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Visual motion estimation is a canonical neural
computation. In Drosophila, recent advances have
identified anatomic and functional circuitry underlying
direction-selective computations. Models with varying
levels of abstraction have been proposed to explain
specific experimental results but have rarely been
compared across experiments. Here we use the wealth
of available anatomical and physiological data to
construct a minimal, biophysically inspired synaptic
model for Drosophila’s first-order direction-selective T4
cells. We show how this model relates mathematically
to classical models of motion detection, including the
Hassenstein-Reichardt correlator model. We used
numerical simulation to test how well this synaptic
model could reproduce measurements of T4 cells across
many datasets and stimulus modalities. These
comparisons include responses to sinusoid gratings, to
apparent motion stimuli, to stochastic stimuli, and to
natural scenes. Without fine-tuning this model, it
sufficed to reproduce many, but not all, response
properties of T4 cells. Since this model is flexible and
based on straightforward biophysical properties, it
provides an extensible framework for developing a
mechanistic understanding of T4 neural response
properties. Moreover, it can be used to assess the
sufficiency of simple biophysical mechanisms to
describe features of the direction-selective computation
and identify where our understanding must be
improved.

Introduction

Motion estimation is a canonical visual computation
that requires integrating information nonlinearly over
both time and space. Direction-selective signals are
tuned to motion in a preferred-direction (PD), which
elicits the strongest responses, while motion in the
opposite, null-direction (ND), elicits a weaker response.
This directional computation has been described by
a wide variety of computational models. Classical
models, such as the Hassenstein-Reichardt correlator
(HRC) (Hassenstein & Reichardt, 1956) and motion
energy model (Adelson & Bergen, 1985), rely on sensing
correlations between pairs of points separated in
space and time. These phenomenological models have
provided striking insights into neural and behavioral
responses in a variety of species, including in flies
(Yang & Clandinin, 2018).

In the last decade, advances in defining the
anatomical and functional connectivity of Drosophila’s
visual circuits suggest that we may move toward
more mechanistic, biophysical descriptions of
this computation. Here, we follow previous work
(Gruntman, Romani, & Reiser, 2018; Torre & Poggio,
1978) to propose a simple, biophysically plausible
synaptic model for direction selectivity in Drosophila’s
ON-edge-sensitive motion pathway. We compare its
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predictions to measurements made by several research
groups in response to many stimuli, giving us a tool for
understanding which features are sufficient to describe
different response properties.

The most peripheral direction-selective neurons in the
Drosophila optic lobe are the T4 and T5 cells, which are
sensitive to moving ON-edges (consisting of contrast
increments) and OFF-edges (consisting of contrast
decrements), respectively (Clark, Bursztyn, Horowitz,
Schnitzer, & Clandinin, 2011; Joesch, Schnell, Raghu,
Reiff, & Borst, 2010; Maisak, Haag, Ammer, Serbe,
Meier, Leonhardt, Schilling, Bahl, Rubin, Nern,
2013). Electron microscopy and genetic silencing have
identified the primary inputs to T4 and T5 cells (Serbe,
Meier, Leonhardt, & Borst, 2016; Shinomiya, Huang,
Lu, Parag, Xu, Aniceto, Ansari, Cheatham, Lauchie,
& Neace, 2019; Strother, Wu, Wong, Nern, Rogers,
Le, Rubin, Reiser, 2017; Takemura, Nern, Chklovskii,
Scheffer, Rubin, & Meinertzhagen, 2017). These
studies suggest that T4 cells receive input from three
distinct colinear spatial locations, with the neurons
Mi1 and Tm3 both relaying information about the
central point, and the neurons Mi9 and Mi4 acting
as relays for the two flanking points (Takemura et al.,
2017) (Figure 1A). The neuron T5 appears to have a
similar spatial structure, with different input neurons
(Shinomiya et al., 2019). Both cell types also receive
spatially-localized inputs from other neurons, whose
functions remain less well understood (Shinomiya et al.,
2019; Takemura et al., 2017).

The physiological properties of the inputs to T4 and
T5 cells have also been characterized. At their receptive
field centers, Mi1 and Tm3 cells respond quickly to
visual stimuli and provide excitatory input to T4
(Arenz, Drews, Richter, Ammer, & Borst, 2017; Behnia,
Clark, Carter, Clandinin, & Desplan, 2014; Gruntman
et al., 2018; Strother et al., 2017; Takemura et al.,
2017). On the preferred direction side of the receptive
field, the cells Mi4 and CT1 show ON responses with
slower kinetics, likely inhibiting T4 cells (Arenz et al.,
2017; Meier & Borst, 2019; Shinomiya et al., 2019;
Takemura et al., 2017). On the null direction side of the
receptive field, Mi9 cells are delayed OFF cells, which
likely provide inhibitory, glutamatergic input to T4
cells (Arenz et al., 2017; Salazar-Gatzimas, Agrochao,
Fitzgerald, & Clark, 2018). The inputs to T5 cells
similarly appear to be arranged with a fast central input
and delayed flanking inputs, but whether these inputs
excite or inhibit T5 is less clear (Arenz et al., 2017;
Behnia et al., 2014; Shinomiya et al., 2019; Wienecke,
Leong, & Clandinin, 2018).

This wealth of data about T4 and T5 cells and
their inputs has led to many different models that
seek to describe the response properties of T4 and
T5 cells (Arenz et al., 2017; Badwan, Creamer,
Zavatone-Veth, & Clark, 2019; Behnia et al., 2014;
Clark et al., 2011; Creamer, Mano, & Clark, 2018;

Figure 1. An anatomically constrained synaptic model for T4
cells. (A) Left: Diagram of proposed inputs to Drosophila T4
first-order direction-selective cells based on anatomic and
physiological measurements. Mi1 and Tm3 cells provide ON
excitatory input at the center of the receptive field of each T4
cell, whereas Mi9 provides delayed OFF inhibitory input offset
in the null direction, and Mi4 provides delayed ON inhibitory
input offset in the preferred direction. Right: Synaptic model
based on the anatomic structure shown at left. (B) Responses of
each component of the synaptic model to a 1 Hz, 45-degree
sinusoidal grating drifting in the preferred (rightward) direction.
Top: Input contrasts to each of the 3presynaptic units of the
model. Upper middle: Conductances of excitatory and
inhibitory currents corresponding to each input in response to
the sinusoidal stimulus. Lower middle:Membrane voltage.
Bottom: Calcium signal. (C) Left: Responses of T4 cells sensitive
to front-to-back (FTB) motion to ON and OFF edges moving FTB
and back-to-front (BTF) at 30 degrees/s, measured using
2-photon calcium imaging (data from (Salazar-Gatzimas et al.,
2016)). Right: As at left, but for the T4 synaptic model.
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Eichner, Joesch, Schnell, Reiff, & Borst, 2011;
Gruntman et al., 2018; Haag, Arenz, Serbe, Gabbiani,
& Borst, 2016; Leong, Esch, Poole, Ganguli, &
Clandinin, 2016; Leonhardt, Ammer, Meier, Serbe,
Bahl, & Borst, 2016; Salazar-Gatzimas et al., 2018;
Salazar-Gatzimas, Chen, Creamer, Mano, Mandel,
Matulis, Pottackal, & Clark, 2016; Serbe et al., 2016;
Strother et al., 2017; Wienecke et al., 2018). Many of
the measurements of T4 and T5 have demonstrated
phenomenology that could not be produced by the
classical HRC model. However, proposed models
were most often evaluated by how they reproduced
the associated dataset, rather than the full range of
phenomena documented in the literature. Here, we
ask how a minimal, constrained model reproduces T4
phenomenology (and some T5 phenomenology) from
many different experiments. We compare the model
to data in response to moving edges, to sinusoids, to
apparent motion stimuli, to stochastic stimuli, and to
natural scenes.

In this minimal model, the spatially-separated inputs
to T4 are represented as three linear-nonlinear (LN)
transformations of the input contrast (Dayan &Abbott,
2001). These model neurons then interact with T4 by
altering the conductance of excitatory and inhibitory
currents (Gruntman et al., 2018; Torre & Poggio,
1978). This construction is simple enough to allow
some algorithmic intuition but incorporates greater
biophysical realism than most phenomenological
models. We do not fit the model to every dataset.
Rather, our goal is to test the sufficiency of a minimal
circuit model to account for different measured
phenomena in T4 cells. This model does not contain
any exotic channels or receptors, and it biophysically
models the membrane voltage and intracellular calcium
concentration in T4 neurons. It does not reproduce
all functional properties of T4 cells, but it provides a
flexible framework for understanding the sufficiency of
simple circuit properties and mechanisms to describe
the processing properties of T4 neurons. In cases where
this model is insufficient to describe data, we suggest
how model parameters might be changed to better
account for it.

Methods

Constructing an anatomically constrained
synaptic model for T4 cells

Following proposed synaptic architectures for
direction-selective computations (Gruntman et al.,
2018; Torre & Poggio, 1978), we constructed an
elementary motion detector based on the connectome
of theDrosophila optic lobe. We simplified this structure
to consider three inputs to a T4 cell: a delayed ND-offset

OFF inhibitory input representing Mi9, a centered
ON excitatory input representing Mi1 and Tm3, and
a delayed PD-offset ON inhibitory input representing
Mi4 (or CT1 or both) (Figure 1A) (Strother et al., 2017;
Takemura et al., 2017).

We will model these inputs to T4 cells as simple
linear-nonlinear (LN) transformations of the input
contrast (Behnia et al., 2014). We will further model
effects of these synaptic inputs on the membrane
potential of the T4 cell by changes in the conductance
of excitatory and inhibitory currents (Torre & Poggio,
1978). For notational convenience, we define our model
below in continuous space and time, noting where
adjustments are made for the discretization used in
numerical simulation. We take the inputs to the model
to be contrasts. We take each input to the motion
detector to have an L1-normalized Gaussian spatial
acceptance function

h (x) = 1√
2πσ 2

e− x2

2σ2 .

To represent the delayed inputs to the motion detector,
we use the L2-normalized lowpass temporal filter

f (t) = 2 τ− 3
2 t � (t) e− t

τ ,

where �(x) is the Heaviside step function. To represent
the nondelayed central input to the motion detector,
we replace the temporal filter f by its normalized
distributional derivative ḟ = 2 τ− 3

2 (τ − t) �(t) e− t
τ .

Using these filters, we define the filtered contrast signal
s at each point in spacetime:

s (t, x) := ( f h ∗ c) (t, x) ,

where c(t, x) is the input contrast and * denotes
spatiotemporal convolution with the functions f and
h over the appropriate domain. Because taking the
temporal derivative of the filtered contrast signal is
equivalent to filtering with the derivative of the temporal
filter, we will use the notation ṡ for the high-pass-filtered
signal throughout. For convenient handling of spatial
boundary conditions, we numerically simulate the full
360 degrees of visual space, which is a periodic interval.

Then, we define the three inputs to the motion
detector as rectified-linear functions of the filtered
contrast signal at three points in space, mimicking the
polarity-selectivity of the inputs to T4 cells:

g1 (t, x) := ginhR (−s (t, x − �)) ,

g2 (t, x) := gexcR (ṡ (t, x)) ,

g3 (t, x) := ginh R (s (t, x + �)) ,
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where � is the spacing between neighboring inputs,
R(x): =max {0, x} is the ramp function, and ginh and
gexc are parameters scaling the effects of each input on
the postsynaptic conductances (Figure 1A–B). Thus
we represent the conductances as linear-nonlinear
(LN) transformations of the input contrast (Dayan &
Abbott, 2001).

We define the membrane potential Vm of the
postsynaptic cell such that the reversal potential for leak
currents is 0 mV. The cell’s membrane voltage dynamics
are then given as (Torre & Poggio, 1978)

cmV̇m +Vm (gleak + g1 + g2 + g3)
= g1Einh + g2Eexc + g3Einh,

where cm is the membrane capacitance, gleak is the
leak conductance, and Einh and Eexc are the reversal
potentials for inhibitory and excitatory currents,
respectively. We follow previous work to neglect
capacitive currents in T4 cells (Gruntman et al., 2018),
and we solve for the pseudo-steady-state membrane
voltage (Gruntman et al., 2018; Torre & Poggio, 1978)

Vm = g1Einh + g2Eexc + g3Einh

gleak + g1 + g2 + g3
.

Then, we model the transformation from membrane
voltage to calcium concentration C as a positively
rectifying half-quadratic function R2(x): =(R(x))2:

C (t, x) := R2 (Vm (t, x)) ,

which qualitatively captures the expansive nonlinear
effect of the transformation between voltage and
calcium (Kato, Xu, Cho, Abbott, & Bargmann, 2014;
Leong et al., 2016) (Figure 1B).

Visual stimuli

We presented this model with spatiotemporal
contrast patterns to mimic a variety of visual stimuli
used in the field. Detailed mathematical descriptions
of each stimulus are given in Appendix A. Briefly,
we presented the model with moving and stationary
sinusoidal gratings, with apparent motion stimuli,
with stochastic stimuli including those with imposed
correlations, and with natural scenes. In each case, we
compared how the model responds to the published
responses of T4 and T5 neurons.

Selecting model parameters

We divide the parameters of the T4 synaptic model
into two conceptual classes: those that describe the
spatiotemporal properties of the inputs to the model

cell, and those that describe how the inputs interact
postsynaptically. We sought to maximally constrain
our choices of model parameters by published
physiological measurements and to show that the
model is relatively robust to the specific values of
remaining unconstrained parameters. The set of input
parameters used here is equal to that used in a model
developed to explain direction-opponency in T4 cells
(Badwan et al., 2019). To approximately match the
spatial acceptance functions of photoreceptors in the
fly eye (Stavenga, 2003), we set the full width at half
maximum of the input spatial filters to 5.7 degrees.
We use 5 degree spacing between inputs such that
they evenly tile 360 degrees of visual space, which
approximately matches the 5.1-degree spacing between
adjacent ommatidia (Stavenga, 2003). Broadening the
input spatial receptive fields or decreasing the input
spacing would increase the correlation between the
input conductances in this model. We would expect
that to affect the spatiotemporal correlations to which
the model is sensitive (Badwan et al., 2019; Fitzgerald
& Clark, 2015). Previous functional studies of the
inputs to T4 cells have suggested that their spatial
receptive fields may be somewhat wider than that of
one photoreceptor (Arenz et al., 2017; Behnia et al.,
2014; Gruntman et al., 2018), but we use this simplified
spatial processing because our goal is to construct a
minimal model. To produce peak responses to PD
sinusoidal gratings at approximately 1 Hz (Badwan
et al., 2019; Maisak et al., 2013; Strother et al., 2017),
we fixed the time constant of the temporal filters to 150
ms. The true temporal filters are unlikely to have same
time constants or be perfect derivatives of one another
(Arenz et al., 2017; Behnia et al., 2014). However, this
tuning suffices to explain some basic properties and
allows the construction of a model with minimal fitting.
These spatial and temporal filters set the tuning of the
model inputs, so changing the parameters or functional
forms will alter the spatiotemporal tuning of the model.

The remaining model parameters set the weighting of
the inputs in their nonlinear postsynaptic interactions.
We fix the excitatory and inhibitory reversal potentials
to values of Eexc = 60 mV and Einh = −30 mV, which
are plausible based on electrophysiological experiments
(Gruntman et al., 2018). The model membrane potential
can be written as

Vm=
(

g1
gleak

Einh + g2
gleak

Eexc + g3
gleak

Einh

)

×
(
1 + g1

gleak
+ g2

gleak
+ g3

gleak

)−1

;

hence, only the ratios of g1, g2, and g3 to gleak, rather
than their absolute magnitudes, are relevant. We
therefore express the postsynaptic conductances as
nondimensional quantities in units of gleak, leaving
gexc/gleak and ginh/gleak as the model’s two free
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Parameter Value

Photoreceptor spacing � 5°
Photoreceptor spatial FWHM 5.7°
Temporal filter time constant τ 0.150 s
Leak current reversal potential Eleak 0 mV
Excitatory current reversal potential Eexc +60 mV
Inhibitory current reversal potential Einh −30 mV
Excitatory to leak conductance ratio gexc/gleak 0.1
Inhibitory to leak conductance ratio ginh/gleak 0.3

Table 1. Model parameter values used in all simulations.

parameters. The procedure used to select the values of
these parameters is described in detail in Appendix
B. As shown previously (Badwan et al., 2019), there
exists a broad region of parameter space for which
this model displays strong directional responses to
sinusoid gratings with a temporal frequency of 1 Hz
and a spatial wavelength of 45 degrees. We note that
our choice of filter normalization, which differs from
that in the previous use of this model (Badwan et al.,
2019), affects the parameter values chosen, as it scales
g1, g2, and g3 relative to gleak. Table 1 summarizes the
model parameter values used in all simulations.

Numerical methods

Numerical simulations were conducted using Matlab
9.6 (R2019a) (The MathWorks, Natick, MA, USA). In
our simulations, we discretized space and time using a
spatial sampling interval of 0.5 degrees and a temporal
sampling interval of 1/240 s. Our results are robust to
the simulation resolution so long as the shortest spatial
and temporal scales represented in the stimulus set can
be resolved. For stimuli containing randomly-generated
components, responses were averaged over 1000
realizations, and bootstrapped 95% confidence intervals
for the mean were computed using the bias-corrected
and accelerated percentile method (Efron, 1987).
All code is publicly available from GitHub at https:
//www.github.com/ClarkLabCode/SynapticModel.

In vivo two-photon calcium imaging in T4 cells

Most of our comparisons relate the synaptic model’s
responses to published data, but we also compare the
model to a new dataset of T4 cell responses to glider
stimuli. The protocol for 2-photon calcium imaging in
T4 cells matches published methods (Badwan et al.,
2019) and used Psychtoolbox (Brainard, 1997; Kleiner,
Brainard, Pelli, Ingling, Murray, & Broussard, 2007;
Pelli, 1997) to present stimuli on a panoramic visual
display (Creamer, Mano, Tanaka, & Clark, 2019). The
glider stimuli presented during these measurements

are described in Appendix A. Net responses were
computed as the difference in responses to stimuli
moving in the preferred and null directions of each
T4 region of interest and then averaged within each
fly. Nonparametric 2-sided Wilcoxon signed-rank tests
were used to test whether median net responses differed
significantly from zero (Hollander, Wolfe, & Chicken,
2013). For statistical purposes, each individual fly was
considered to be an independent sample.

Results

The synaptic model reduces to HRC-like terms

To gain intuition about the operation of the T4
synaptic model, we consider its expansion in the
small-input limit. To do so, we approximate the ramp
function nonlinearity with a smooth function that
represents a soft rectifier, which can be approximated
by a linear function for small inputs (Fitzgerald &
Clark, 2015). In particular, letting s1(t): = s(t, x − �),
s2(t): = s(t, x), and s3(t): = s(t, x + �), and defining
the non-negative constants α: =|ginhEinh/gleak| and γ :
=|gexcEexc/gleak|, we have, to lowest order in the inputs,

C ≈ 1
16

(αs1 + γ ṡ2 − αs3)2,

which may be rewritten as

C ≈ α2

16
(s1 − s3)2 + γ 2

16
(ṡ2)2 + αγ

8
(s1ṡ2 − ṡ2s3) .

This expansion represents a motion-energy
approximation of the model. The first term in this
expansion is a finite-difference approximation to a
spatial derivative, whereas the second term is a temporal
derivative at the center of the model’s receptive field.
The third term, which is the only direction-selective
term, is the subtraction of two offset correlators with
opposite directional tuning. This subtraction step
provides some intuition for why this model mimics
some properties of a fully-opponent HRC model
(Badwan et al., 2019). This same direction-selective
term also appears in the second-order expansion of the
membrane voltage. Because this expansion of the model
is only to second-order, it is invariant under contrast
inversions and cannot account for properties such as
ON-edge selectivity or responses to triplet correlations
(Clark et al., 2011; Clark et al., 2014; Fitzgerald &
Clark, 2015; Fitzgerald, Katsov, Clandinin, & Schnitzer,
2011; Joesch et al., 2010; Maisak et al., 2013). Although
this simple description does not capture all properties

https://www.github.com/ClarkLabCode/SynapticModel
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of the synaptic model, it provides intuition for the
sensitivity of the model to certain stimulus features.

The synaptic model is strongly ON-edge- and
direction-selective

T4 and T5 neurons are distinguished by the fact that
T4 cells respond to ON-edges whereas T5 cells respond
to OFF-edges (Maisak et al., 2013). We first compared
the ON/OFF-edge- and direction-selectivity of our T4
synaptic model to responses measured using 2-photon
calcium imaging in T4 cells sensitive to front-to-back
(FTB) motion. Like T4 FTB cells, our synaptic model
responded strongly to an ON-edge moving in the
FTB direction but displayed little or no response to
OFF-edges moving in the FTB direction or to edges of
either polarity moving in the back-to-front direction
(Figure 1C) (Maisak et al., 2013; Salazar-Gatzimas
et al., 2016).

The spatiotemporal tuning of the synaptic
model is consistent with that of T4 cells

Sinusoid grating stimuli are a common tool for
characterizing direction-selective computations.
Responses to these stimuli have been used to suggest
that the membrane voltage of T5 cells is a nearly
linear transformation of the visual input (Figure 2A)
(Wienecke et al., 2018). In the synaptic model, the
membrane voltage is a nonlinear function of the input
contrast because the inputs are first rectified and then
interact nonlinearly. We applied the same linearity
testing protocol to our model membrane voltage,
constructing predictions for responses to PD and ND
drifting gratings from the responses to counterphase
gratings (see Appendix A) (Jagadeesh, Wheat, &
Ferster, 1993; Wienecke et al., 2018). The responses of
the T4 synaptic model to drifting gratings were similar
to those predicted by a linear model for membrane
voltage (Figure 2A). Thus even a nonlinear system like
the T4 synaptic model may appear reasonably linear by
this protocol.

T4 and T5 cells display direction-opponent average
calcium responses to sinusoid gratings (Figure 2B)
(Badwan et al., 2019). This property means that the
average response to PD motion is reduced by the
addition of ND motion, imposing a strong constraint
on models for the direction-selective computation.
In particular, it implies that linear-nonlinear models
with expansive nonlinearities cannot account for the
response properties of these cells (Badwan et al.,
2019). A variant of this synaptic model was proposed
to account for these direction-opponent responses
(Badwan et al., 2019). This model reproduces the
strong suppression when ND motion is added to

PD motion without substantial enhancement when
orthogonal-direction (OD) motion is added to PD
motion (Figure 2B).

T4 and T5 cells are tuned to the temporal frequency
of sinusoidal stimuli (Figure 2C) (Creamer et al., 2018).
This means that the mean neural response is maximal
at a single temporal frequency, independent of the
wavelength. This property also applies to measurements
of fly behavior (Creamer et al., 2018; Kunze, 1961) and
is consistent with the classical, fully-opponent HRC.We
presented the T4 synaptic model with drifting gratings
of different spatial and temporal frequencies to find
the mean response to each. The model response was
strongly temporal-frequency-tuned (Figure 2C). To
quantify the temporal-frequency-tuning, we asked how
much of the variance in this surface was accounted for
by the product of one function of temporal frequency
and 1 function of spatial frequency response (Creamer
et al., 2018; Priebe, Lisberger, & Movshon, 2006). Such
a separable model accounted for 99% of the variance
in the response (see Appendix A, Figure 2C). Because
of our choice of parameters, the input temporal filters
in this model produce peak responses at around 1 Hz,
lower than the roughly 2–4 Hz peak measured in these
T4 cells.

T4 and T5 cells respond to static gratings with am-
plitudes that depend on the grating orientation (Fisher,
Silies, & Clandinin, 2015) (Figure 2D). The preferred
orientation (defined by the vector normal to the edges
in a static grating) approximately matches the preferred
direction of motion of these cells (Maisak et al., 2013).
The convention we use here for defining the orientation
of a static grating is rotated 90 degrees relative to that
used in the original study, which defined orientation
in terms of vectors parallel, rather than normal, to
the edges (Fisher et al., 2015) (see Appendix A). When
the T4 synaptic model was presented with both static
and drifting gratings of many different orientations, it
reproduced the orientation tuning observed experimen-
tally for both static and moving gratings (Figure 2D).
The model was more selective for both orientation and
direction than the T4 cell measurements.

The synaptic model reproduces the selectivity
of apparent motion responses in T4 cells

In addition to sinusoid gratings, apparent motion
stimuli are a useful tool for investigating direction-
selective systems. These stimuli decompose visual
motion into summations of simpler spatiotemporal
patterns, which can provide strong intuition about the
motion computation (Barlow & Levick, 1965).

Electrophysiological measurements of T4 cells
have shown fast depolarization and delayed, offset
hyperpolarization in response to a small flashed white
bar placed on a gray background (Gruntman et al.,
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Figure 2. The T4 synaptic model reproduces sinusoidal grating responses measured in T4 cells. (A) Left: Images and kymographs of
sinusoid gratings drifting in the preferred (PD) and null (ND) directions. Center:Membrane voltage of T5 FTB cells to 1 Hz, 25° drifting
gratings compared with linear predictions from contrast-modulated counterphase gratings, measured using voltage indicators (data
fromWienecke et al., 2018). Right: As at center, but for voltage responses of the T4 synaptic model. The model has coefficients of
determination for PD and ND of 0.92 and 0.82. (B) Mean responses to 1 Hz, 45° sinusoid gratings. Left: Images and kymographs of
composite sinusoid gratings containing PD and ND motion or PD and orthogonal direction (OD) motion. Center:Mean responses of T4
cells to drifting gratings, measured using a calcium indicator (data from Badwan et al., 2019). Error bars indicate ±1 SEM. Right: As at
center, but for calcium responses of the T4 synaptic model. (C) Spatiotemporal frequency tuning. Left: Kymographs of sinusoid
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(Creamer et al., 2018)). Black circles indicate the temporal frequency at which the maximum response at a given spatial frequency is
attained. Right: As at center, but for the T4 synaptic model. (D) Orientation and direction tuning. Left: Images of oriented sinusoid
gratings. Center: Orientation tuning of T4 and T5 cells with static gratings (data from (Fisher et al., 2015)) and direction tuning of T4
cells with drifting gratings (data from Maisak et al., 2013). The orientation of a static grating is defined by the vector normal to the
apparent edges, the same definition as for moving gratings (see Appendix A). Right: As at center, but for the T4 synaptic model.

2018) (Figure 3A). The synaptic T4 model displayed
qualitatively consistent responses to the same stimulus
(Figure 3A). The positive lobe in the model is narrower
than in the electrophysiological recording; this is
likely because the true central input to T4 has a wider
receptive field than in our model (Behnia et al., 2014;
Takemura, Bharioke, Lu, Nern, Vitaladevuni, Rivlin,
Katz, Olbris, Plaza, & Winston, 2013). Consistent with
electrophysiology, the OFF input to the T4 model is not
visible under this analysis because it was rectified with a
threshold at mean gray (zero contrast).

Because the synaptic model reproduced T4 cell
voltage responses to flashed bars, we sought to
characterize its responses to apparent motion stimuli
composed of pairs of bars offset in spacetime
(Salazar-Gatzimas et al., 2018). These stimuli can
induce in humans and in flies the “reverse-phi” motion
illusion, in which a reversal of contrast polarity
induces a motion percept in the direction opposite
the stimulus displacement (Anstis, 1970; Clark et al.,
2011; Hassenstein & Reichardt, 1956). We aligned
these stimuli so that the temporally delayed bar is
placed at the center of the receptive field (Figure 3B)
(Salazar-Gatzimas et al., 2018). T4 cells respond
maximally to one phi and one reverse-phi apparent
motion stimulus out of eight possible pairings
(Salazar-Gatzimas et al., 2018). The synaptic model
reproduced this selectivity (Figure 3C–D).

Various groups have assessed nonlinear enhancement
or suppression of PD and ND apparent motion
stimuli relative to linear decompositions. This analysis
can be misleading because it does not allow one to
uniquely characterize the nonlinearity as “enhancing”
or “suppressing,” because there exist an infinite
number of linear decompositions of a given stimulus
(Salazar-Gatzimas et al., 2018). Despite this difficulty,
such analyses have been applied as an intuitive way
to try to understand direction-selective computations
(Barlow & Levick, 1965; Fisher et al., 2015; Gruntman
et al., 2018; Haag et al., 2016).

In T4 cells, an analysis of responses to sequential
bars has indicated that calcium signals include both
PD enhancement and ND suppression relative to a
linear prediction from the responses to individual
bars (Haag et al., 2016) (Figure 3E). Our model failed
to reproduce this result, showing only suppression
of ND motion under this analysis (Figure 3E). This
discrepancy is likely influenced by the timescale of this
stimulus, which is far longer than the 150 ms offset

used in the apparent motion stimuli in (Figure 3C–D).
Additionally, previous theoretical work has shown that
disinhibition can generate PD enhancement in similar
models (Borst, 2018; Koch & Poggio, 1992); the choice
of thresholds in this model did not permit flanking
disinhibition with ON stimuli.

The synaptic model does not reproduce the fast
timescale tuning of T4 cells

A third approach to characterizing direction-
selective signals has been to apply stochastic stimuli
with specified correlation structure. Responses to
uncorrelated stimuli can be used to generate an
unbiased estimate of a system’s linear receptive field
(Chichilnisky, 2001). By using reverse-correlation and
uncorrelated stimuli to extract spatiotemporal receptive
fields, T4 cells have been characterized by oriented
linear receptive fields with a central excitatory lobe and
a delayed, offset inhibitory lobe (Figure 4A) (Leong
et al., 2016; Salazar-Gatzimas et al., 2016). The T4
synaptic model generates the same shape of receptive
field (Figure 4A). However, in the model, the inhibitory
lobe lasts longer than that measured in T4 cells, and the
tuning of the model was slower overall.

Responses to stochastic stimuli containing precise
pairwise spatiotemporal correlations have revealed
fast-timescale tuning in T4 cells (Salazar-Gatzimas
et al., 2016). In measurements of T4 and T5, the cells
could discriminate between spatiotemporal correlations
with delays of 0 and 15 ms (Figure 4B). We presented
the synaptic model with stimuli containing pairwise
spatiotemporal correlations at different temporal delays.
The model was direction-selective and responded
to both positive and negative correlations, as in the
cellular measurements. However, the model did not
reproduce the fast timescale discrimination between
delays (Figure 4B). Furthermore, the synaptic model
showed strong suppression of ND-oriented positive
correlations and enhancement of ND-oriented negative
correlations, which was not observed in this dataset.

Behaving Drosophila respond direction-selectively
to correlations higher than second-order (Clark et al.,
2014; Leonhardt et al., 2016). This cannot be explained
by models that compute pairwise correlations in the
stimulus, such as the HRC and motion energy model.
The sensitivity to higher-order correlations has been
assessed using 3-point glider stimuli, which contain
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Center:Membrane voltage of T4 cells to flashed white bars, measured using electrophysiology (data from Gruntman et al., 2018).
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for reverse-phi apparent motion stimuli, in which the sequentially presented bars have opposite contrasts. (E) Assessing PD
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enhancement and ND suppression. Left: Kymographs of linear decomposition of flashed apparent motion stimuli, with
4.5-degree–wide white bars presented sequentially for 400 ms each. Center: Nonlinear response component, defined as the residual
of the linear prediction, measured using a calcium indicator (data from (Haag et al., 2016)). Right: As at center, but for the T4 synaptic
model.

precise third-order correlations (Hu & Victor, 2010)
(Figure 4C). The net responses of T4 cells to these
stimuli have previously been inferred from behavioral
measurements in Drosophila with the synaptic outputs
of T5 cells silenced, using gliders updated at 24 Hz
(Leonhardt et al., 2016). We used in vivo 2-photon
calcium imaging to directly measure the responses of
T4 cells to 3-point gliders updated at 5 Hz and found
that the signs of the net responses were consistent
with those measured in behavior with T5 cells silenced
(Figure 4C, see Methods and Appendix A for details).

With an update rate of 24 Hz, the synaptic model
correctly predicted the signs of net responses to
diverging gliders measured in imaging and behavior,
but predicted the wrong converging glider responses
(Figure 4C). At 5 Hz, the synaptic model correctly
predicted the signs of both converging and diverging
glider responses but not the relative magnitudes.
Thus the glider responses in T4 cells appear relatively
insensitive to the glider timescale (24 vs. 5 Hz), but
the model’s response depends strongly on the input
timescales.

T4 and T5 cells have been shown to display strongly
direction-selective responses to rigidly-translating
stimuli consisting of black and white squares placed
at random on a gray background (see Appendix A)
(Badwan et al., 2019). When two such stimuli that
move in opposite directions are superimposed, they
generate transparent motion percepts in primates
(Qian, Andersen, & Adelson, 1994), and they generate
responses in T4 that are reduced compared to
presenting PD stimuli alone (Badwan et al., 2019). The
synaptic model qualitatively reproduced these responses
(Figure 4D). In particular, the responses of T4 cells
are suppressed more strongly under the addition of
ND motion than under the addition of OD motion,
a feature that is reproduced by the synaptic T4 model
(Figure 4D). Therefore, as in T4 cells, the selective
direction-opponency observed in the model persists
even with stimuli containing multiple spatiotemporal
frequencies.

The T4 synaptic model provides decorrelated
channels for naturalistic motion

Beyond artificial stimuli, natural scenes have been
used to investigate the performance of direction-
selective signals in flies (Badwan et al., 2019; Brinkworth
& O’Carroll, 2009; Chen, Mandel, Fitzgerald, & Clark,

2019; Dror, O’Carroll, & Laughlin, 2001; Fitzgerald &
Clark, 2015; Leonhardt et al., 2016; Salazar-Gatzimas
et al., 2018; Straw, Rainsford, & O’Carroll, 2008). We
therefore sought to investigate the performance of the
T4 synaptic model in natural motion processing. To do
so, we presented it with rigidly-translating scenes from a
database of natural images (see Appendix A, Figure 5A)
(Meyer, Schwegmann, Lindemann, & Egelhaaf, 2014).
Although the structure and properties of inputs to
T5 cells are known to differ from the inputs to T4
(Serbe et al., 2016; Shinomiya et al., 2019), to make an
OFF-edge selective channel we created a “T5”model by
simply inverting the ON/OFF selectivity of the inputs to
our T4 synaptic model. This is intended merely to be an
OFF-selective channel for the purposes of comparing
T4 and potential T5 cell responses. The resulting four
channels displayed strongly direction-selective average
responses to translating natural scenes (Figure 5B).

Measured responses of T4 and T5 cells to translating
natural scenes are decorrelated, so that only one
channel is active at once (Salazar-Gatzimas et al., 2018).
The synaptic models of T4 and “T5” also generated
highly decorrelated responses, with the coactivation
matrix of the four channels being nearly diagonal
(Figure 5C). Such decorrelated parallel channels may
provide a convenient representation of motion signals
(Salazar-Gatzimas et al., 2018).

Discussion

An anatomically constrained synaptic model suffices
to reproduce many, but not all, of the properties
of Drosophila T4 cells. This model reproduces the
direction-opponency, temporal-frequency-tuning,
orientation-tuning, and phi/reverse-phi selectivity
measured in T4 cells (Figures 2–4). When applied
to a naturalistic velocity estimation task, it produces
decorrelated signals similar to those measured in T4 and
T5 neurons (Figure 5). However, it fails to reproduce the
PD enhancement and fast-timescale tuning observed in
T4 cells (Figures 3–4). Moreover, although it is sensitive
to triplet correlations in its input, it fails to reproduce
responses on the same timescales as observed in the
data (Figure 4). In short, this simple synaptic model is
sufficient to reproduce several distinct properties of T4
cells but cannot account for several observations.
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Figure 4. The minimal T4 synaptic model is not sufficient to reproduce the fast-timescale tuning of T4 cells. (A) Linear receptive field
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measurements. Left: Schematic depiction of ternary noise containing pairwise correlations at a specified interval �t. Center:
Responses of T4 FTB cells to positive and negative correlations, measured using a calcium indicator (data from Salazar-Gatzimas et al.,
2016). Error bars indicate ±1 SEM. Right: As at center, but for the T4 synaptic model. Error patches, which are barely visible, indicate
95% confidence intervals of the mean, which is variable due to the stochastic stimulus. (C) Triplet correlation sensitivity. Left:
Kymographs of 3-point glider stimuli containing positive and negative triplet correlations. Center top: Turning behavioral responses to
3-point gliders updated at 24 Hz of flies with the synaptic outputs of T5 cells silenced (data from Leonhardt et al., 2016). Positive
rotations correspond to the direction of the displacement of the spatial mean location of each triplet. Center bottom: Net responses
of T4 cells to 3-point gliders updated at 5 Hz, measured using a calcium indicator (see Methods). Asterisks indicate that median net
response differs from zero at the p < 0.05 (*) or p < 0.01 (**) level by a Wilcoxon signed-rank test with N = 16 flies. Exact p values are
p = 0.0174, 0.0061, 0.0097, and 0.0131 for con+, con−, div+, and div−, respectively. Error bars indicate ±1 SEM over flies, and
black circles indicate individual per-fly means. Right: As at center, but for the T4 synaptic model. Error bars indicate 95% confidence
intervals of the mean. (D) Responses to rigidly translating stimuli with stochastic checkerboard patterns. Left: Images of random
checkerboard stimuli. Center:Mean responses of T4 cells to checkerboard stimuli translating at 100 degrees/s, measured using a
calcium indicator (data from Badwan et al., 2019). Error bars indicate ±1 SEM. Right: As at center, but for the T4 synaptic model. Error
bars indicate 95% confidence intervals of the mean.
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Minimal models and levels of understanding

Here, we asked whether a minimal synaptic model
could qualitatively reproduce features of T4 cell

responses. The minimal model required no exotic
neurotransmitter receptors or interactions and
was based on simple synaptic conductances. The
simplifications sufficient to explain different phenomena
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will depend strongly on the features one seeks to
reproduce and on the desired level of fidelity. However,
minimal models are useful precisely because they can be
relatively straightforward to analyze.

Marr famously proposed different levels of
understanding neural circuitry, including an algorithmic
level and a mechanistic level (Marr & Poggio, 1976).
As we drive toward a deeper understanding of the
visual motion circuit in the fly, the levels of algorithm
and mechanism can appear increasingly blurred. It
is hard to define what distinguishes the mechanistic
circuit description presented here from a detailed
algorithm-level description of the computation.
However, it remains important to connect proposed
mechanistic models to high-level descriptions of the
system, like the HRC. This is because the high-level
descriptions of computations provide a level of
intuition for the behavior of the system that a more
intricate model cannot. Moreover, the HRC explains
a wide variety of neural and behavioral data in flies
(Borst & Egelhaaf, 1989; Yang & Clandinin, 2018), so
an HRC-like algorithm must be a limiting case of any
proposed model (Potters & Bialek, 1994).

Sufficiency of models

Many details of the function of the early visual
system were neglected in this model. For instance, the
filter shapes in neurons leading into the model T4 cell
have been well characterized (Arenz et al., 2017; Behnia
et al., 2014), but this model used simple exponential
filters. Lateral inhibition is widely documented in the
early fly visual system (Arenz et al., 2017; Freifeld,
Clark, Schnitzer, Horowitz, & Clandinin, 2013; Meier,
Serbe, Maisak, Haag, Dickson, & Borst, 2014), but
this model used simple Gaussian spatial acceptance
functions without lateral inhibition. The synapses
that feed into the medulla neurons that synapse onto
T4 are likely to have complex, nonlinear processing
properties (Matulis et al., 2020; Drews et al., 2020;
Molina-Obando, Vargas-Fique, Henning, Gür, Schladt,
Akhtar, Berger, & Silies, 2019; Yang, St-Pierre, Sun,
Ding, Lin, & Clandinin, 2016), yet we modeled the
entire input pathway as a purely linear filter. The
rectifications of neural responses upstream of T4 are
imperfect (Behnia et al., 2014; Salazar-Gatzimas et al.,
2018), but this model used simple threshold-linear
rectifiers. The fly eye possesses neurons that feedback
onto earlier stages and create reciprocal interactions
between neurons (Takemura et al., 2013; Takemura
et al., 2017; Zheng, de Polavieja, Wolfram, Asyali,
Hardie, & Juusola, 2006), but this model is entirely
feedforward.

Despite these approximations, the synaptic T4 model
presented here is sufficient to qualitatively match a
variety of T4 neuron responses. Adding some of these

neglected details into a model may make it sufficient
to reproduce other features of T4 responses. This
provides a method for understanding which details
of processing are related to which response features
in T4 cells: one may ask how different details of the
system affect the sufficiency of a model to reproduce
specific downstream response properties. As the field
acquires more and more detailed information about the
motion detection circuitry, this sort of analysis will be
critical to understand the functional role of different
properties.

One might naturally ask whether the synaptic model
presented here might be further simplified without
sacrificing its ability to account for the response
properties of T4 cells. As described in Appendix C,
a simplified linear-nonlinear cascade representing
the numerator of the biophysical nonlinearity can
generate some, but not all, of the properties of the full
model.

Flexibility in extending this minimal synaptic
model

In selecting parameter values for this synaptic model,
we sought to reproduce only a few properties of T4
cells: a temporal frequency maximum of 1 Hz and
direction-opponent average responses to sinusoid
gratings with a temporal frequency of 1 Hz and a
spatial wavelength of 45 degrees (Appendix B) (Badwan
et al., 2019). To capture a larger subset of the measured
properties of T4 cells, one could fit the model’s
parameters to optimize its predictions of responses to
many different stimuli (Deb, 2014). Such a solution
would provide information about the maximal ability
of this synaptic model to reproduce the properties of
T4 cells, but it seems unlikely to provide insight into the
predictive power of the core features of the model.

The organization of this model allows for several
clear tuning mechanisms. First, the temporal filters
could be modified to better match measured filters,
which would change the tuning of the system in
response to sinusoids (Figure 2). Second, the degree to
which inhibition is shunting or hyperpolarizing can be
adjusted by changing the reversal potential of inhibitory
currents. This could effectively hide inhibition under
some stimuli and measurements. Third, the threshold
for the OFF-inhibitory input could be changed to better
represent preferred direction enhancement (Figure 3)
(Borst, 2018). This would allow disinhibition of Mi4 to
change the gain of the central input.

In the model analyzed here, we chose all thresholds
of the input LN models to be zero. This effectively
ignores contrast asymmetries in the natural world
(Geisler, 2008), which have been used to understand
many functional properties of motion detectors in flies
(Chen et al., 2019; Clark, Fitzgerald, Ales, Gohl, Silies,
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Norcia, & Clandinin, 2014; Fitzgerald & Clark, 2015;
Fitzgerald et al., 2011; Leonhardt et al., 2016; Salazar-
Gatzimas et al., 2018). Changing these thresholds to
optimize for natural scene motion estimation might also
generate a parameter set that better captures responses
to triplet correlations (Figure 4) (Chen et al., 2019;
Fitzgerald & Clark, 2015). In short, the synaptic model
presented here is highly flexible and extensible, and uses
only simple, known biophysical mechanisms.

For the sake of simplicity, we have used single delay
and nondelay lines in this work (Figure 1A). However,
T4 cells receive fast excitatory input at the center of
their receptive fields from both Mi1 and Tm3 cells,
and delayed OFF inhibitory input offset in the PD
from both Mi4 and CT1 cells (Shinomiya et al., 2019;
Takemura et al., 2017). Dissecting how information
from these parallel channels is used, particularly if it
is nonlinearly combined (Strother et al., 2017), will
be important in developing a full understanding of
the direction-selective computation performed by
T4 cells.

Modelling temporal processing

The model presented here failed to capture some of
the fast-timescale tuning measured in T4, including in
its responses to pairwise and triplet spatiotemporal
correlations (Figure 4). In this minimal model, we
represented all temporal processing by linear filters.
However, the temporal processing upstream of T4
cells involves nonlinear and adaptive mechanisms,
which can affect temporal response properties (Matulis
et al., 2020; Drews et al., 2020; Howard, Dubs, &
Payne, 1984; Zheng et al., 2006). Thus far, the study
of nonlinear mechanisms in the fly visual system has
focused on static nonlinear effects such as rectification
(Behnia et al., 2014; Yang et al., 2016) and on nonlinear
interactions between linearly filtered signals (Borst,
Flanagin, & Sompolinsky, 2005; Fitzgerald & Clark,
2015). The inclusion of nonlinear effects on the
dynamics themselves may be necessary to accurately
capture the temporal processing upstream of T4 cells.
As a first step toward understanding adaptation in this
circuit, one might characterize the temporal kernels
of the inputs to T4 cells with high resolution (Mano,
Creamer, Matulis, Salazar-Gatzimas, Zavatone-Veth,
& Clark, 2019; Yang et al., 2016) and study how their
properties depend on stimulus statistics and history
(Baccus & Meister, 2002; Kim & Rieke, 2001; Rieke,
2001). Only a few models have focused on these sorts
of adaptive changes in processing dynamics (Clark,
Benichou, Meister, & da Silveira, 2013). Although the
analysis of dynamic temporal nonlinearities is complex,
incorporating them into models may provide insight
into how fast timescale tuning of T4 cells arises.

Direction-selective signals emerge at multiple
sequential processing stages

Direction-selective time-averaged signals require a
nonlinear interaction between inputs over space and
time (Adelson & Bergen, 1985; Borst & Egelhaaf,
1989). In the minimal model we presented here, there
are two distinct steps at which such nonlinearities
could arise. First, the postsynaptic interaction between
conductances permits nonlinear interactions that
appear in the membrane potential. Second, the
transformation from membrane potential into calcium,
which we represent as a point nonlinearity, can generate
nonlinear interaction terms and is in principle very
similar to the motion energy model if the membrane
potential is a linear transformation of the stimulus
(Adelson & Bergen, 1985). Thus this model permits
two sequential processing steps that each contribute
to direction selectivity. This model can create small
direction-selective biases in the membrane voltage,
similar to those observed in T4 cells (Gruntman et al.,
2018), but can also use the calcium transformation
to generate strong direction-selective signals even
if the membrane potential is nearly linearly related
to the stimulus (Wienecke et al., 2018). Similarly,
the biophysical properties of T4 cells also likely
permit direction-selective signals to arise at multiple
stages during processing; a third stage might be the
transformation from calcium concentration to synaptic
release. We hypothesize that having direction-selective
signals emerge at multiple stages of processing might
make the computation robust to perturbations.

A T5 synaptic model

In this work, we used a sign-inverted version of our
T4 synaptic model to represent the OFF-edge-selective
T5 cells. This representation would correspond to a
first-order direction-selective cell that receives OFF
excitatory input at the center of its receptive field,
delayed OFF inhibitory input offset in its preferred
direction, and delayed ON input offset in the null
direction. Such a model would correctly predict the
selective responses of T5 cells to phi and reverse-phi
apparent motion stimuli (Salazar-Gatzimas et al., 2018).
However, the functional and anatomical structure of
the inputs to T5 cells suggests that it receives only
OFF inputs (Serbe et al., 2016; Shinomiya et al.,
2019). Somehow, however, signals in T5 cells are
sensitive to both contrast increments and decrements
(Salazar-Gatzimas et al., 2018; Wienecke et al., 2018).
Further study of the functional properties of the
OFF-edge motion pathway will be required to elucidate
how the direction-selective computations in T4 and T5
cells differ.
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Relationships to mammalian visual systems

The fly’s visual motion detection circuits bear striking
similarities to those in mammalian retina in their
anatomy, circuitry, and algorithmic processing (Borst
& Helmstaedter, 2015; Clark & Demb, 2016; Sanes
& Zipursky, 2010). In mammalian retina, the earliest
direction-selective signals are generated by starburst
amacrine cells (SACs), which are also tuned to ON- and
OFF-edges (Euler, Detwiler, & Denk, 2002; Famiglietti
Jr, 1983). It appears that SACs may receive inputs that
are differentially delayed (Fransen & Borghuis, 2017;
Ichinose & Hellmer, 2016; Kim, Greene, Zlateski, Lee,
Richardson, Turaga, Purcaro, Balkam, Robinson, &
Behabadi, 2014), similar to the inputs to T4 cells. It
would be interesting to investigate how much SAC
phenomenology that mechanism alone could account
for, when linked to simple biophysical mechanisms.
As in this study, it could provide insight into where
the circuit understanding is lacking, especially when
complex stimuli are used to probe SAC function
(Chen, Pei, Koren, & Wei, 2016).

It is notable that the ON-ON-OFF spatial
organization of T4 inputs (Figure 1A) is almost
identical to a model proposed to explain cortical
responses to pairwise correlations (Mo & Koch, 2003).
This suggests there may be deep parallels between T4
and T5 and cortical motion processing. Models for
fly and cortical direction selectivity have traditionally
differed in whether they assume discrete inputs
(fly, HRC-like models) or more continuous inputs
(cortex, motion-energy-like spatiotemporal filtering). If
synaptic interactions are considered, then continuous
linear filters cannot be applied, and models must
incorporate the discrete receptive fields of the inputs
to a cell. It would be interesting to ask how such
conductance models fare in predicting cortical
responses; the statistical nature of cortical connections
make it more difficult to construct a general model of
this type.

In this synaptic model of T4 cell function, we have
paired known connectivity with measured physiology
and simple biophysics to predict many circuit processing
properties. This allows us to define where such a model
succeeds and where it fails. This represents progress
toward understanding this circuit at all levels, from
utility to algorithm to mechanism.

Keywords: Keywords: direction selectivity, drosophila,
synaptic model, circuit model, receptive fields
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Appendix A: Visual stimuli used in
simulations and imaging
experiments

In this appendix, we describe in detail all stimuli used
in this work.

ON and OFF edges (Figure 1)

ON and OFF edges were constructed by placing
white (respectively, black) edges on a gray background.
All edges translated at 30 degrees/s.

Sinusoid grating stimuli (Figures 1 and 2)

Sinusoid grating stimuli were constructed as in
previous studies (Badwan et al., 2019; Creamer et al.,
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2018; Maisak et al., 2013). Briefly, rightward- and
leftward-drifting gratings were constructed as

c (t, x) = c0 sin (ωt ∓ κx)

where c0 is the input contrast, ω is the temporal
frequency in units of radians per second, κ is the
spatial frequency in units of radians per degree, and the
negative sign is taken for rightward-drifting gratings. To
assess whether our model is temporal-frequency-tuned,
we computed the fraction of the total variance in
a spatiotemporal frequency sweep of its responses
accounted for by a separable approximation resulting
from its singular value decomposition (Creamer et al.,
2018). Counterphase gratings were constructed as

c (t, x) = c0 sin (ωt + κx + φ1) + c0 sin (ωt − κx + φ2)

where φ1 and φ2 are uniformly sampled phase offsets,
over which we average in all analyses. Gratings
containing preferred- and orthogonal-direction motion
were constructed as

c (t, x) = c0 sin (ωt − κx + φ1) + c0 sin (ωt + φ2)

The linearity analysis in Figure 2A was applied to
T5 cells (Wienecke et al., 2018), following a previously
developed protocol (Jagadeesh et al., 1993). This
analysis relies on the fact that a drifting sinusoid grating
may be decomposed into a sum of counterphase
gratings as

c (t, x) = c0 sin (ωt ∓ κx)

= c0
4

7∑
n=0

sin
(
ωt + nπ

8
∓ π

2

)
sin

(
κx ± nπ

8

)
.

Therefore, if a system is linear, its scaled, summed
response of a linear system to counterphase gratings
with these phase shifts will be equal to its response to
the corresponding drifting grating. By comparing the
linear prediction of the drifting grating response to the
actual response, one may assess a system’s linearity.

To assess the orientation- and directional-tuning
of the model with sinusoid gratings in Figure 2D, we
defined a 2-dimensional grating

c (t, x, y) = c0 sin (ωt − κ (x cos θ + y sin θ )) ,

where the angle θ defines its orientation. In this analysis,
we assume that the ring of detectors is located at y
= 0, and that the Gaussian spatial filter is symmetric
in x and y. Static gratings were formed by setting ω
= 0. We note that our convention for the orientation
of a static grating differs from the original manuscript
(Fisher et al., 2015); we define the orientation as the
angle between the normal to the apparent edge and the

preferred direction rather than the angular position
of the edge itself. Therefore, in our convention the
preferred orientations and directions align.

Apparent motion stimuli (Figure 3)

Single-bar stimuli were constructed as previously
published (Gruntman et al., 2018; Salazar-Gatzimas
et al., 2018). Briefly, 5 degrees (respectively, 2 degrees)
black or white bars were placed on a gray background
and presented for 1 second (respectively 160 ms) to
match (Salazar-Gatzimas et al., 2018) (respectively,
Gruntman et al., 2018). Bar pair apparent motion
stimuli were constructed as in (Salazar-Gatzimas et al.,
2018). Briefly, 5-degree black or white bars were placed
on a gray background and presented for 1 second. To
create apparent motion, a second black or white bar
was added 150 ms after the onset of the first bar at a
neighboring spatial location. Responses to these bar
pair apparent motion stimuli were aligned such that
the location of the lagging bar matched the location
of peak single-bar responses, as in (Salazar-Gatzimas
et al., 2018). Flashed apparent motion stimuli were
constructed similarly to those presented to T4 and
T5 cells in (Gruntman et al., 2018; Haag et al., 2016).
Briefly, 4.5 degrees white bars were placed on a gray
background and were presented for 400 ms in sequential
spatial positions.

Noise stimuli and linear receptive field
extraction (Figure 4)

As previously published (Salazar-Gatzimas et al.,
2016), we extracted linear receptive fields from responses
to uncorrelated binary stimuli composed of 5-degree
black or white bars, updated at 60 Hz. We estimated
the linear receptive field from these responses using
reverse correlation (Chichilnisky, 2001). Ternary noise
stimuli with pairwise correlations were constructed as
in (Salazar-Gatzimas et al., 2016). Briefly, the contrast
of the correlated noise stimulus was given as

c (t, x) = 1
2
(B (t, x) ± B (t + δt, x + δx)) ,

where B(t, x) is an uncorrelated binary stimulus
composed of 5-degree black or white bars, and
addition (respectively, subtraction) generates positive
(respectively negative) correlations. The stimulus was
updated at a fixed rate, and the temporal offset δt
was taken to be one cycle, with its sign determining
whether the stimulus was oriented in the preferred or
null direction. The spatial offset δx was fixed to be 1
bar width. As shown in (Salazar-Gatzimas et al., 2016),
the autocorrelation function of this stimulus, with
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spacetime discretized by the bar width and sampling
rate, is

〈c (t, x) c (t + τ, x + ρ)〉

= 1
2
δτ,0δρ,0 + 1

4
(
δτ,δtδρ,δx + δτ,−δtδρ,−δx

)
,

where δi,j is the Kronecker delta.

Three-point glider stimuli (Figure 4)

As in previous studies (Clark et al., 2014; Fitzgerald
and Clark, 2015), we constructed 3-point glider stimuli
following (Hu and Victor, 2010). Briefly, these binary
stimuli enforce correlations over space and time among
triplets of pixels. Three-point gliders may be categorized
into 4 types: converging gliders with positive parity
(con+), converging gliders with negative parity (con-),
diverging gliders with positive parity (div+), and
diverging gliders with negative parity (div-). Letting ρ
be the pixel spacing and δ be the frame duration (the
inverse of the update rate), the update rules for each
of the four 3-point glider types are (see kymographs
in Figure 4):

ccon+ (t, x) ccon+ (t, x + ρ) ccon+ (t + δ, x + ρ ) = +1,

ccon− (t, x) ccon− (t, x + ρ) ccon− (t + δ, x + ρ ) = −1,

cdiv+ (t, x) cdiv+ (t + δ, x) cdiv+ (t + δ, x + ρ ) = +1,

cdiv− (t, x) cdiv− (t + δ, x) cdiv− (t + δ, x + ρ ) = −1.

The direction of the displacement of the spatial
mean location of each triplet is inverted by inverting
the sign of the pixel spacing. Starting from an initial
seed state, the values of each pixel at each timepoint are
determined by these update rules using the surrounding
pixels’ values. As we simulate the full 360 degrees of
visual space, we use periodic boundary conditions to
avoid undetermined edge pixel values. As in previous
studies (Clark et al., 2014; Fitzgerald and Clark, 2015;
Leonhardt et al., 2016), the pixel spacing was taken to
be 5 degrees in both imaging experiments and numerical
simulations. In imaging experiments, visual stimuli
were generated and presented as described in previous
studies (Badwan et al., 2019).

Random checkerboard stimuli (Figure 4)

Random checkerboard stimuli were constructed
as in previous studies (Badwan et al., 2019). Briefly,
5-degree black or white bars were placed at random
with a density of 40% on a gray background. The
resulting checkerboards were then rigidly translated at
a velocity of 100 degree/s. When combining rightward-

and leftward-moving stimuli, summation was defined
such that 2 white bars summed to white, 2 black bars
summed to black, and 1 white and 1 black bar summed
to gray. Therefore the contrast of the composite
stimulus matched that of the individual components,
although its density rose to 64%.

Natural scene stimuli (Figure 5)

Following prior work (Chen et al., 2019; Clark
et al., 2014; Fitzgerald and Clark, 2015), we generated
a left-right symmetric ensemble of natural scenes
by drawing independent row and column samples
from the database gathered by (Meyer et al., 2014).
In this ensemble, scenes were rigidly-translated at
velocities sampled from a Gaussian distribution with a
standard deviation of 100°/s, which roughly matches
typical rotational velocities of walking flies (DeAngelis,
Zavatone-Veth, & Clark, 2019; Katsov & Clandinin,
2008). To convert the scenes to contrast signals, we
spatially filtered each image with the photoreceptor
kernel to generate blurred images Iblur, and then used
a Gaussian kernel with a standard deviation of 20° to
estimate locally-averaged images Imean. The contrast
signal was then defined as (Chen et al., 2019)

c (x, y) := Iblur (x, y) − Imean (x, y)
Imean (x, y)

.

As in previous studies of coactivation (Salazar-
Gatzimas et al., 2018), the coactivations in Figure 5C
were computed as normalized inner products of
response timeseries. For all analyses in Figure 5, we
used an ensemble with 106 elements.

Appendix B: Parameter value
selection

In this appendix, we briefly describe how we selected
values of the weighting parameters gexc/gleak and
ginh/gleak. We evaluated the model solely based on
its ability to produce direction-opponent average
responses to 1 Hz, 45-degree sinusoid gratings similar
to those measured in T4 cells (Badwan et al., 2019).
To do so, we considered the direction selectivity index
and analogous indexes of direction-opponency and
orthogonal direction enhancement, defined as

DSI := r (PD) − r (PD)
r (PD) + r (PD)

,

IPD+ND := r (PD + ND) − r (PD)
r (PD + ND) + r (PD)

,
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Figure B1. Sweeping the parameters of the T4 synaptic model. A. The direction-selectivity index of the T4 synaptic model’s responses
to drifting sinusoid gratings as a function of gexc/gleak and ginh/gleak. Red dot indicates the selected values of gexc/gleak = 0.1 and
ginh/gleak = 0.3. B. As in (A), but for the opponency index. C. As in (A), but for the OD enhancement index.

and

IPD+OD := r (PD + OD) − r (PD)
r (PD + OD) + r (PD)

.

As shown in Figure B1, there exists a broad region
of parameter space for which the model produces
responses with a similar degree of direction-opponency
to that measured in T4 cells without significant
PD+OD enhancement. We therefore made a simple
choice of round-number values within that region.

Appendix C: LNLN cascade
factorization of the T4 synaptic
model

In this appendix, we show how our T4 synaptic model
may be factorized as a product of linear-nonlinear-

linear-nonlinear (LNLN) cascades representing
the numerator and denominator of the biophysical
nonlinearity. The response C of the full model at each
point in spacetime is given in terms of the filtered
contrast signal s as

C = R2
(
g̃1Einh + g̃2Eexc + g̃3Einh

1 + g̃1 + g̃2 + g̃3

)
,

where we have defined g̃i := gi/gleak for brevity. Noting
that the denominator of this expression is always
positive, we may re-express the response as

C = R2 (g̃1Einh + g̃2Eexc + g̃3Einh)
(1 + g̃1 + g̃2 + g̃3)2

.

Hence, the full EMD model admits a factorization
into a product of LNLN models as

C (t, x) = N (t, x) D (t, x)
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Figure C1. Sinusoid grating responses of different components of the LNLN factorization. From left to right: Average responses of the
full T4 synaptic model, the numerator LNLN cascade, the denominator LNLN cascade, and the numerator LN cascade to 1 Hz,
45-degree sinusoid gratings. All responses are normalized by the response of the given component to a grating drifting in the PD of
the full model.
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where

N (t, x) := R2 (g̃1Einh + g̃2Eexc + g̃3Einh)

and

D (t, x) := (1 + g̃1 + g̃2 + g̃3)−2
,

which is bounded as D(t, x) ≤ 1. Because D(t, x) ≤ 1,
C(t, x) ≤ N(t, x).

The denominator LNLN cascade D is the result
of applying a convex function (x−2 for x > 0) to a
non-negative linear combination of LN models with
convex nonlinearities. Therefore it cannot generate
direction-opponent (DO) average responses to sinusoid
gratings. The proof of this proposition is a minor
extension of our previous results on LNLN models
with continuously-differentiable convex nonlinearities
and non-negative secondary linear filters (Badwan
et al., 2019). We define the soft ramp function

Rβ (x) := β−1 log (1 + exp (βx)) ,

which is a continuously differentiable, monotone
increasing, non-negative, and convex function of x for
all positive β. As β → ∞, Rβ(x) → R(x) pointwise.
By continuity, defining Dβ(t,x) using Rβ , we have 0
≤ Dβ(t,x) → D(t, x) ≤ 1 as β → ∞. We denote the
nonlinear functional corresponding to the spacetime
average of Dβ(t,x) for some input stimulus f asDβ [f]. As
we have the integrable constant dominating function 1,
by the Lebesgue dominated convergence theorem, we
have 0 ≤ Dβ [f] → D[f] ≤ 1 as β → ∞ (Barry, 2015). By

the result of (Badwan et al., 2019), we know thatDβ [PD
+ ND] ≥ Dβ [PD] and Dβ [PD + ND] ≥ Dβ [ND], where
Dβ [PD], Dβ [ND], and Dβ [PD + ND] are the average
responses to PD, ND, and PD+ND sinusoid gratings,
respectively. As these inequalities hold pointwise for all
positive β, by taking β → ∞ we may obtain D[PD +
ND] ≥ D[PD] and D[PD + ND] ≥ D[ND]. Therefore
the denominator LNLN cascade cannot generate DO
average responses to sinusoid gratings.

However, as the numerator LNLNmodel is the result
of applying a convex function to a non-convex linear
combination of LN models with convex nonlinearities,
we cannot analytically exclude the possibility that
it could generate DO average responses to sinusoid
gratings using the results of (Badwan et al., 2019). In
fact, numerical simulation shows that it can generate
DO average responses to sinusoid gratings, though it
generates strong PD+OD enhancement (Figure C1).
It also generates DO responses over a smaller region
in spatiotemporal frequency space than the full model.
If one replaced the infinitely sharp ramp functions
with more biophysically plausible soft rectifiers, the
numerator LNLN cascade would be well-approximated
for small input contrasts by a LN model with a
quadratic nonlinearity. Therefore, it could not generate
DO average responses for sufficiently small input
contrasts. However, even in the limit in which both
the numerator and denominator are represented as
LN models with quadratic nonlinearities, the full
model could likely generate DO average responses. In
particular, this limiting construction would resemble
a type of adaptive gain model, which was previously
shown to generate DO average responses (Badwan
et al., 2019).


