Roediger–McDermott (DRM) false memory paradigm45.
This suggests that evaluating memory evidence during
recognition memory decisions and monitoring freely recalled
items for output can tap a shared underlying evaluative process.
For example, participants may generate candidate recall responses
and then assess their associated MS, verbally reporting those
responses that have sufficient evidence for oldness.

If the criterion results we observe in the biased-feedback
recognition paradigm are due simply to changes in response bias
(response-level learning), then terminal recognition criterion does
not reflect memory evaluation, per se, and therefore would not
predict false recall rates. However, because the neuroimaging
and computational modelling suggest that regulating criterion
involves adjustments in a memory evaluation process (memory-
level learning), we predicted that terminal criterion following
biased-feedback-induced shifts would successfully predict false
recall rates.

Two groups of participants completed a recognition memory
task. One group received biased feedback that induced a liberal
criterion and one group received biased feedback that induced a
conservative criterion (see Methods; Supplementary Fig. 8).
Immediately following the recognition test, participants
completed a free recall task for ten lists, each comprising words
semantically related to a critical lure word that was omitted from
the study list.

We found that terminal criterion in the biased-feedback
recognition task predicted critical lure recall: participants who
adopted a more liberal criterion recalled more critical lures
(R¼ � 0.385, P¼ 0.013; Fig. 6). In addition, we found that mean
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lure recall differed between groups as predicted: the group biased
towards a liberal criterion was more likely to recall critical lures
than the group biased towards a conservative criterion
(t(39)¼ 1.706, one-tailed P¼ 0.048, Cohen’s d¼ 0.531; Fig. 6).

Discussion
Here we provide convergent evidence that memory control
strategies can be learned through RL mechanisms that rely on EV
and PE signals deriving from memory retrieval itself. Specifically,
we found that striatum tracked a trial-by-trial PE signal following
feedback in a recognition memory test, with the PE signal scaled
relative to the strength of retrieved memory evidence. This striatal
PE signal was predictive of individuals’ final criteria in the
biased-feedback recognition test. Next, we targeted false feedback
to different levels of confidence in order to experimentally
manipulate the magnitude of PEs elicited by false feedback. This
manipulation drove criterion in a pattern consistent with PEs
scaled relative to MS. The behaviour from each of these
experiments was best fit by a computational model in which
learning occurred at the level of evidence evaluation rather than
the level of response bias. Finally, we observed that the criterion
learned during recognition transferred to free recall. The
computational modelling and free recall results are both
consistent with the idea that a general process used to evaluate
mnemonic evidence is adjusted during recognition, rather than a
specific response tendency.

These results advance an emerging literature on facilitative
interactions between nondeclarative and declarative memory
systems6,18,46–48. Although previous work has focused primarily
on interactions during encoding46, the current study provides
empirical evidence that the nondeclarative system also influences
cognitive control of declarative memory retrieval. Specifically,
value derived from memory outcomes could be one means
by which mnemonic control strategies are learned. To our
knowledge, the present study provides the first direct evidence
that learning of control processes during memory retrieval can be
mediated by PEs coded by the nigra–striatal system.

The results from the fMRI experiment and the targeted-
feedback experiment provide converging evidence for the
functional form by which memory retrieval confers value: the
strength of retrieved memory was inherently valued, and PEs
derived from this MS signal (MS-PEs) drove striatally mediated
PE responses. By contrast, there was little evidence that the
ERO-PE drove behaviour or striatal PE responding beyond the
variance this signal shared with MS-PE. Although perhaps
counterintuitive from the perspective of some RL models in
which PE is response-dependent, the idea that MS would be
inherently valued is consistent with prior research. For example,
mere exposure effects have been widely observed in social
psychology, wherein people show preference for stimuli they
have consistently encountered previously49. In addition, general
recognition of an object often triggers further retrieval31,32.
Put another way, evidence of oldness elicits a type of mnemonic
approach response. This value can provide a learning signal.

Consistent with the conclusion that value was mnemonic in
origin, the MS-EV signal correlated with a set of regions that
overlapped with regions in the core retrieval network20,35,36.
Among these were activations in ventromedial frontal areas
previously associated with meta-mnemonic feelings-of-knowing50

and memory schemas51. A speculative possibility is that initial
retrieval of evidence from long-term memory results in a schema
match/activation, and it is this congruency between retrieval
outcome and a prevailing schema representation that is valued.
This hypothesis requires further testing, but has implications for
how learning and valuation may occur in more complex tasks and
situations.

Brain regions correlating with EV signals also overlapped with
the network of regions that have been shown to encode subjective
value; and indeed some of these regions are the same as those in
the core retrieval network discussed above37–39. In particular,
overlapping areas in medial PFC and precuneus correlated with
unique signals from both MS-EV and ERO-EV. A recent
economic decision-making study showed a similar pattern of
results: both value and subjective confidence were separately
identifiable in overlapping areas of ventromedial PFC and
precuneus38. This study also found that subjective confidence,
but not value, was represented in a more anterior region in right
rostrolateral prefrontal cortex. We similarly observed activation
for ERO-EV, but not MS-EV, in more anterior PFC. This suggests
that the anterior portions of PFC may represent metacognitive
confidence signals, but not value signals, in both economic and
mnemonic decisions.

Future work will need to address the functional form of the
MS-EV signal. There are several plausible hypotheses regarding
this signal: first, the EV pattern may be task-independent such
that individuals have learned, in a Pavlovian manner, that higher
MS and successful retrieval is generally associated with positive
outcomes across many tasks. Second, the EV may be task-
dependent: because the current task is framed as a memory test,
participants may assign higher value to high-MS states, since high
MS is more likely to be associated with the explicit (or assumed)
goals of the memory test (that is, remembering old items)19.
Third, because the calibration between confidence and accuracy is
typically better for old than for new responses in recognition
memory, the better calibration associated with old responses
(corresponding to higher MS) may be valued by individuals
during the task52.

Furthermore, the underlying source of the MS-EV signal in the
brain remains to be specified. There are separate oldness and
novelty inputs into the memory-decision system, and the EV
signal may be derived either from the oldness signal or from an
integration of both signals53,54. A related model has been used in
the context of perceptual decisions55. Alternatively, the EV signal
could itself represent some form of PE that is scaled relative
to a prospective expectation regarding the retrieval attempt.
For example, the value of a retrieval attempt (during the
presentation of the test item) may itself be scaled relative to a
prospective metacognitive judgment about the likelihood of
remembering that particular item (for example, akin to a
Judgment of Learning).

Striatal activity also is likely modulated by a variety of
value-related factors related to the content of the retrieved
information, such as the affective or emotional content of
retrieved memories56, and external incentives19,20. Importantly,
however, the memoranda in the current task did not have an
explicit or systematic affective component, and successful
retrieval activates striatum even in the absence of task
feedback19,36. This suggests that the striatal value signal we
observe here occurs in an obligatory or automatic fashion during
retrieval and is not necessarily dependent on the content of the
memory or other external factors. In addition to supporting the
task-general control that is the focus of the current study, this
value signal might also support adaptive re-encoding of specific
retrieved information18. During encoding, engagement of the
nigra-striatal system by reward, expectations, and active choice
supports enhanced long-term memory46,57. During retrieval, the
striatum may index behaviourally relevant information and
facilitate re-encoding of the information for future retrieval18.

We emphasize that the present results do not rule out a
complementary role of the ERO signals on recognition decisions.
We observed ERO-PE signal in right inferior frontal gyrus and
bilateral inferior parietal cortex. Previous studies have identified
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PEs associated with surprising state transitions in lateral
prefrontal and inferior parietal cortex16. The ERO-PE signal
may reflect participants’ surprise when feedback deviates from
metacognitive expectations6, for example, positive feedback
following a low confidence response. Additional work is needed
to explore the potential role of this signal in declarative memory.

The present work not only informs the field of declarative
memory research but also provides a new domain in which to test
RL theory. There is a growing understanding of the contributions
of striatum and RL to higher-level cognition12,15–17, and the
dynamics of RL in declarative memory may differ in important
ways from typical RL tasks. Many RL tasks involve learning
simple response-outcome mappings for concrete stimuli,
although these principles have been extended to more complex
actions and policies16,17. Our results suggest that RL occurring
during recognition memory is not at the level of a simple
stimulus–response-outcome mapping. Instead, the modelling
results and successful transfer to free recall suggest that the RL
mechanisms update an evaluative control process that operates
on the latent and multidimensional contents of retrieved memory
representations. That is, RL principles generalize beyond overt
actions and action policies to cognitive actions like memory
retrieval. Highlighting the importance of explicitly testing RL
predictions in other cognitive domains, we found that MS-PE
rather than ERO-PE drove striatal responses and learning in the
current experiments. This shows that value can derive from
complex latent processes like retrieved memory, instead of
(or in addition to) the overt outcome of a plan or response.
This motivates future work that investigates the generality of how
RL mechanisms regulate cognition.

The current study provides a clear motivation to test causal
striatal contributions to declarative memory in patients with
nigra–striatal dysfunction, such as Parkinson’s or Huntington’s
disease. Although these patient populations show profound
impairments in skill learning58, they also show subtler deficits
in declarative memory retrieval similar to the deficits seen in
patients with frontal lobe damage, and this pattern may be due to
their inability to appropriately evaluate and update retrieval
policies18. Broadly, our findings suggest that successful control of
declarative memory retrieval can be considered a skill that is
learned and updated through the nondeclarative reinforcement
learning system. This perspective may have important
implications for memory training interventions in clinical and
educational settings.

Methods
Participants in fMRI experiment. Nineteen right-handed adults (age¼ 18–29
years, mean¼ 22.8 years; 7 female) with normal or corrected-to-normal vision
completed the neuroimaging study and are included in the analyses. All
participants were without psychiatric or neurological conditions, contraindications
for MRI, or medications affecting the central nervous system. All participants gave
written informed consent and were compensated $20 per hour according to
guidelines established and approved by the Institutional Review Board of the
Research Protections Office at Brown University. Four additional participants
completed the experiment but were excluded a priori from all analyses because of
excessive head movement detected during preprocessing (43 mm translation in a
single run). We did not predetermine sample size, but our sample size is within the
range used in previous behavioural studies of this paradigm28 as well as recent
fMRI studies of memory from our lab6,7 and others19,20,56,57.

Task procedure and analyses for fMRI experiment. The stimulus set consisted
of 640 nouns naming concrete objects. For each participant, 280 words were
randomly selected to be used in the study phase, 240 of which were included as
studied items in the test phase. An additional 240 words were randomly selected to
be used as unstudied (lure) items in the test phase.

The study task took place on a laptop computer outside the scanner.
Participants were instructed to make one of two semantic judgments about each
presented item and were not forewarned of the upcoming recognition test. On each
trial, a word was presented for 300 ms, followed by a fixation screen for 1 s,

followed by the response prompt. The prompt indicated which semantic judgment
to make by providing the possible answer choices: organic/inorganic or small/large
(relative to a typical-sized shoebox). Participants had 1 s to indicate their response
with a key press and failure to respond on time elicited an auditory tone as
feedback; no other feedback was provided for any responses. Participants
completed 280 trials with an inter-trial interval of 1.2 s. Self-paced breaks were
provided after the 96th and 192nd trials. The order of the study words was
randomized for each participant. These study tasks were chosen because prior
studies from our lab7 have found that combining these tasks maintains
participants’ engagement with the experiment and result in good recognition
performance even when participants are not forewarned of the memory test.
The two study tasks resulted in a small difference in hit rates during recognition
(hit rate for items studied with organic judgement: 82.9%; size judgement: 85.8%,
Po0.05). Because we did not have any a priori predictions regarding how this
factor might interact with feedback, we did not analyse this factor further and it
was not included in any of the analyses of the imaging data.

The recognition test was completed within the MRI scanner. The test phase
consisted of 480 trials divided into six runs each seven minutes and ten seconds in
length; participants were allowed a self-paced break between runs. Participants
were told that they would be presented with a mix of studied (old) and unstudied
(new) items and to respond to the test prompt ‘Is this item old?’ by indicating ‘YES’
with their index finger and ‘NO’ with their middle finger on the response box
(Fig. 2a). We refer to ‘YES’ responses as old responses and ‘NO’ responses as new
responses throughout the manuscript. Participants had 1.5 s to initiate their
response from the time the test item appeared on the screen; response time was
coded based on the elapsed time between item presentation and the initiation of the
button response.

Participants were further instructed to indicate their confidence by holding
down the response button. This caused a bar to move along an unfilled rectangle
underneath the corresponding ‘YES’ or ‘NO’ response (Fig. 2a). Participants were
told that the top of the rectangle corresponded to high confidence and the bottom
of the rectangle corresponded to low confidence. They were told to position the bar
to match their confidence and encouraged to use the whole range of confidence
ratings for their responses. The bar moved at a speed such that it took 1.5 s to move
across the entire rectangle, which was 300 pixels high. Confidence on each trial was
scored from 0 to 1 based on the position of the bar within the rectangle. To
deconfound confidence rating from the movement of the bar, the bars started at the
top of the rectangles on half of trials and the bottom of the rectangles on the other
half. This positioning was always visible to the participant before they initiated
their response. If participants wanted to indicate a confidence rating that
corresponded to the end of the rectangle where the bar started, they were told to
press the response button very briefly (for example, a low confidence response
when the bar starts at the bottom of the rectangle). The test prompt, probe word,
and answer choices remained on screen for the duration of the confidence rating.

A fixation screen of variable duration followed the response/confidence rating
and was followed by a feedback screen indicating either ‘Correct!’ or ‘Incorrect!’
(Fig. 2a). False positive feedback was provided following approximately 70% of
incorrect old responses to new items (false alarms). For each participant, the
experimental script tracked the range of confidence responses provided for false
alarms to determine the median false alarm confidence rating before each trial.
Hundred per cent of false alarms made with a confidence rating below this median
received false-positive feedback, and B40% of false alarms made with a confidence
rating above this median received false-positive feedback. All other trials received
veridical feedback.

False feedback was targeted to low confidence false alarms because both the
MS-PE and ERO-PE alternatives predict that this pattern of feedback will result in
a large behavioural effect: a more liberal criterion (Fig. 1). Participants received an
average of eight false feedback trials per block. After feedback, a filler fixation
screen was presented such that the total length of the trial, not counting the
variable inter-stimulus interval between response and feedback, summed to 4 s.
This filler fixation screen transitioned seamlessly to the inter-trial interval fixation
screen of variable duration.

Design efficiency was optimized using a combination of Optseq2 (http://
surfer.nmr.mgh.harvard.edu/optseq/) and custom-made scripts. An equal number
of studied and unstudied items were presented in each run; the probe word
presented on each studied/unstudied trial was randomly drawn from the studied
and unstudied items for each participant. The order of studied and unstudied
items, the timing of the inter-trial interval, and the timing of the inter-stimulus
interval were optimized to maximize detection power and allow us to separably
estimate effects associated with response from those associated with feedback. The
duration of the inter-trial interval fixation had a mean of 2 s and a range of 1–11 s.
The duration of the inter-stimulus fixation between response and feedback had a
mean of 2.85 s and a range of 1–6 s.

To acquaint participants with the response method used for the recognition test,
they completed an ostensibly unrelated estimation task immediately following the
study phase and before the test phase. The display was visually similar to the
display used in the recognition test, but the test word was replaced with either
‘right’ or ‘left’ and a number between 0 and 100. Participants responded with either
the left or right arrow key on the laptop and moved the bar to the corresponding
position in the appropriate rectangle. They completed 40 trials of this practice task.
Feedback was only provided on non-response trials.
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We computed the recognition criterion for each run (80 trials) of the
scanning session using the standard signal-detection approach59. Criterion was
calculated as:

Criterion ¼ z hit rateð Þ� zðfalse alarm rateÞ
� 2

ð1Þ

Initial criterion refers to criterion for the first run and terminal criterion refers to
criterion for the final run. Criterion values from all runs were submitted to a
repeated-measures ANOVA with Run as a factor, and follow-up t-tests as described
in the Results. Note that we use the terminal criterion values, instead of a difference
score between terminal and initial criterion, for our analyses because false-positive
feedback occurred immediately from the onset of the experiment, and thus initial
criterion does not provide a clean baseline to compute a difference score. See
Supplementary Note 1 and Supplementary Fig. 4 for additional discussion of this
metric.

fMRI data collection and preprocessing. Whole-brain imaging was performed
on a Siemens 3T TIM Trio MRI system. High-resolution T1-weighted (multi-echo
MP-RAGE) anatomical images were acquired for visualization (TR¼ 2200 ms;
echo times¼ 1.54 ms, 3.36 ms, 5.18 ms, 7.00 ms; flip angle¼ 7�; 144 sagittal slices;
1.2� 1.2� 1.2 mm). Functional images were collected over six runs using a
gradient-echo echo-planar sequence (TR¼ 2 s; echo times¼ 28.0 ms; flip
angle¼ 90�; 40 axial slices; 3� 3� 3 mm). Head motion was restricted using firm
padding surrounding the head. Stimuli were projected onto a screen and viewed
through a mirror attached to a 32-channel head coil. Responses were provided
with the right hand through a Mag Design and Engineering MRI-compatible
four-button response pad. The first five volumes of each functional run were
discarded to allow for T1 stabilization.

Preprocessing and data analysis were performed using SPM8
(www.fil.ion.ucl.ac.uk/spm). Image data quality was first assured via visual
inspection and using customized versions of TSDiffAna (http://sourceforge.net/
projects/spmtools/) and ArtRepair software (http://cibsr.stanford.edu/tools/
human-brain-project/artrepair-software.html). Functional images were then
corrected for differences in slice acquisition timing by resampling all slices to
match the first slice. Images were then motion corrected across all runs using
B-Spline interpolation. For four participants that had head motion 43 mm across
the entire session but not within a single run, motion-correction was applied
separately for each run. As already noted, participants with movement of 43 mm
within a run (N¼ 4) were excluded. Nuisance regressors were included for all
participants to account for run-to-run variance. Data were then normalized based
on MNI stereotaxic space and then spatially smoothed with an 8 mm FWHM
isotropic Gaussian kernel.

fMRI data analysis and visualization. Data analysis was conducted under the
assumptions of the general linear model as implemented in SPM8. Single subject
effects were estimated using a fixed-effect model. All condition regressors
were generated by convolving stick functions (duration¼ 0) with a canonical
hemodynamic response function and its temporal derivative. Nuisance regressors
were included to account for run-to-run variance and low-frequency signal
components. Linear contrasts at each voxel were used to obtain subject-specific
estimates for each effect. These estimates were entered into second-level analyses
treating subjects as a random effect, using a one-sample t-test against a contrast
value of 0 at each voxel.

Activations detected with whole-brain analyses were considered statistically
reliable to the extent that they survived a false discovery rate (FDR)-corrected
threshold of Po0.05 at the cluster level. Whole-brain maps were initially
thresholded at Po0.001, uncorrected, and cluster corrected to Po0.05 using SPM’s
FDR algorithm. The critical cluster extent for each contrast is listed in each
corresponding table.

All Figures are from group contrasts rendered on the MNI canonical brain in
neurological convention. The statistical thresholds used for display purposes are
listed in the Figure captions. All coordinates are in MNI space and correspond to
the peak voxel in the cluster. Local maxima reported by SPM within a cluster are
also reported. Microanatomical labels were determined based on inspection of the
Talairach and Tournoux atlas60, and macroanatomical labels were determined
using the Harvard-Oxford Probabilistic Atlas implemented in FSL
(www.fmrib.ox.ac.uk/fsl) and prior literature.

Whole-brain analyses were complemented by Region of Interest (ROI) analyses.
ROIs were defined using anatomical masks from the Automated Anatomical
Labeling (AAL) database61. Our striatum ROI was constructed by combining
the AAL definitions of bilateral caudate and putamen (total volume: 32,232 mm3),
as our lab has used previously6. We also constructed an anatomical ROI guided by
the functional activations associated with our ERO-PE regressor, to test for an
ROI� effect interaction, as described in the Results. This ROI was constructed by
combining the AAL definitions of bilateral inferior parietal cortex and right inferior
frontal gyrus opercularis (total volume: 41,528 mm3). The rationale for selecting
this second anatomical ROI was simply to test the statistical reliability of the
qualitative interaction pattern (between MS-PE and ERO-PE) seen in the
whole-brain analyses. Whereas MS-PE was associated with activity in striatum but
not bilateral parietal and right IFG, ERO-PE was associated with bilateral parietal

and right IFG, but not striatum. However, these separate effects from the
whole-brain GLMs are inadequate to demonstrate the region� effect
interaction34,62, necessitating an ROI approach. To assess ROI activation, the
time-series signal averaged across the entire ROI was extracted using the MarsBaR
toolbox63, and the respective GLM was regressed against this time-series. The
parameter estimates (beta values) associated with each regressor were computed
and the parameter estimates for regressors of interest were used subjected to
analysis of variance, t-tests, and correlation analyses as described in the Results. All
reported P-values are two-tailed unless explicitly noted otherwise, and considered
significant at Po0.05 for tests of behaviour and brain-behaviour correlations.
All group averages are mean values. All error bars indicate s.e.m. Across all
experiments, the normality of the behavioural data was confirmed using
Shapiro–Wilk tests and differences in variance were assessed using either Leven’s
tests (t-tests) or Mauchly’s tests (ANOVA). In the case of violations of sphericity,
Greenhouse–Geisser corrected degrees of freedom and P values are reported.

Calculating expected value and prediction error values. Parametric regressors
for fMRI analyses were calculated using trial-by-trial EVs and PEs under both the
MS and ERO alternatives. Our approach is intended to frame recognition memory
decisions in the same framework as value-based decision-making models, and we
sought to adopt the conventions of these models. On the basis of typical RL models,
positive outcomes in our calculations correspond to 1 (presence of rewarding
outcome, or ‘Correct!’ feedback) and negative outcomes correspond to 0 (absence
of rewarding outcome, or ‘Incorrect!’ feedback). Similarly, the EV associated with a
decision is also scaled from 0 (low expectation of a positive outcome) to 1 (high
expectation of a positive outcome). PE, then, is defined as the difference between
the EV and the outcome (1 or 0) and thus ranges from � 1 to 1. We calculated a
MS-EV, MS-PE, ERO-EV and ERO-PE) for all trials on which a participant made a
response.

For the MS alternative, we transformed response confidence on each trial to
derive a MS-EV as depicted in Fig. 1, scaled from 0 for the lowest MS (high
confidence new responses) to 1 for the highest MS (high confidence old responses).
For new responses, maximum confidence corresponded to an MS-EV of 0 and
minimum confidence corresponded to an MS-EV of 0.5. That is, MS-EV for trials
with a new response was calculated as:

MS-EV ¼ 0:5� confidence
2

ð2Þ

For old responses, minimum confidence corresponded to an MS-EV of 0.5 and
maximum confidence corresponded to an MS-EV of 1. That is, MS-EV for trials
with an old response was calculated as:

MS-EV ¼ 0:5þ confidence
2

ð3Þ

Importantly, this coding for the MS alternative allows for the MS of both old and
new items to vary from 0 to 1, but constrains the MS associated with new decisions
to 0 to 0.5 and with old decisions to 0.5 to 1. Finally, for each trial,
we calculated the MS-PE by taking the difference between the presented outcome
(veridical and false positive feedback: 1; negative feedback: 0) and the calculated
MS-EV for that trial:

MS-PE ¼ Outcome�MS-EV ð4Þ
For the ERO alternative, we derived an ERO EV (ERO-EV) on each trial that

was directly related to response confidence: for both new and old responses,
minimum confidence responses corresponded to an ERO-EV of 0 and maximum
confidence responses corresponded to an ERO-EV of 1, as depicted in Fig. 1. That
is, ERO-EV on all trials was calculated as:

ERO-EV ¼ confidence ð5Þ
For each trial, we calculated the ERO-PE by taking the differences between the

presented outcome and ERO-EV for that trial:

ERO-PE ¼ Outcome�ERO-EV ð6Þ

fMRI general linear models. We first constructed two versions of our GLM: a MS
GLM and an ERO GLM. The GLMs were identical except for the parametric
regressor that was included. We included a condition regressor for trial onset and a
condition regressor for the presentation of feedback. In each GLM, the trial onset
regressor was modulated by the respective EV parametric regressor and the
feedback presentation regressor was modulated by the respective PE parametric
regressor. These parametric regressors were convolved with the HRF and temporal
derivative basis functions. We further included separate condition regressors for
the trial onset and feedback events of non-response trials on which the participant
made an error of omission. These regressors were treated as nuisance regressors;
they were not modulated by a parametric regressor and were not analysed. We
included identical nuisance regressors in our third and fourth GLMs described
below.

In each of these models the parametric regressor captures all variance associated
with that regressor above and beyond the variance captured by the primary
condition regressor. For example, the MS-PE regressor in the MS GLM would
include only variance above and beyond the main effect of feedback presentation,
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and would include variance shared with the ERO-PE values as well as any variance
unique to MS-PE. Likewise, the ERO-PE regressor in the ERO GLM would include
variance shared with the MS-PE values and its unique variance.

The issue of correlation and shared variance between regressors is common to
virtually all studies using event-related fMRI designs64. To mitigate this concern,
the present experiment included 280 total trials and we jittered the inter-trial-
interval and the delay period between the response and feedback phase of each trial
to optimize design efficiency. However, because this correlation reduces the
statistical power for analyses of the unique variance of MS and ERO signals,
we explicitly report these correlations here. The average correlation between the
MS-PE and ERO-PE predictors after convolution with the canonical HRF was
R2¼ 0.52 (the correlation was first determined within each participant,
transformed with Fisher’s Z-transformation, averaged across all participants, and
transformed back to a correlation coefficient.) The average correlation between the
convolved MS-EV and ERO-EV predictors was R2¼ 0.19. Thus, we conclude that
there is sufficient unique variance within each individual participant to reliably
distinguish these signals in the present data.

Our third GLM included the MS-PE and ERO-PE parametric regressor in the
same model. This model included a condition regressor for trial onset and a
condition regressor for feedback presentation; these were not modulated by any
parametric regressor. Instead, we convolved the MS-PE and ERO-PE values with
the HRF and input these values as two user-entered regressors. This allows the two
PE regressors to compete for variance in the model and capture only unique
variance64. This is similar to what happens when two parametric regressors are
included as modulators on a condition regressor in SPM. By default, SPM performs
serial orthogonalization such that the first parametric regressor includes both
shared variance and its unique variance, and the second parametric regressor
includes only its unique variance. For example, if a hypothetical GLM included
MS-PE as the first parametric regressor and ERO-PE as a second parametric
regressor, the ERO-PE regressor would only capture the unique variance. By the
same logic, our fourth GLM included both MS-EV and ERO-EV parametric
regressors in the same model, capturing the unique variance of each EV regressor.
Like our third GLM, this model included a regressor for trial onset and a regressor
for feedback presentation; these were not modulated by any parametric regressor.
Instead, we convolved the MS-EV and ERO-EV values with the HRF and input
these values as two user-entered regressors.

Finally, we constructed three GLMs for control analyses. The first control GLM
was similar to the third GLM except that MS-EV (and thus MS-PE) was calculated
differently. We refer to these values as MS-EV* and MS-PE*. Note that the MS-PE
alternative predicts a main effect difference between PEs for feedback following old
versus new responses. For example, PEs for positive feedback will always be larger
following correct old than following correct new responses (compare orange versus
blue arrows in Fig. 1c). This control GLM removed this main effect difference.
Specifically, the MS-EV* and MS-PE* values were calculated as follows. For new
response trials:

MS-EV� ¼ 1� confidence ð7Þ
For old response trials:

MS-EV� ¼ confidence ð8Þ
For all trials:

MS-PE� ¼ Outcome�MS-EV� ð9Þ
This coding thus removes the main effect difference but still captures the relative
difference within old and new responses, that is, MS-EV* will increase as
confidence decreases for new responses, but will increase as confidence increases
for old responses. MS-PE* will show the same relative pattern across old and new
responses: consider a correct new response made with high confidence (0.8) and a
correct old response made with low confidence (0.2). These example responses
correspond approximately to the first and third example test items shown in
Fig. 1a. Under this control GLM, these responses will have the same MS-EV* (0.2)
and following positive feedback would show the same MS-PE* (1–0.2¼ 0.8).
Supplementary Figure 2 shows the whole-brain activity associated with the MS-PE*
regressor and reveals activity in striatum comparable to the primary MS GLM; this
confirms that the striatal effect found for the unique variance of MS-PE is not
solely due to the predicted main effect differences for PEs to feedback following old
and new responses, but instead also captures the relative pattern of predicted PEs
within old and new responses.

The second control GLM was similar to the first GLM except that the response
phase and feedback phase were modeled separately for old and new response trials.
This allows us to look at the PE signal (coded under the MS alternative) specifically
following new responses, when the MS and ERO alternatives make categorically
opposite predictions. Supplementary Fig. 2 shows the whole-brain activity
associated with the MS-PE regressor and reveals activity in striatum comparable to
the primary MS GLM; this test confirms that the striatal signal follows the specific
pattern to feedback following new responses that is predicted by the MS alternative
but not by the ERO alternative. Altogether, these control analyses provide
additional support that the MS alternative better explains striatal signal.

In the final GLM, we included regressors for Hits, Correct Rejections, False
Alarms, and Misses, crossed with the response phase (modeled at the trial onset)
and feedback phase (modeled at the feedback presentation) of each trial. This
resulted in eight total condition regressors (Hits-Response, Hits-Feedback and

so on). We used this control GLM to compute the standard retrieval success
(Hits-Response4Correct-Rejections-Response) contrast that is often reported in
fMRI studies of recognition memory36, which allows for comparison between the
activation in this contrast to the activation associated with the various EV and PE
signals. The whole-brain results from this contrast are shown in Supplementary
Fig. 2.

Participants in behavioural recognition memory experiment. Eighty
participants (age¼ 18–27 years, mean¼ 20 years; 45 female) participated
in exchange for course credit or payment. All participants had normal or
corrected-to-normal vision and were native English speakers. Participants gave
written informed consent according to guidelines established and approved by the
Institutional Review Board of the Research Protections Office of Brown University.
After completing the experimental session, participants were thoroughly debriefed
with regard to the false-feedback manipulation. Participants were randomly
assigned to experimental conditions (New–High Confidence; New–Low
Confidence; Old–Low Confidence; Old–High Confidence; or Veridical Feedback;
n¼ 16 in each group) and the experimenter running the study was blind to this
assignment. The number of participants was chosen based on previous studies
using a similar paradigm28 and a pilot experiment that did not target confidence to
specific levels of confidence.

Task procedure and analyses for behavioural experiment. The procedure for
the recognition task was similar to Experiment 1 except as described here. The
study phase consisted of 240 items and breaks were provided every 80 trials. After
the study phase, all participants completed a probabilistic selection task in which
they viewed Japanese Hiragana characters and learned to select specific characters
based on trial and error15. None of the word stimuli used in the recognition task
appeared during this task and the results from this intermediate task are not
discussed further.

The test phase consisted of 288 trials equally divided among studied and
unstudied items. Breaks were provided every 48 trials. The trial sequence was
identical to Experiment 1 except for the visualization used to indicate confidence:
instead of a thin bar moving with the unfilled rectangle (Fig. 2a, second panel), the
rectangle started filling as soon as the response key was pressed and stopped as
soon as the key was released. The rectangle always started filling from the bottom
and the proportion of the rectangle filled indicated subjected confidence such that
higher confidence was indicated by filling a larger proportion of the rectangle.
To ensure that participants would make a sufficient number of errors for the
false-feedback manipulation to be applied to all groups, the test phase took place
B24 h after the study phase. Overall, participants were able to perform the task
(mean proportion correct¼ 66.53%; s.e.m.¼ 0.77%) and accuracy values from the
four targeted feedback groups were submitted to a two-way ANOVA with factors
of targeted response group (Old/New) and targeted confidence (Low/High).
Neither the main effects nor the interaction reached significance (all P40.05).

Following from Han and Dobbins28 and Experiment 1, we divided our analysis
of the test phase into blocks to account for the pattern of criterion over time. To
approximately match the number of trials that went into each bin of Experiment 2
to the number of trials in each run of Experiment 1, we divided the test phase into
thirds and calculated an initial criterion, middle criterion, and terminal criterion.
Thus, each criterion calculation was based on the hit rate and false alarm rate
across 96 trials (compare with 80 trials per run in Experiment 1). Because analyses
of criterion were a priori planned tests, we considered statistical results as
significant at an alpha level of P¼ 0.05. Because we did not have strong a priori
predictions about additional analyses regarding confidence, these analyses were
Bonferroni corrected for multiple comparisons.

False-feedback manipulation. Participants were assigned to one of five
experimental conditions. The Veridical feedback group received completely
veridical feedback. The other four conditions received false positive feedback
targeted towards either low or high confidence errors. The two New groups
received false-positive feedback on a subset of new errors and veridical feedback on
all other trials. The false-positive feedback was targeted to either high confidence
new errors (New–High Confidence) or low confidence new errors (New–Low
Confidence). Two Old groups received false-positive feedback on a subset of old
errors and veridical feedback on all other trials. The false-positive feedback
was targeted to either high confidence old errors (Old–High Confidence) or low
confidence old errors (Old–Low Confidence).

The method for targeting false-positive feedback employed an adaptive
algorithm that took into account individual differences in confidence ratings and
base rates of errors. This information was used to provide approximately equal
instances false feedback to each participant, to provide the false feedback equally
across the course of the entire recognition test phase, and to maximize the
difference in the targeted confidence between subgroups. The script was designed
to provide each participant B30 instances of false feedback. The script tracked
online the participant’s error rate for each response type (false alarms and misses.)
For each trial in the recognition test, the experimental script estimated how many
more errors the participant would make and determined the proportion of these
errors that would need to receive false feedback for the participant to receive
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B30 total false-feedback instances. This proportion was updated on a trial-by-trial
basis for each participant and was used to probabilistically provide false-positive
feedback. See the Supplementary Methods for additional details, examples, and
manipulation checks for the false-feedback algorithm.

Computational modelling of fMRI and behavioural experiments. In the DDM,
the decision process arises from noisy evidence accumulation (or drift) towards one
of two response bounds65. For recognition decisions, one bound corresponds to an
old response and the other bound corresponds to a new response. Thus, over time,
evidence accumulation drifts towards one of these response bounds at a rate (that
is, the drift rate; v) that is determined by the strength of evidence recovered from
memory. Evidence that is evaluated as signalling old leads to a positive drift rate,
towards the old boundary. Evidence that is evaluated as signalling new leads to a
negative drift rate, towards the new boundary. The accumulation process is
terminated when the drift reaches either boundary, and the corresponding
response is made. Stronger evidence would lead to a larger drift rate, and thus, a
faster response.

The response bias, z, determines the starting point of the diffusion process
relative to either of the response boundaries. When bias is closer to the old
response boundary, participants are overall more likely (requiring less evidence) to
respond old independently of the strength of the evidence (drift rate). Shifts in
response bias result in a larger effect on the leading edge of the response time
distribution relative to shifts in the drift criterion26.

The drift criterion parameter, dc, in the DDM determines whether observation
of a signal of a given strength is more likely to elicit drift towards the old or new
boundary. This is not thought to change how a MS or match signal is retrieved
from long-term memory (which is impacted by factors such as MS of studied
items) but instead how this match signal is evaluated and mapped onto drift
rate26,42–44,66. From this perspective, the drift process can be thought of as a series
of small signal detection processes, where at each time step, the evidence for an
item is sampled. If that sample is greater than the old/new criterion then the drift is
incremented toward old, and is otherwise incremented towards new. The criterion
of those signal detection processes conducted at each time step is the drift criterion.
Shifts in drift criterion result in equal but opposite changes in the drift rate for each
choice (that is, a higher drift rate for old or new and a slower drift rate for the
other) and thus drift criterion shifts have the same impact on distributions as a
symmetrical change in drift rate itself. Changes in drift criterion have a larger
impact on the tail than do changes in bias26.

The recognition decision was modeled using the DDM, following prior
work26,42–44,65,66. For all model variants, parameters were fit to the accuracy and
response time data (from both correct and error trials). In all models, we estimated
parameters for an initial non-decision interval (t), thought to reflect processes like
encoding of the target; and the distance between the boundaries (a); and drift rate
(v). Thus, both models had the same number of parameters. The models differed in
they each included an additional parameter, which was allowed to vary from run to
run. In the Drift Criterion model, we estimated a parameter for drift criterion,
which was allowed to vary from run to run. In the Response Bias model, we
estimated a response bias parameter which was allowed to vary from run to run.
Response time data were examined for outliers: any response faster than 300 ms
was considered a guess or an error and excluded from the analyses41,43.
Non-response errors (when participants failed the response deadline) were
excluded from analysis. These constituted fewer than 5% of trials on average across
participants.

Model fitting was conducted using the Hierarchical Drift Diffusion Modeling
(HDDM)40 module with stimulus coding (http://ski.clps.brown.edu/hddm_docs/
index.html). This Python module uses a hierarchical Bayesian estimation
procedure that fits the DDM parameters based on all participant data
simultaneously. This is analogous to random effects estimation in that it treats
between-subject variance as a random variable, while fitting within-subject
parameters simultaneously. For example, each model produces an initial
non-decision interval (t) parameter estimate for each participant that is constrained
by the group distribution for that parameter but is allowed to vary from the group
distribution to the extent that the participant’s data is sufficiently diagnostic40.
A Markov-chain Monte-Carlo (MCMC) procedure estimated the DDM
parameters’ posterior distributions. 10,000 samples from the distributions were
estimated. The first 3,000 samples were discarded (burn in), and of the remaining
samples, every tenth sample was retained (thinning). Model convergence was
assessed based on Monte-Carlo error (MC error) and visual assessments of chain
convergence67. Model selection was based on minimization of the deviance
information criterion (DIC), which is more readily compatible with MCMC
estimation than Akaike information criterion or Bayesian information criterion.
Although model fit statistics were used to select the best-fitting model, it is
important to confirm that the best-fitting model adequately reproduces the key
behavioural patterns it is intended to capture40. Supplementary Figure 7 shows
posterior predictive checks, which compare the data simulated from each model to
the empirical data and demonstrates that the response time distributions and
changes in behavioural criterion are captured by the DDM models. We note that
the model comparison between the Drift Criterion and Response Bias model is not
meant to imply that there is no plausible role for changes in response bias in
regulating recognition decisions; indeed, the posterior predictive checks reveal that

the Response Bias model provides credible estimates of key patterns in
the behavioural data. Instead, the model comparison is meant to test
which parameter best captures the behavioural data and simply implies a more
prominent role for changes in drift criterion in the regulation of recognition
decisions.

The computational modelling for Experiment 2 was similar but included the
additional factor of the experimental condition (Supplementary Fig. 6). In the Drift
Criterion model, the drift criterion parameter was allowed to vary as a function of
epoch (initial/middle/terminal) and each individual’s drift criterion estimate was
constrained by the distribution of their respective group (Veridical; New–High
Confidence; New–Low Confidence; Old–Low Confidence; Old–High Confidence).
Likewise, in the Response Bias model, the response bias parameter was allowed to
vary as a function of epoch and each individual’s response bias estimate was
constrained by the distribution of their respective group.

In our implementation of the HDDM model, liberal values of z and dc
correspond to positive values. However, in signal-detection theory, liberal values of
criterion correspond to negative values (liberal values are plotted down). Therefore,
to facilitate visual comparison between the HDDM results and signal-detection
results in Fig. 4, we plot � dc in Fig. 4b so that liberal values correspond to
negative values in both panels.

Participants in free recall experiment. Forty-six participants (age¼ 18–28 years,
mean¼ 20.2 years; 28 female) who did not participate in the fMRI experiment
participated in the recognition-free recall experiment. Five participants were
excluded from all analyses because they indicated on a post-test questionnaire that
they were familiar with the DRM paradigm, based on similar exclusion criterion in
previous studies that used similar paradigms45. All participants gave written
informed consent and were compensated $10/hour according to guidelines
established and approved by the Institutional Review Board of the Research
Protections Office at Brown University. Participants were randomly assigned to a
condition and experimenters were blind to the learning condition assignment of
each participant during the experimental session and during coding of free recall
responses. The number of participants was chosen based on previous studies that
used similar paradigms45. We note that a subset of the participants included in this
experiment and analysis are also included in the behavioural analysis of recognition
memory criterion reported for Experiment 2: 10 of Biased Feedback–Liberal
participants and nine of the Biased Feedback–Conservative participants are
included in the Old–Low Confidence and New–High Confidence groups,
respectively.

Task procedure and analyses for free recall experiment. Participants first
completed a false-feedback recognition paradigm identical to the one used for
Experiment 2. One group, termed the Biased Feedback–Liberal group,
received false feedback corresponding to the Old–Low Confidence condition of
Experiment 2, chosen to maximize the effectiveness of the liberal criterion shift.
The second group, termed the Biased Feedback–Conservative group, received false
feedback corresponding to the New–High Confidence condition of Experiment 2,
chosen to maximize the effectiveness of the conservative criterion shift.

Immediately following the recognition test, participants completed study/test
cycles for ten DRM lists68. The 10 lists with the highest rate of free recall critical
lure intrusions from Stadler, Roediger, and McDermott69 were selected. Within
each list, the words were presented in the order they are listed in Stadler, Roediger,
and McDermott69. Eight permutations of list order were created and each
participant received one of these orders at random. The fifteen study words were
presented one at a time on the screen and the participant read the word aloud at a
rate of one per 2 s. Immediately following study, a prompt initiated the recall phase
and participants had 2 min to verbally recall as many words as they ‘were
reasonably sure had been presented on the list’.

Raters blind to the experimental condition listened to the recall verbalizations of
each participant using the Penn TotalRecall toolbox (http://memory.psych.upenn.
edu/TotalRecall) and coded for the presence or absence of the critical lure on each
list. The total number of critical lures recalled by each participant was calculated
and submitted to t-test and correlation analyses. On the basis of previous results45,
we predicted that the Biased Feedback–Liberal group would recall more critical
lures than the Biased Feedback–Conservative group. Thus, we performed a
directional t-test and report the one-tailed P value. For the correlation analysis, we
computed the recognition criterion for initial, middle and terminal thirds of the
experiment and used the Terminal Criterion for the correlation with critical lure
recall. We focused our analysis on critical lure recall, instead of correct recall of
studied items, because previous work demonstrated a link between trait recognition
criterion and critical lure recall but not correct recall45. We note that terminal
criterion showed a modest but not statistically reliable correlation with correct
recall (R¼ � 0.30; P¼ .06). Thus, although criterion shifts likely influence the
evaluation of true memories, it is likely that shifts in criterion simply have a larger
and more detectable impact on more ambiguous memories like false alarms
induced by the DRM procedure.

Data availability. Data from all experiments are available from the corresponding
author on request.
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