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Aims Although heart failure with preserved ejection fraction (HFpEF) is a rapidly emerging global health problem, an ad-
equate tool to screen it reliably and economically does not exist. We developed an interpretable deep learning
model (DLM) using electrocardiography (ECG) and validated its performance.

...................................................................................................................................................................................................
Methods
and results

This retrospective cohort study included two hospitals. 34 103 patients who underwent echocardiography and
ECG within 1 week and indicated normal left ventricular systolic function were included in this study. A DLM based
on an ensemble neural network was developed using 32 671 ECGs of 20 169 patients. The internal validation
included 1979 ECGs of 1979 patients. Furthermore, we conducted an external validation with 11 955 ECGs of 11
955 patients from another hospital. The endpoint was to detect HFpEF. During the internal and external validation,
the area under the receiver operating characteristic curves of a DLM using 12-lead ECG for detecting HFpEF were
0.866 (95% confidence interval 0.850–0.883) and 0.869 (0.860–0.877), respectively. In the 1412 individuals without
HFpEF at initial echocardiography, patients whose DLM was defined as having a higher risk had a significantly higher
chance of developing HFpEF than those in the low-risk group (33.6% vs. 8.4%, P < 0.001). Sensitivity map showed
that the DLM focused on the QRS complex and T-wave.

...................................................................................................................................................................................................
Conclusion The DLM demonstrated high performance for HFpEF detection using not only a 12-lead ECG but also 6- single-

lead ECG. These results suggest that HFpEF can be screened using conventional ECG devices and diverse life-type
ECG machines employing the DLM, thereby preventing disease progression.

* Corresponding author. Tel: 82-32-240-8245, Fax: 82-32-240-8094, Email: learnbyliving9@gmail.com
VC The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

European Heart Journal - Digital Health (2020) 2, 106–116 ORIGINAL ARTICLE
doi:10.1093/ehjdh/ztaa015

http://orcid.org/0000-0003-0708-8685
http://orcid.org/0000-0002-6277-7697
http://creativecommons.org/licenses/by-nc/4.0/


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Keywords Heart failure • Electrocardiography • Deep learning • Artificial intelligence

Introduction

The prevalence of heart failure (HF) is estimated to be 1.1–5.5% in
the general population.1 It is one of the most prominent causes of
morbidity and health care expenditure worldwide and continues to
increase in prevalence at an alarming rate. Almost half of all patients
with HF have a normal ejection fraction (EF). The prevalence of this
syndrome, termed heart failure with preserved ejection fraction
(HFpEF), continues to increase in the developed world, likely because
of the increasing prevalence of typical risk factors, including older age,
female gender, hypertension, metabolic syndrome, renal dysfunction,
and obesity.2–4 Epidemiological data revealed that the prevalence of
HFpEF relative to heart failure with reduced ejection fraction
(HFrEF) is increasing at a rate of 1% per year, indicating that HFpEF is
becoming the most prevalent type of HF.

Because HFpEF is a complex syndrome that can result from struc-
tural and functional cardiac disorders, rather than a single disease en-
tity, its correct diagnosis can be challenging even for HF specialists.
This is caused by multiple pathophysiologic processes, but diagnostic
criteria remain general, including dyspnoea and fluid overload, normal
left ventricular (LV) ejection fraction, elevated natriuretic peptides,
and evidence of HF or diastolic dysfunction.5,6 The echocardiographic
assessment of LV diastolic function is important in the routine evalu-
ation of patients with HF. More importantly, LV diastolic dysfunction
can develop without any clinical symptoms and is not uncommon

even in the general population.7 Diagnosis is often delayed, as the
condition can be asymptomatic. The routine use of echocardiography
for screening diastolic dysfunction is expensive and time consuming.
As such, echocardiography is often performed only in patients
with suspected HFpEF for the early detection of asymptomatic
patients. Hence, cost-effective strategies that quantify aspects of the
diastolic function or hemodynamic changes associated with the LV
diastolic dysfunction are urgently required to establish a diagnosis of
HFpEF.

The majority of patients with HFpEF undergo the electrical remod-
elling of the myocardium, manifested as ECG abnormalities.
However, it is not easy to detect subtle ECG changes; therefore, the
current state of ECG is not useful for detecting HFpEF. To develop a
reliable HFpEF detection method based on ECG, we used a deep
learning model (DLM) based on an ensemble neural network.
Recently, deep learning has demonstrated high accuracy and applic-
ability in computer vision, speech recognition, and signal processing.8

Furthermore, deep learning has been applied in medical domains, and
studies regarding the DLM have been performed where left systolic
dysfunction, valvular heart disease, hyperkalaemia, and anaemia have
been diagnosed, and the occurrence of atrial fibrillation predicted
using ECG.9–13 In recent studies, several deep learning algorithms
were developed for detecting HF using electrocardiography. The
endpoint in most of the previous studies was HFrEF.14–16 In this
study, we developed and validated a DLM for detecting HFpEF using
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a diverse type of ECG. Furthermore, we used a sensitivity map to
visualize the important part of ECG for detecting HFpEF using the
DLM for making interpretation and comparing with the previously
available medical information.

Methods

Study design and population
This multicentre retrospective cohort study performed in this investiga-
tion involved data from two hospitals—A and B—to develop and validate
an ensemble neural network-based DLM for detecting HFpEF. The eli-
gible study population included adult patients (aged >_ 15 years) who
underwent both ECG and echocardiography within 1 week for clinical
evaluation or health examination and had been confirmed to have a nor-
mal or near-normal LV ejection fraction, defined as an ejection fraction of
50% or more. We excluded subjects whose demographic, ECG, or echo-
cardiographic information was not available. As shown in Figure 1, patients
who were treated at hospital A (October 2016–May 2020) were split
into DLM development and internal validation datasets. Patients who
underwent follow-up echocardiography after an initial evaluation were
distributed to an internal validation dataset. Patients who had no follow-
up echocardiography were distributed to a development dataset that was
used to develop the DLM. Subsequently, we evaluated the accuracy of
the DLM using the internal validation dataset. Furthermore, we used data
from hospital B (March 2017–May 2020) as an external validation data-
set to verify the applicability of the DLM across centres. Because the
purpose of the validation data was to assess the accuracy of the DLM,
we only used the most recent ECG signal before their first

echocardiography in the study period for the internal and external val-
idation datasets.

The Institutional Review Board of Sejong General Hospital (2019-
0057) and Mediplex Sejong Hospital (2019-008) approved this study
protocol and waived the requirement for informed consent due to im-
practicality and minimal harm.

Endpoint and predictive variables
The primary endpoint was the presence of HFpEF, which was defined as
left ventricular diastolic dysfunction (LVDD) in the presence of normal or
near-normal LV ejection fraction and had symptoms and signs of HFpEF.
Normal or near-normal LV ejection fraction defined as an ejection fraction
of 50% or more. LVDD was defined in accordance with the most recent
guidelines with the following cut-off values suggesting abnormal diastolic
function: (i) septal e0 < 7 cm/s and/or lateral e0 <10 cm/s; (ii) averaged E/e0

> 14; (iii) tricuspid regurgitation velocity > 2.8 m/s; and (iv) left atrial vol-
ume index > 34 mL/m2. Patients who satisfied >_ more than one-half of
these criteria were defined as having an abnormal diastolic dysfunction.17

We defined the symptoms and signs of HFpEF as chest discomfort, palpita-
tion, exercise intolerance, fatigue, oedema, dyspnoea, syncope, and gen-
eral weakness, and confirmed the information from the echocardiography
report, in which the cardiologist has mentioned the reason for conducting
echocardiography. The echocardiographic findings were obtained from
comprehensive two-dimensional (2D) Doppler echocardiography.
Acquisitions and measurements were performed by licensed sonogra-
phers and cardiologists who were blinded to any other study data. We
used demographic information and ECG as predictive variables. We used
demographic information and ECG as predictive variables. We used four
variables (age, sex, weight, and height) as demographic information. These
four variables are simple and can be objectively collected consistently

Figure 1 Study flowchart.
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..during the screening evaluation. We did not use past medical history, be-
cause the information relied on the patient’s memory, and there was a
possibility of error and undetected disease. Only definite epidemiologic in-
formation was used for the evaluation.

We used the raw data from each 12-lead ECG, amounting to
5000 data points for each lead, recorded over 10 s (500 Hz), and

60 000 data points from each ECG. We used 8 s of ECG data by
excluding the first and last 1-s periods because more artefacts were
contained within this range. We created a dataset using the entire 12-
lead ECG data. Furthermore, we used partial datasets from the 12-
lead ECG data, such as the limb six-lead (I, II, III, aVL, aVR, and aVF)
and single lead (I or II). We selected those leads as they can be easily

Figure 2 Architecture of deep learning-based model for detecting HFpEF. Conv, convolutional neural network; ECG, electrocardiography;
HFpEF, heart failure with preserved ejection fraction.
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recorded by wearable and lifestyle devices in contact with the
patient’s limbs.18 Consequently, when we developed and validated an
algorithm using 12-lead ECG, we used a dataset comprising 12� 4000
2D data points. Similarly, for the six-lead and single-lead ECG signals,
we used datasets comprising 6� 4000 and 1� 4000 data points,
respectively.

Development of deep learning model
The DLM was developed using many hidden layers of neurons to learn
complex hierarchical nonlinear representations from the data.8 As a block
comprising six stages, it has two convolutional layers, two batch normaliza-
tion layers, one max pooling layer, and one dropout layer (Figure 2).19,20

The last layer of the seventh block was fully connected to a one-
dimensional (1D) layer composed of 256 nodes. The input layer of

epidemiology (age, sex, weight, and height) was concatenated with the 1D
layer. There were two fully connected 1D layers after the flattened layer,
and the second layer was connected to the output node, which was com-
posed of one node. The values of the output node represent the possibil-
ity of detecting HFpEF, and the output node uses a sigmoid function as an
activation function, as the output of the sigmoid function is between 0 and
1. The final number of layers of convolutional part, multilayer perceptron
part, and ensemble part are 44, 4, and 3, respectively. We confirmed the
final architecture of the DLM using a grid search. We used TensorFlow’s
open-source software library (Google LLC, Mountain View, CA, USA) as
the backend and conducted our experiment with Python (version 3.6;
Python Software Foundation, Beaverton, OR, USA).21

Furthermore, we developed an additional machine learning model to
compare it with the ensemble network-based DLM. Hence, we used a

............................................................................................ ............................................................................

....................................................................................................................................................................................................................

Table 1 Baseline characteristics

Characteristics Hospital A (derivation and internal validation data)

N 5 22 148

Hospital B (external validation data)

N 5 11 955

Non-HFpEF HFpEF Pa Non-HFpEF HFpEF Pa Pb

Study subjects, N (%) 18 100 (81.7%) 4048 (18.3%) 10 247 (85.7%) 1708 (14.3%) <0.001

Baseline characteristics

Age 56.70 (14.99) 70.44 (11.29) <0.001 55.13 (14.06) 70.59 (11.75) <0.001 <0.001

Male, N (%) 56.70 (14.99) 70.44 (11.29) <0.001 5199 (50.7) 581 (34.0) 0.001 0.027

Weight 65.10 (12.02) 62.85 (12.27) <0.001 66.07 (12.53) 63.44 (12.95) <0.001 <0.001

Height 163.15 (9.29) 157.90 (9.60) <0.001 163.84 (9.24) 157.65 (9.70) <0.001 <0.001

BSA 1.70 (0.19) 1.63 (0.19) <0.001 1.72 (0.19) 1.64 (0.20) <0.001 <0.001

LVSD 28.63 (4.58) 29.19 (5.69) <0.001 29.64 (3.82) 29.82 (4.81) 0.080 <0.001

LVDD 46.64 (4.66) 47.60 (5.95) <0.001 47.90 (3.88) 48.61 (4.93) <0.001 <0.001

LAD 37.35 (5.83) 45.50 (7.30) <0.001 35.80 (4.96) 41.40 (6.83) <0.001 <0.001

LAVI 24.72 (7.15) 33.60 (9.70) <0.001 20.06 (5.63) 27.04 (7.75) <0.001

E 62.41 (17.18) 71.01 (23.12) <0.001 64.87 (16.85) 72.98 (21.49) <0.001 0.003

A 67.90 (17.99) 84.99 (24.33) <0.001 68.52 (17.96) 89.36 (22.67) <0.001 0.010

DT 196.43 (46.93) 219.07 (60.44) <0.001 213.72 (43.76) 232.60 (54.24) <0.001 <0.001

E0 7.38 (2.57) 4.88 (1.55) <0.001 7.30 (2.39) 4.49 (1.40) <0.001 0.470

A0 8.99 (1.84) 7.91 (2.09) <0.001 8.72 (1.84) 7.96 (1.99) <0.001 <0.001

E over E0 8.98 (2.70) 14.27 (4.24) <0.001 9.35 (2.49) 15.70 (3.53) <0.001 0.984

TR velocity 2.20 (0.25) 2.44 (0.37) <0.001 2.19 (0.22) 2.43 (0.36) <0.001 <0.001

EF 59.00 (6.26) 57.14 (6.43) <0.001 62.35 (6.30) 62.22 (7.24) 0.467 <0.001

Heart rate 71.78 (14.10) 71.68 (16.04) 0.706 70.38 (13.29) 72.18 (16.18) <0.001 <0.001

PR interval 156.55 (48.26) 143.52 (77.02) <0.001 160.29 (38.24) 154.08 (65.09) <0.001 <0.001

QT interval 398.26 (36.74) 416.96 (46.14) <0.001 399.30 (35.40) 412.06 (46.57) <0.001 0.205

QTc 430.70 (28.91) 449.02 (35.64) <0.001 428.10 (27.47) 445.22 (34.84) <0.001 <0.001

QRSd 94.78 (14.68) 98.79 (20.16) <0.001 94.62 (13.35) 97.65 (17.89) <0.001 0.008

P axis 66.31 (82.62) 105.36 (133.91) <0.001 54.96 (61.12) 76.11 (110.36) <0.001 <0.001

R axis 39.64 (41.18) 32.51 (44.63) <0.001 39.90 (38.24) 29.34 (38.93) 0.001 0.911

T axis 39.91 (38.97) 58.50 (67.44) <0.001 37.65 (32.40) 55.79 (59.90) <0.001 <0.001

A, late diastolic mitral inflow velocity; A0 , late diastolic mitral annular tissue velocity; BSA, body surface area; DT, deceleration time; E, early diastolic mitral inflow velocity; E0 ,
early diastolic mitral annular tissue velocity; EF, ejection fraction; LAD, left atrial dimension; LAVI, left atrial volume index; LVDD, left ventricular diastolic dimension; LVSD, left
ventricular systolic dimension; QRSd QRS duration; TR, tricuspid regurgitation.
aThe alternative hypothesis for this P-value was that there is a difference between the heart failure with preserved ejection fraction and non-heart failure with preserved ejection
fraction data group for each variable.
bThe alternative hypothesis for this P-value was that there is a difference between the hospital A (development and internal validation data group) and B (external validation
group) for each variable.
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.logistic regression model (LR), random forest (RF) model, and convolu-
tional neural network only model (CNN) developed with R (R developed
Core Team, Vienna, Austria) and Python.8,22,23 These machine learning
methods performed better than traditional methods in several medical
domains in previous studies.

Statistical analysis
Continuous variables were presented as means and standard devia-
tions and were compared using the unpaired Student’s t-test or
Mann–Whitney U test (Table 1). Categorical variables were expressed
as frequencies and percentages and then compared using the v2 test.
At each input of the validation data, each DLM calculated the possibil-
ity of HFpEF in the range from 0 (non-HFpEF, normal) to 1 (HFpEF).
To confirm the performance of the developed DLM, we compared
the possibility calculated by the DLM with the presence of HFpEF in
the validation dataset. We used the area under the receiver operating
characteristic curve (AUC) to measure the performance of the DLM.
Furthermore, we used the sensitivity, specificity, positive predictive

value, negative predictive value, accuracy, and F-measure as compara-
tive metrics. We selected the cut-off point using the Youden J statis-
tics of development datasets and confirmed the results. A two-sided
P-value of <0.001 was considered significant for all tests. We eval-
uated the 95% confidence interval using bootstrapping (10 000 times
resampling with replacement). All statistical analyses were performed
using R.24

To understand the model and perform a comparison with existing
medical knowledge, it is important to identify the region that signifi-
cantly affects the DLM decision. We employed a sensitivity map using a
saliency method.25 The map was computed using the first-order gra-
dients of the classifier probabilities with respect to the input signals. If
the probability of a classifier is sensitive to a specific region of the sig-
nal, the region would be considered significant in the model. We used
a gradient class activation map as a sensitivity map and a guided gradi-
ent backpropagation method. We confirmed the variable importance
of each developed model using the Akaike information criterion and
the mean decreased Gini.

Figure 3 Performance of model for detecting heart failure with preserved ejection fraction. AUC, area under the receiver operating characteris-
tic curve; CI, confidence interval; ECG, electrocardiography; NPV, negative predictive value; PPV, positive predictive value; ROC, receiver operating
characteristic curve; Sens, sensitivity; Spec, specificity.
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Confirming deep learning model

performance to predict heart failure with

preserved ejection fraction development as

subgroup analysis
We hypothesized that the ECGs would display subtle abnormal patterns
in the pre-HFpEF phase, and that the developed DLM would classify
some of these cases as abnormal, yielding a false positive test (a study sub-
ject classified as having HFpEF but considered as non-HFpEF) as the initial
result. We conducted a subgroup analysis of patients who underwent
follow-up echocardiography in the internal and external validation
datasets. The difference in date between the initial and follow-up echo-
cardiography data was over 14 days. Among those patients, we con-
firmed the development of HFpEF in patients who were initially
considered non-HFpEF based on the initial echocardiography. The
DLM was categorized into high- and low-risk groups based on the risk
score using cut-off values, which were determined using the Youden’s J
statistic with the development dataset.26 We used the Kaplan–Meier
method to analyse HFpEF development for 24 months using an AI
algorithm.

Confirming deep learning model

performance to predict left ventricular

diastolic dysfunction among asymptomatic

patients as subgroup analysis
As the purpose of the DLM was to use it in all situations (admitted
patients, outpatient department, and general check-up), we decided to

study the population without considering any specific situation.
Furthermore, one of the purposes of this developed DLM was to screen
for LVDD among patients who had no symptoms, we confirmed the per-
formance of the DLM in the subgroup analysis. Patients who underwent
echocardiography without symptoms as a general health check-up in val-
idation datasets were selected as the study population for subgroup ana-
lysis. The endpoint of the subgroup analysis was LVDD in the presence of
normal or near-normal LV ejection fraction, defined as an ejection
fraction of 50% or more.

Results

Among the 34 229 patients who were eligible for this study, 126
were excluded owing to missing values (Figure 1). The study included
34 103 patients, of whom 5756 had HFpEF. A DLM was developed
using a development dataset comprising 32 671 12-lead ECG
from 20 169 patients. The performance of the algorithm was then
confirmed using 1979 ECG data points from the 1979 patients in the
internal validation dataset from hospital A, and 11 955 ECGs from
the 11 955 patients in the external validation dataset from hospital B
(Table 1).

During the internal and external validations, the AUC of the DLM
was 0.866 [95% confidence interval (CI) 0.850–0.883] and 0.869
(95% CI 0.860–0.877), respectively (Figure 3). These values imply
that the DLM performed better than the other machine learning
algorithms. During the internal and external validations, the AUC of
the DLM using six-lead ECG was 0.808 (95% CI 0.789–0.828) and

Figure 4 Sensitivity map of deep learning model for detecting HFpEF. HFpEF, heart failure with preserved ejection fraction.

112 J.-M. Kwon et al.
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..0.858 (95% CI 0.849–0.858), respectively. The AUC of the single-lead
AI algorithm during the internal and external validation using lead I
was 0.784 (95% CI 0.763–0.804) and 0.845 (95% CI 0.835–0.854),
respectively; all results are shown in Figure 3.

We used a sensitivity map to visualize the ECG region used in the
DLM to detect HFpEF (Figure 4). The map shows that the DLM
focused on the QRS complex, particularly the R-wave, in most
patients. The DLM focused on not only the QRS complex but also
the T-wave in patients. As shown in Table 2, the variable importance
differed for each prognostic model. Whereas the LR and RF used the
T-wave axis as an important predictive variable, the DLM used the
QRS duration as an important predictive variable.

Our study comprised 2231 patients (1979 and 252 patients in the
internal and external validation datasets, respectively) with follow-up
echocardiographic results. Among them, 1412 patients were normal
(non-HFpEF) at initial echocardiography. We conducted a subgroup
analysis of HFpEF development after initial echocardiography in these
1412 patients, of whom 246 developed HFpEF within 24 months.
The high-risk group of the DLM showed a significantly higher hazard
(Figure 5) and higher development rate of HFpEF than the low-risk
group (33.6% vs. 8.4%, P < 0.001).

In the subgroup analysis of 2566 patients who underwent echocar-
diography without any symptom as a general check-up in the

validation dataset. Among these patients, 128 had LVDD without
symptom or sign. The AUC of the DLM for detecting LVDD
among the study population was 0.837 (0.805–0.870) in validation,
respectively. We described the detailed performance of DLB for
detecting LVDD among the asymptomatic population in
Supplementary material online.

Discussion

We developed and validated a DLM based on an ensemble network
for HFpEF detection using 12-, 6-, and single-lead ECG, and it demon-
strated reasonable performance. Subsequently, we visualized our
DLM to determine the regions and characteristics of the ECG that
were used for HFpEF prediction and confirmed the important vari-
able for the decision in another machine learning model, such as LR,
RF, and CNN. We conducted a subgroup analysis for patients with
non-HFpEF (normal) at initial echocardiography; it was demonstrated
that the DLM can predict the development of HFpEF. To our know-
ledge, this study is the first to develop a DLM for detecting and pre-
dicting HFpEF and show interpretable patterns of decision making
using the DLM.

Developing a reliable screening tool for detecting and predicting
HFpEF is crucial as LV diastolic dysfunction can develop without any

....................................................................................................................................................................................................................

Table 2 Importance of variables in development data for each prediction model

Variable importance rank Logistic regression

(deviance difference)

Random forest

(mean decreased Gini)

Deep learning

(difference in AUC)

1 Age Age Age

(2450) (2135) (0.069)

2 T-wave axis T-wave axis R-wave axis

(521) (1712) (0.059)

3 Height QT interval T-wave axis

(249) (1270) (0.022)

4 Weight Height Weight

(147) (1148) (0.021)

5 Presence of atrial

fibrillation or flutter

R-wave axis QRS duration

(144) (1120) (0.019)

6 P-wave axis P-wave axis Height

(56) (1043) (0.017)

7 QT interval Weight QT interval

(44) (1009) (0.016)

8 QRS duration QRS duration P-wave axis

(32) (997) (0.015)

9 PR interval PR interval PR interval

(24) (988) (0.014)

10 R-wave axis Heart rate Heart rate

(15) (893) (0.012)

11 Heart rate Sex Sex

(10) (144) (0.011)

12 Sex Presence of atrial

fibrillation and flutter (132)

Presence of atrial fibrillation and

flutter (0.005)(1)

AUC, area under the receiver operating characteristic curve.

Deep learning for heart failure with preserved ejection fraction 113
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.clinical symptoms or exhibit minimal symptoms. Echocardiographic
assessment of left ventricular diastolic function is an integral part of
the routine evaluation of patients presenting with symptoms of dys-
pnoea. Guidelines for diastolic function assessment were compre-
hensive, including several 2D and Doppler parameters to grade
diastolic dysfunction and to estimate LV filling pressures.17 However,
the inclusion of many parameters in the guidelines was perceived to
render diastolic function assessment too complex and echocardiog-
raphy is expensive and time consuming. If HFpEF is detectable using
the conventional 12-lead ECG or a diverse life-type ECG device,
patients can then be referred for echocardiography and early diagno-
sis. ECG is a non-invasive, inexpensive, and requires a short time to
perform. Hence, we developed a DLM as a reliable HFpEF screening
tool. Deep learning includes feature learning, which is a set of meth-
ods that allow feature extraction and a model to be created from
various data types, such as images, 2D data, and waveform signals.8

In this study, we used raw ECG data (2D numerical data). In previous
studies, Attia et al. and our group developed a DLM for screening LV
systolic dysfunction, arrhythmia, valvular heart disease, LV hyper-
trophy, hyperkalaemia, and anaemia.9–13 However, deep learning is
not an optimal method owing to the unreliability of its outcomes due
to the low interpretability of the decision process.8

A major limitation of deep learning technology in medicine is that
the decision-making process remains unpredictable. Therefore, we
adopted a sensitivity map and variable importance in the DLM. The
sensitivity map showed that the DLM-focused QRS complex and
variable importance result showed that the R-wave axis was high vari-
able importance in the DLM. In a previous study, the Cornell product
[amplitude of R-wave in aVL þ depth of S-wave in V3) * QRS] was
used; it is an easily applicable ECG marker of HFpEF and predicts
poor prognosis by reflecting the severity of diastolic dysfunction.27

Another study showed that scoring system derived from this study,

Figure 5 Cumulative hazard of developing HFpEF in patients with an initially normal. HFpEF, denoted heart failure with preserved ejection
fraction.
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.
including the presence or absence of left atrial hypertrophy, QRS
duration > 100 ms, right bundle branch block, ST-T segment changes
and prolongation of the QT interval can be used to predict the type
of HF.28 And the QRS axis was associated with HFpEF and prognosis,
and HFpEF and QRS prolongation were harmful in HFpEF for mortal-
ity.29 And QRS prolongation and axis change are associated with the
pathophysiology of HFpEF (cellular and ventricular hypertrophy,
fibrosis of the conduction system and myocardium, ischaemia,
and diastolic dysfunction). 29 The DLM focused not only on the
QRS complex but also on the T-wave. A previous study pertain-
ing to the detection of diastolic dysfunction using ECG based on
machine learning showed that the T-wave is an important pre-
dictor of HFpEF.30 In our study, T-waves were used in LR and RF
as important variables for detecting HFpEF, whereas the QRS
duration indicated a highly variable importance in the DLM.

The purpose of the developed DLM is to screen for HFpEF. The
developed DLM achieved an AUC of 0.866–0.869. The DLM per-
formed better than other typically used screening methods in clinical
settings, e.g., mammography for breast cancer screening (AUC =
0.78; positive predictive value: 3–12%) and faecal occult blood testing
for detecting colorectal neoplasia (AUC = 0.71; overall sensitivity:
29%).31,32 Although the performance of the developed DLM was un-
satisfactory, the possibility of applying deep learning to ECG for
screening HFpEF was demonstrated in this study.

Several limitations were present in our study. First, as this study
was only conducted in two hospitals in Korea, the algorithm used
must be further validated in patients with HFrEF in other countries.
Second, as this was a retrospective study, a prospective study must
be conducted in clinical settings, embedding the algorithm in the hos-
pital electronic health record or ECG machine. These two tasks will
be attempted in our future studies. Third, as we had confirmed the
DLB (deep learning based model) using single-lead ECG in part of the
data of 12-lead ECG, we should conduct further study to confirm
the performance of the DLM in wearable devices. This is the next
study subject of our study group. Fourth, the decision process of
the algorithm must be further investigated based on deep learning.
For example, additional experiments must be performed to under-
stand the deep learning process and determine the characteristics
of the QRS complex that affect DLM’s decision. This will be
attempted in our next study.

Conclusion

A DLM based on an ensemble neural network demonstrated accur-
ate performance in detecting HFpEF using ECG and successfully pre-
dicted the development of HFpEF.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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