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Visuospatial alpha and gamma oscillations 
scale with the severity of cognitive dysfunction 
in patients on the Alzheimer’s disease spectrum
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Abstract 

Background:  Entrainment of neural oscillations in occipital cortices by external rhythmic visual stimuli has been 
proposed as a novel therapy for patients with Alzheimer’s disease (AD). Despite this increased interest in visual neural 
oscillations in AD, little is known regarding their role in AD-related cognitive impairment and in particular during 
visuospatial processing.

Methods:  We used source-imaged magnetoencephalography (MEG) and an established visuospatial processing task 
to elicit multi-spectral neuronal responses in 35 biomarker-confirmed patients on the AD spectrum and 20 biomarker-
negative older adults. Neuronal oscillatory responses were imaged to the level of the cortex, and group classifications 
and neurocognitive relationships were modeled using logistic and linear regression, respectively.

Results:  Visuospatial neuronal oscillations in the theta, alpha, and gamma ranges significantly predicted the clas-
sification of patients on the AD spectrum. Importantly, the direction of these effects differed by response frequency, 
such that patients on the AD spectrum exhibited weaker alpha-frequency responses in lateral occipital regions, and 
stronger gamma-frequency responses in the primary visual cortex, as compared to biomarker-negative older adults. 
In addition, alpha and gamma, but not theta, oscillations robustly predicted cognitive status (i.e., MoCA and MMSE 
scores), such that patients with neural responses that deviated more from those of healthy older adults exhibited 
poorer cognitive performance.

Conclusions:  We find that the multi-spectral neural dynamics supporting visuospatial processing differentiate 
patients on the AD spectrum from cognitively normal, biomarker-negative older adults. Oscillations in the alpha and 
gamma bands also relate to cognitive status in ways that are informative for emerging clinical interventions.
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Background
Alzheimer’s disease (AD) is increasingly recognized 
as a clinical spectrum of pathological change, includ-
ing early-stage insults to circuit-level neuronal function 

[1]. Although primary sensory systems are tradition-
ally thought to be spared until late in the AD disease 
course, an emerging literature has suggested that rhyth-
mic gamma-frequency visual stimulation might attenu-
ate amyloid-β load and rescue cognitive function, by way 
of microglial recruitment and enhanced hemodynamic 
response [2–6]. This groundbreaking line of research has 
spawned multiple clinical trials and, more generally, has 
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led to an increased interest in the role of rhythmic neu-
ronal activity in AD pathology, particularly in the visual 
system.

Functional magnetic resonance imaging (fMRI) has 
been used extensively to study visual processing in 
patients with AD, with a notable focus on aberrant hemo-
dynamic responsiveness during visuospatial tasks. This 
literature has generally reported a decrease in stimulus-
related responses in the occipital cortex [7–9], but has 
provided no information regarding the spectral content 
of these pathophysiological changes. Understanding the 
frequency definitions of such changes is imperative, as it 
is well-supported that even spatially overlapping neural 
responses can represent divergent information-process-
ing mechanisms, dependent on their spectral content [10, 
11]. Further, previous work has indicated that the impact 
of clinical disorders on such neural responses is also 
often mediated by their spectral content [12, 13].

Visuospatial processing is known to recruit a series of 
stereotyped multi-spectral neural oscillatory responses 
in posterior cortices [12, 14–22]. These responses com-
monly include (1) an early theta-frequency (~ 3–7  Hz) 
synchronization in the primary visual cortex, impor-
tant for initial alerting to salient spatial features; (2) a 
later parieto-occipital desynchronization in the alpha 
band (~ 7–14  Hz), widely supported as indexing visual 
dis-inhibition in a retinotopic fashion; and (3) an early 
gamma-frequency (~ 50–80  Hz) synchronization, which 
is known to facilitate the processing of stimulus features. 
Regarding neuronal oscillations in AD, previous research 
has exclusively focused on early visual processing and 
has found that low-frequency responses in the delta and 
theta range appear to be preferentially impacted, with 
high-frequency alpha and gamma responses left relatively 
unaffected [23–27]. However, studies of neural oscilla-
tory activity during the resting-state (i.e., when no stimuli 
are presented) have reported disturbances in both the 
alpha [28, 29] and gamma [30] bands in patients with AD. 
Potentially accounting for this discrepancy in previous 
research, no studies of visual neural oscillations in AD 
have required participants to recruit “higher-order” visu-
ospatial abilities, which are impacted early and consider-
ably in the course of the disease [31, 32].

In this study, we assess the utility of neuronal oscilla-
tory responses during visuospatial processing for the 
differentiation of patients on the AD spectrum from 
cognitively normal, biomarker-negative older adults. 
Towards this goal, we leverage the high-spatio-temporal 
resolution of source-imaged, task-based magnetoen-
cephalography (MEG), and logistic regression modeling. 
To further investigate the importance of these visual neu-
ronal responses for clinical cognitive declines in patients 
with AD, we relate them to general cognitive status 

(i.e., MoCA and MMSE scores) using a general linear 
approach. We expected that these multi-spectral neu-
ronal dynamics would significantly predict the classifi-
cation of patients on the AD spectrum, as well as track 
cognitive status in these patients and that the nature of 
these relationships would be highly informative in under-
standing visuospatial cognitive pathology in AD. Specifi-
cally, we expected lower delta/theta responses in patients 
on the AD spectrum, given previous reports of a similar 
effect during early visual processing. In contrast, as our 
task required the recruitment of higher-order visuospa-
tial abilities, we hypothesized that gamma- and alpha-fre-
quency oscillatory responses would more closely mirror 
the resting state literature, where decreased alpha activ-
ity and increased gamma activity have been reported 
[28–30]. We did not have strong hypotheses as to the 
direction in which these neural aberrations might relate 
to behavior, since it is not well known whether they are 
pathological or compensatory in nature.

Methods
Participants
Forty-four patients with amnestic mild cognitive 
impairment (aMCI; N = 21) or mild probable AD 
(N = 23), as determined by a fellowship-trained neu-
rologist specializing in memory disorders using stand-
ard clinical criteria [33], were enrolled in this study. 
One participant with probable AD disenrolled from the 
study due to COVID-19-related safety concerns, one 
aMCI patient was excluded due to a major incidental 
finding, and four others (1 probable AD; 3 aMCI) were 
excluded after whole-brain positron emission tomog-
raphy (PET) imaging with florbetapir 18F indicated 
amyloid-negativity. Three additional participants with 
probable AD were excluded due to poor performance 
on the MEG visuospatial task (i.e., accuracy ≤ 55% cor-
rect) or an inability to complete the task. The remaining 
35 biomarker-confirmed patients on the AD spectrum 
were compared to a control group of twenty older 
adults with normal cognition (19 amyloid-negative and 
one without amyloid biomarkers). Group neuropsy-
chological profiles and demographics can be found in 
Table 1. The groups were matched on key demograph-
ics except for age (i.e., AD group was slightly younger), 
which was included as a nuisance covariate in all statis-
tical modeling. Exclusion criteria included any medical 
illness affecting CNS function, any neurological dis-
order (other than AD/aMCI), history of head trauma, 
moderate or severe depression (Geriatric Depression 
Scale ≥ 10), and current substance abuse. The Insti-
tutional Review Board at the University of Nebraska 
Medical Center reviewed and approved this investiga-
tion. Written informed consent was obtained from each 
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participant (and for patients, from their informant as 
well) following a detailed description of the study. In 
cases where the capacity to consent was questionable, 
informed assent was obtained from the research par-
ticipant, in addition to informed consent from a legally 
authorized representative.

Neuropsychological testing
After screening and informed consent, participants 
underwent a battery of neuropsychological tests, with 
raw scores for each participant being converted to 
demographically adjusted z scores based on published 
normative data [34–37]. This battery was developed in 
collaboration with a clinical neuropsychologist special-
izing in memory disorders and focused on five cognitive 
domains generally impacted in patients with AD: verbal 
memory (Wechsler Memory Scale [WMS-IV] Logical 
Memory II Delayed Recall and Recognition [38]; Hopkins 
Verbal Learning Test-Revised [HVLT-R] Delayed Recall 
and Recognition Discriminability Index [39]), learn-
ing (WMS-IV Logical Memory I Recall [38]; HVLT-R 
Learning Trials 1–3 [39]), attention and executive func-
tion (Wechsler Adult Intelligence Scale [WAIS-IV] Digit 
Span Forward, Backward, and Sequencing [37]; Trail 
Making Test Part B [35]), language (Boston Naming Test 
[35]; Controlled Oral Word Association Test/Phonemic 
Verbal Fluency [35]; Animals/Semantic Verbal Fluency 
[35]), and processing speed (WAIS-IV Digit Symbol Cod-
ing [37]; Trail Making Test Part A [35]). Demographically 
corrected z scores based on test-specific normative data 
were averaged to create composite cognitive domain z 
scores for each participant. In addition, instrumental 
activities of daily living (IADLs) were measured (with an 
informant for patients on the AD spectrum) using the 
Functional Activities Questionnaire (FAQ) [40], and gen-
eral cognitive status was measured using the Montreal 
Cognitive Assessment (MoCA) [41] and the Mini-mental 
State Examination (MMSE) [42].

Florbetapir 18F positron emission tomography
Combined PET/CT data using 18F-florbetapir (Amy-
vid™, Eli Lilly) and a GE Discovery MI digital scanner 
(Waukesha, WI) were collected following the standard 
procedures described by the Society of Nuclear Medi-
cine and Molecular Imaging (3D acquisition; single intra-
venous slow-bolus < 10  mL; dose = 370  MBq; waiting 
period = 30–50  min; acquisition = 10  min; [43]). Images 
were attenuation corrected using the CT data, recon-
structed in MIMNeuro (slice thickness = 2  mm; [44]), 
converted to voxel standardized uptake values based on 
body weight (SUVbw), and normalized into MNI space. 
Each scan was read by a fellowship-trained neuroradiolo-
gist blinded to group assignment and assessed as being 
“amyloid-positive” or “amyloid-negative” using estab-
lished clinical criteria [44]. At this stage, patients who 
were amyloid-negative were excluded from the AD spec-
trum group. Images were then normalized to the crus of 
the cerebellum (SUIT template; [45]) to generate voxel-
wise maps of SUV ratios (SUVR; [46]). To test for covari-
ance between amyloid uptake and MEG metrics, SUVRs 
were extracted from the same voxel locations identified 
in the MEG analysis and averaged bilaterally (see MEG 
preprocessing and sensor/source-level statistics).

Visuospatial processing experimental paradigm
Participants completed 240 trials of a visuospatial dis-
crimination task (Fig. 1, top), which has been extensively 
described and validated in previous work [12, 14–16, 20, 
21, 47], concurrent with MEG recording. During this 
task, participants were seated in a magnetically shielded 
room and indicated the position of a grid by a right-
handed button press (left = index finger; right = middle 
finger). Visual stimuli were delivered using e-Prime v2.0 
(Psychology Software Tools, Pittsburgh, PA) and back-
projected onto a semi-translucent non-ferromagnetic 
screen at an approximate distance of 1.07  m, using a 

Table 1  Participant demographics, neuropsychological profiles, and task performance

CN Cognitively normal, ADS Alzheimer’s disease spectrum, MoCA Montreal Cognitive Assessment, MMSE Mini-Mental State Exam
a n = 49

Age (years) Sex (% female) Handedness (# left) Education (years) Accuracy (%) RT (ms)

CN 72.70 (4.73) 60 1 16.60 (2.87) 97.47 (0.04) 579.60 (70.11)

ADS 69.3 (7.14) 51 2 15.57 (2.77) 94.16 (0.08) 621.79 (117.08)

P .043 .539 .911 .203 .258 .146

MoCAa MMSE Memory Learning Verbal Function Attention Processing Speed
CN 27.43 (1.99) 29.20 (1.06) 0.33 (0.56) 0.60 (0.76) 0.18 (0.76) 0.53 (0.60) 0.66 (0.83)

ADS 19.51 (4.71) 23.94 (4.09)  − 2.32 (0.66)  − 2.02 (0.88)  − 0.92 (0.97)  − 0.70 (1.07)  − 0.72 (1.33)

P  < .001  < .001  < .001  < .001  < .001  < .001  < .001
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Panasonic PT-D7700U-K model DLP projector with a 
refresh rate of 60 Hz and a contrast ratio of 4000:1.

Importantly, the relative simplicity of this task was 
by design. When designing a task-based neuroimag-
ing study of patients with cognitive impairments, one 
typically has to choose between having these patients 
perform tasks that are inherently more difficult for 
them than for healthy adults, resulting in systemati-
cally reduced performance, or having them perform 
tasks that tap cognitive domains that are known to 
be affected by the disease but do not challenge them 
beyond their remaining capabilities in that domain. 
While both approaches have their advantages, in this 
case, we decided to use a task that was exceedingly sim-
ple, but still by necessity required the participants to 
process the visuospatial information of the stimuli. This 

approach has two key benefits: (1) it allows us to com-
pare neural activity between two groups of participants 
that we can confidently say are both perfectly capable of 
performing the task at hand, ensuring their recruitment 
of primarily visuospatial cognitive processes and (2) it 
allows us to collect functional neuroimaging data from 
a patient group with a much wider range of cognitive 
abilities. In our view, point (2) is particularly important, 
as cognitive neuroimaging studies that employ more 
difficult tasks by nature either restrict their sampling 
to patients with relatively high cognitive functioning or 
forfeit the ability to show that patients were performing 
the task accurately. Of course, the latter severely limits 
interpretation, as one cannot guarantee the underlying 
neural responses actually support the target cognitive 
function.

Fig. 1  Visuospatial processing task design and behavioral performance. The visuospatial task utilized for this study is displayed above, and 
described in greater detail in the “Methods” section. Behavioral performance on this task is displayed per group (cognitively normal [CN]: blue; 
Alzheimer’s disease spectrum [ADS]: red). Box plots represent group residual means, first and third quartiles, and minima and maxima, and violin 
plots show the probability density
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MEG data acquisition
Our MEG data acquisition, structural coregistration, pre-
processing, and sensor-/source-level analyses closely fol-
lowed the analysis pipeline of previous manuscripts [12, 
48]. All recordings were conducted in a one-layer mag-
netically shielded room with active shielding engaged. 
Neuromagnetic responses were sampled continuously at 
1 kHz with an acquisition bandwidth of 0.1–330 Hz using 
a 306-sensor Elekta/MEGIN MEG system (Helsinki, Fin-
land) equipped with 204 planar gradiometers and 102 
magnetometers. Participants were monitored during 
data acquisition via real-time audio–video feeds from 
inside the shielded room. Each MEG dataset was individ-
ually corrected for head motion and subjected to noise 
reduction using the signal space separation method with 
a temporal extension [49]. Only data from gradiometers 
were used for further analysis.

Structural MRI processing and MEG coregistration
Preceding MEG measurement, four coils were attached 
to the participant’s head and localized, together with the 
three fiducial points and scalp surface, using a 3D digi-
tizer (Fastrak 3SF0002, Polhemus Navigator Sciences, 
Colchester, VT, USA). Once the participant was posi-
tioned for MEG recording, an electric current with a 
unique frequency label (i.e., 293, 307, 314, and 321  Hz) 
was fed to each of the coils. This induced a measurable 
magnetic field and allowed each coil to be localized in 
reference to the sensors throughout the recording ses-
sion. Since coil locations were also known in head coordi-
nates, all MEG measurements could be transformed into 
a common coordinate system. With this coordinate sys-
tem, each participant’s MEG data were co-registered with 
their own structural T1-weighted MRI data using BESA 
MRI (Version 2.0) prior to source-space analysis. Struc-
tural MRI data were aligned parallel to the anterior and 
posterior commissures and transformed into standard-
ized space. Following source analysis (i.e., beamforming), 
each participant’s 4.0 × 4.0 × 4.0  mm functional images 
were also transformed into standardized space using the 
transform that was previously applied to the structural 
MRI volume and spatially resampled.

MEG preprocessing and sensor/source‑level statistics
Cardiac and blink artifacts were removed from the data 
using signal-space projection (SSP), which was subse-
quently accounted for during source reconstruction [50]. 
The continuous magnetic time series was then filtered 
between 0.5 and 200  Hz plus a 60-Hz notch filter and 
divided into 2700  ms epochs, with the baseline extend-
ing from − 400 to 0  ms prior to the onset of the visual 
stimulus. At this point, only trials with correct responses 

were considered for further analysis. Epochs containing 
artifacts were rejected using a fixed threshold method, 
supplemented with visual inspection (mean amplitude 
threshold: 1065.18 [SD = 240.98] fT/cm; mean gradient 
threshold: 205.50 [SD = 100.09] fT/(cm*ms)). An average 
of 201.86 (SD = 23.78) trials was used for further analy-
sis. Importantly, none of our statistical comparisons were 
compromised by significant group  differences in trial 
number nor artifact thresholds (Mann–Whitney U test; 
trial number: p = 0.234; amplitude threshold: p = 0.588; 
gradient threshold: p = 0.186).

We next transformed the post-artifact-rejection epochs 
into the time–frequency domain using complex demod-
ulation [51, 52]. The time–frequency analysis was per-
formed with a frequency-step of 2  Hz and a time-step 
of 25  ms between 4 and 100  Hz, using a 4  Hz lowpass 
finite impulse response (FIR) filter with a full-width half 
maximum (FWHM) in the time domain of ~ 115 ms. The 
resulting spectral power estimations per sensor were 
averaged over trials to generate time–frequency plots 
of mean spectral density, which were normalized by the 
baseline power of each respective bin ((active-baseline)/
baseline), calculated as the mean power during the − 400 
to 0 ms time period. The time–frequency windows used 
for the source analysis were determined by means of a 
paired-sample cluster-based permutation test against 
baseline across all participants and the entire frequency 
range (4–100  Hz), with an initial cluster threshold of 
p < 0.001 and 10,000 permutations.

Time–frequency resolved beamformer source images 
were computed using the dynamic imaging of coher-
ent sources approach (DICS; [53]), which uses the 
time–frequency averaged cross-spectral density to 
calculate voxel-wise estimates of neural power and/or 
coherence. Following convention, we computed noise-
normalized, source power per voxel in each participant 
using active (i.e., task) and passive (i.e., baseline) peri-
ods of equal duration and bandwidth. This approach 
generated three-dimensional participant-level pseudo-t 
maps per each time–frequency cluster identified in the 
sensor-level analysis. These voxel-wise maps of oscilla-
tory neuronal response amplitude were averaged both 
within- and across-groups for display purposes, and 
the voxel of maximum amplitude (i.e., the peak voxel 
in the occipital cortex) in each hemisphere per oscil-
latory response was identified in the grand-averaged 
map. For enhanced visualization of the nature of these 
responses, virtual sensor data were extracted from 
these grand-average occipital peak voxels and decom-
posed into time–frequency space to derive the ampli-
tude envelope of the neural signal. To test hypothesized 
classification effects and relationships to cognition, 
beamformer neural response amplitude values were 
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extracted from the same peak voxels per participant 
and oscillatory response and averaged bilaterally across 
the hemispheres.

Statistical analyses and software
To test the utility of these oscillatory occipital responses 
for classifying patients on the AD spectrum, we com-
puted a logistic regression model with the following 
form: group ~ θ + α + γ + age. General linear models were 
used to test for hypothesized covariance between these 
neural responses and cognitive function (i.e., MoCA and 
MMSE scores) with the following form: cognitive score
s ~ θ + α + γ + group + age. In addition, to test for lin-
ear relationships between regional amyloid burden and 
MEG metrics, a general linear model of the following 
form was used for each relevant neural response: MEG 
response ~ SUVr + age. Age was included in the null 
model for these analyses, as was the group for the linear 
regressions on cognitive function. Logistic and general 
linear regression models were performed using the stats 
package in R [54]. All MEG data preprocessing, coregis-
tration, and sensor- and source-level analyses were per-
formed in the Brain Electrical Source Analysis software 
suite (BESA Research v6.1 and BESA MRI v2.0). Cluster-
based permutation testing on MEG sensor-array data was 
performed in BESA Statistics (v2.0). Plotting of model 
residuals used ggplot2 [55].

Results
By design, performance on our visuospatial task was 
equal and near ceiling for both groups (Table  1; Fig.  1, 
bottom). As supported by stringent cluster-based permu-
tation testing, as well as by numerous previous reports, 
we observed significant neural oscillatory responses 
to the visuospatial task stimuli in three temporally and 
spectrally defined windows (Fig.  2, left). These included 
an early synchronization (i.e., an increase from base-
line levels of synchrony) in the theta band (0–350  ms; 
3–6 Hz), followed by a strong de-synchronization (i.e., a 
decrease from baseline levels of synchrony) in the alpha 
band (350–700  ms; 8–14  Hz) and a synchronization in 
the gamma band (350–550  ms; 72–84  Hz). Imaging of 
these responses to the level of the cortex confirmed that 
they all originated from bilateral occipital regions, with 
the alpha response being more lateral than the medial 
theta and gamma responses (Fig.  2, middle). Inspection 
of the group-averaged response maps, as well as peak-
voxel time series from these responses, subjectively sug-
gested a pattern of differences in response amplitude, but 
not latency, between cognitively normal participants and 
patients on the AD spectrum (Fig. 2, right).

Visuospatial neural oscillations differentiate patients 
on the AD spectrum from cognitively normal older adults
To examine the utility of these occipital neural dynam-
ics for classifying patients on the AD spectrum, we next 
computed a logistic regression model with theta, alpha, 
and gamma frequency oscillatory responses as predic-
tors, group as the binary dependent variable, and age as 
a predictor in the null model (Fig.  3, top). This model 
significantly predicted the differentiation of patients on 
the AD spectrum from cognitively normal older adults 
(Χ2(50) = 12.19, p = 0.007), and all three visuospatial 
oscillatory responses significantly contributed to the clas-
sification accuracy of the model. For the theta response in 
primary visual cortices and the alpha response in lateral 
occipital regions, patients on the AD spectrum exhib-
ited reduced oscillatory amplitude (theta: z =  − 1.99, 
Wald = 3.95, odds ratio = 0.92, p = 0.047, Fig.  3, left; 
alpha: z = 2.53, Wald = 6.39, odds ratio = 1.07, p = 0.012, 
Fig. 3, middle), while the opposite was true for the gamma 
(z = 2.42, Wald = 5.84, odds ratio = 1.41, p = 0.016; Fig. 3, 
right) response in primary occipital cortices. Impor-
tantly, the alpha-band response was negative in sign (i.e., 
a desynchronization from baseline levels) so the larger 
(less negative) number indicates a reduced response in 
patients on the AD spectrum. Given the shape of the vio-
lin plots in Fig. 3, we computed the same model with an 
exclusionary threshold of ± 3 standard deviations from 
the mean, and the results were virtually unchanged. 
Thus, these effects were not due to the influence of outli-
ers. We also tested for any potential prediction of these 
neural response amplitudes by regional amyloid-β bur-
den (above and beyond the effects of age) using a general 
linear approach, but found no such relationship with the 
theta (r = 0.17, p = 0.330), alpha (r =  − 0.28, p = 0.110), or 
gamma (r =  − 0.16, p = 0.374) responses.

Alpha and gamma oscillations predict cognitive status 
in patients on the AD spectrum
Finally, to determine the relevance of these visuospa-
tial neural responses for predicting cognitive status in 
patients on the AD spectrum, we regressed the ampli-
tude of the three responses on a test of general cognitive 
function (i.e., the MoCA). The full model was significant 
beyond the effects of group and age (ΔF(3,43) = 3.64; 
p = 0.020), suggesting that these dynamics are useful 
indicators of cognitive status in the early stages of AD. 
Post hoc investigation of the predictive capacity of each 
spectrally-defined neural response indicated that both 
the alpha (r =  − 0.30, p = 0.046) and gamma (r =  − 0.40, 
p = 0.006) responses, but not the theta response (r = 0.02, 
p = 0.902), significantly predicted general cognitive sta-
tus (Fig.  4). For both the alpha and gamma band, the 
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direction of this effect was intuitive, in that greater 
deviation from cognitively normal adults predicted 
worse cognitive status. A similar regression model on 
another widely used test of cognitive function (i.e., the 
MMSE) produced highly similar results (theta: r = 0.096, 
p = 0.503; alpha: r =  − 0.34, p = 0.013; gamma: r =  − 0.36, 
p = 0.010). Computing these models with outliers 
excluded (threshold of ± 3 SD from the mean) did not 
meaningfully change the results. Further, computing the 
same analysis in only the AD spectrum group produced 
largely similar results, with the exception of the alpha-
MMSE and alpha-MoCA relationships becoming mar-
ginal (MoCA: p = 0.062; MMSE: p = 0.071), potentially 
reflecting a difference in the statistical power between 
the two approaches. Once again, computing these AD 

spectrum-only models with outliers excluded produced 
interpretationally identical results, with the notable 
exception of the alpha-MoCA relationship becoming sig-
nificant (r =  − 0.40, p = 0.029).

Discussion
New interest in rhythmic neuronal activity in patients 
with AD has spurred a huge number of basic and 
translational studies of visual processing; however, the 
dynamic patterns of such neural oscillatory activity 
in these patients are not well understood. In particu-
lar, although visuospatial processing is known to be 
impaired early in the course of the disease, the oscil-
latory neural responses known to support this pro-
cess have not been investigated in patients with AD. 

Fig. 2  Multi-spectral occipital dynamics in patients on the Alzheimer’s disease spectrum. Spectrograms on the far left are representative sensors 
displaying the significant time–frequency responses identified in the sensor-level analysis, with percent change from baseline indicated on the 
scale bar above. Large brain maps in the middle represent occipital neural responses per each frequency band (top: theta; middle: alpha; bottom: 
gamma) that have been grand averaged over all participants. Smaller maps in the middle show these same responses averaged within each group 
(top: cognitively normal [CN] controls; bottom: Alzheimer’s disease spectrum [ADS]). Peak voxel virtual sensor time series per group are displayed 
on the right for these responses (averaged across hemispheres per group), with the gray shaded areas indicating time windows identified in the 
sensor-level analysis and imaged using a beamformer, and the colored shaded areas indicating ± 1 standard error of the mean
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In this study, we find that the multi-spectral occipital 
neuronal dynamics supporting visuospatial process-
ing in healthy adults are uniquely impacted in patients 
on the AD spectrum. Specifically, patients exhibited 
blunted theta and alpha responses, alongside stronger 
gamma frequency synchronizations. These pathologi-
cal deviations significantly differentiated patients on 

the AD spectrum from cognitively normal older adults 
and scaled with performance on common cognitive 
screening tools (i.e., MoCA and MMSE). These findings 
provide key new information, both for the field’s basic 
understanding of the cognitive neuropathology of AD, 
as well as for emerging clinical interventions aimed at 
frequency-targeted neurostimulation.

Fig. 3  Classification of patients on the Alzheimer’s disease spectrum using multi-spectral occipital dynamics. The logistic regression model used 
to perform classification is displayed at the top, with the participant-level residuals and model fit for each frequency of neural response displayed 
in the graphs below (theta: left; alpha: middle; gamma: right). Box plots represent group residual means, first and third quartiles, and minima and 
maxima, and violin plots show the probability density. The black dashed line indicates the model fit across levels of the neural response amplitude 
(x-axis) and groups (y-axis). The significance of each response in contributing to the classification model (i.e., as a p value) is inlaid to the right, and 
the same group-averaged neural response maps are inlaid to the far left of each plot to aid in the interpretation

Fig. 4  Alpha and gamma occipital dynamics predict global cognitive status in patients on the Alzheimer’s disease spectrum. Scatterplots represent 
significant relationships between neural response amplitude (x-axis; alpha: left; gamma: right) and global cognitive status as measured by the 
Montreal Cognitive Assessment (MoCA; y-axis). Individual participant data points for cognitively normal controls (CN) are shown in blue and for 
patients on the Alzheimer’s disease spectrum (ADS) in red, with lines-of-best-fit and corresponding confidence intervals overlaid
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While all three neural oscillatory responses contrib-
uted significantly to the logistic regression classifier, the 
alpha and gamma oscillations appeared to be particularly 
important in this regard. In addition, these responses, 
and not the theta oscillations, significantly predicted cog-
nitive status in these participants, indicating their poten-
tial utility for clinical relevance in the pathophysiology 
of AD-related cognitive decline. Interestingly, the group 
differences across these responses were bi-directional, 
such that gamma oscillations were enhanced and alpha 
responses were diminished in patients on the AD spec-
trum. In both cases, these deviations from cognitively 
normal adults appeared to index pathology; patients with 
weaker alpha responses and stronger gamma responses 
tended to exhibit the poorest cognitive status per total 
MoCA score. While alpha band neuronal aberrations in 
AD are well documented during the resting state (i.e., 
when no cognitive task is being performed; [28, 29, 56, 
57]), much less is known regarding the impact of AD on 
task-induced alpha responses. Further, alpha rhythms 
are known to be particularly important for the spatially 
selective functional gating of incoming visual information 
[48, 58, 59], and this is the first evidence that the alpha 
oscillations supporting visuospatial processing are devi-
ant in patients on the AD spectrum. In contrast to the 
alpha rhythm, much less evidence exists for differences 
in gamma-frequency oscillations between cognitively 
normal adults and patients with AD, and virtually  no 
studies have investigated induced gamma responses in 
this population. The notable exception to this is a study 
wherein the authors examined gamma responses to a 
range of basic sensory stimuli and found a similar pat-
tern of increased gamma response amplitude in patients 
on the AD spectrum [30]. Given the recent interest in the 
use of rhythmic gamma-frequency visual stimulation as a 
non-invasive treatment for AD, it seems highly relevant 
that we found such robust differences in this frequency. 
In terms of the underlying cognitive mechanisms, gamma 
oscillations are indicative of energetically expensive local 
processing [60] and are imperative for representing stim-
ulus-specific information during visuospatial processing 
[61, 62]. Thus, our finding of stronger gamma responses 
that scale with cognitive decline in patients on the AD 
spectrum is suggestive of less efficient stimulus repre-
sentation in these patients during the processing of their 
visuospatial environment.

The theta response did not contribute as robustly to 
the classification analysis as the alpha and gamma oscil-
lations and exhibited no significant relationship with cog-
nitive impairment. This was somewhat surprising, as the 
blunting of low-frequency oscillatory responses during 
visual processing is the most frequently reported effect in 
patients with AD [23–27, 63]. Generally, theta responses 

to visual stimuli are thought to support early alerting to 
salient stimuli within the visuospatial environment [14, 
64, 65], and our findings suggest that such early visual 
processing is perhaps less essential in understanding the 
visuospatial deficits often experienced by patients with 
AD.

Limitations
Limitations for this work must also be acknowledged. 
First, while we provide robust evidence for a dysfunc-
tional pattern of rhythmic neuronal activity support-
ing visuospatial processing in these patients, very little 
is known regarding the impact of AD on the dynamics 
supporting higher-order attention and executive func-
tion. Previous research has established that multi-spec-
tral neural activity in visual cortices is also essential 
for visuospatial attention, so in future studies, it will be 
important to probe whether the effects reported here 
transfer to and interfere with activity in fronto-parietal 
and other attention networks. Second, although we 
did find a significant relationship between visuospatial 
neural responses and general cognitive function (i.e., 
MoCA and MMSE scores) in patients on the AD spec-
trum, our more detailed neuropsychological battery did 
not include sub-tests specific to visuospatial processing. 
Thus, we were unable to connect these neural responses 
to visuospatial abilities measured outside of the scan-
ner, which we would tentatively predict are being mod-
eled by the shared variance with the MoCA and MMSE 
scores, since both of these tests incorporate visuospatial 
components. Third, although we found no significant 
relationship between regional amyloid burden and visu-
ospatial oscillatory responses across patients, this does 
not necessarily indicate that no such relationship exists in 
AD. As amyloid-β is known to accumulate prior to clini-
cally significant cognitive declines becoming apparent in 
these patients [66], it is possible that any such relation-
ship would need to be tested in a much earlier, pre-clin-
ical disease stage. Additionally, more nuanced modeling 
approaches that leverage within-participant spatial co-
variability between MEG and PET have recently been 
successful in uncovering relationships between regional 
measures of proteinopathy and neural activity [67, 68]. 
While beyond the scope of this study, this type of mod-
eling is an intuitive next step for this line of research. 
Finally, while our patient group spanned a wide range 
of clinical AD severity from early amnestic MCI to early 
dementia, we were unable to extend our analyses to peo-
ple in the pre-clinical stages of the disease. This would 
be an essential next step to determine how early these 
occipital dynamics might be relevant for diagnostic pur-
poses and would shed additional light on the relationship 
between these dynamics and cognitive declines in AD, 
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as well as amyloid burden as mentioned above. Relat-
edly, although the current data provide novel information 
regarding the neural bases of visuospatial processing def-
icits in patients on the AD spectrum, it remains unclear 
whether these findings may also provide clinically mean-
ingful gains in classification accuracy beyond what is 
possible with EEG resting-state protocols. Extensive elec-
trophysiological work has supported the potential utility 
of such resting-state approaches [69] in confirming AD 
diagnoses, which makes this another appealing next line 
of inquiry.

Conclusions
These findings shed new light on the neurophysiological 
underpinnings of visuospatial deficits in patients with 
AD. While theta, alpha, and gamma frequency neural 
responses to visuospatial stimuli differentiate patients on 
the AD spectrum from biomarker-negative older adults, 
alpha and gamma oscillations appear to be particularly 
important for tracking cognitive decline along this spec-
trum. Thus, occipital alpha and gamma frequency neural 
oscillations appear to be valid targets for ameliorating 
such deficits with emerging clinical interventions, as well 
as for tracking visuo-spatial decline in these patients.
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