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Objective: As a prevalent and infiltrative cancer type of the central nervous system,
the prognosis of lower-grade glioma (LGG) in adults is highly heterogeneous. Recent
evidence has demonstrated the prognostic value of the mRNA expression-based
stemness index (mRNAsi) in LGG. Our aim was to develop a stemness index-based
signature (SI-signature) for risk stratification and survival prediction.

Methods: Differentially expressed genes (DEGs) between LGG in the Cancer Genome
Atlas (TCGA) and normal brain tissue samples from the Genotype-Tissue Expression
(GTEx) project were screened out, and the weighted gene correlation network analysis
(WGCNA) was employed to identify the mRNAsi-related gene sets. Meanwhile, the
Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses
were performed for the functional annotation of the key genes. ESTIMATE was used to
calculate tumor purity for acquiring the correct mRNAsi. Differences in overall survival
(OS) between the high and low mRNAsi (corrected mRNAsi) groups were compared
using the Kaplan Meier analysis. By combining the Lasso regression with univariate and
multivariate Cox regression, the SI-signature was constructed and validated using the
Chinese Glioma Genome Atlas (CGGA).

Results: There was a significant difference in OS between the high and low mRNAsi
groups, which was also observed in the two corrected mRNAsi groups. Based on
threshold limits, 86 DEGs were most significantly associated with mRNAsi via WGCNA.
Seven genes (ADAP2, ALOX5AP, APOBEC3C, FCGRT, GNG5, LRRC25, and SP100)
were selected to establish a risk signature for primary LGG. The ROC curves showed
a fair performance in survival prediction in both the TCGA and the CGGA validation
cohorts. Univariate and multivariate Cox regression revealed that the risk group was
an independent prognostic factor in primary LGG. The nomogram was developed
based on clinical parameters integrated with the risk signature, and its accuracy for
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predicting 3- and 5-years survival was assessed by the concordance index, the area
under the curve of the time-dependent receiver operating characteristics curve, and
calibration curves.

Conclusion: The SI-signature with seven genes could serve as an independent
predictor, and suggests the importance of stemness features in risk stratification and
survival prediction in primary LGG.

Keywords: lower grade glioma, The Cancer Genome Atlas, Chinese Glioma Genome Atlas, stemness indices-
related signature, prognosis

INTRODUCTION

Lower grade glioma is one of the prevalent and infiltrative types
of primary malignant intracranial tumors in adults, the main
components of which are diffuse low-grade and intermediate-
grade gliomas (Ceccarelli et al., 2016; Ostrom et al., 2018).
Despite comprehensive regimens that involve maximum surgical
resection and subsequent radiotherapy and chemotherapy, the
prognosis of LGG has not improved in the past four decades
(Claus et al., 2015). Due to the great intrinsically biological
and clinical heterogeneity, the overall survival (OS) of LGG
estimates a range from 1 to 15 years, and the response to standard
treatment varies from person to person (Cancer Genome
Atlas Research et al., 2015). Although the histopathological
classification of LGG has traditionally used to predict clinical
outcomes, there remains a high intraobserver and interobserver
variability, and is often hard to accurately predict outcomes
even within the same grade (Coons et al., 1997; van den Bent,
2010). Therefore, it is imperative to search for novel molecular
biomarkers for LGG genetic classification. Recently, the 2016
WHO brain tumor classification established the molecular
markers for subclassification, including the chromosomal 1p
and 19q (chr1p/19q) co-deletion, the isocitrate dehydrogenase
(IDH) mutation, and the histone 3 mutational status. However, it
seems that these widely utilized biomarkers have provided useful
but insufficient prediction for risk stratification of patients with
LGG, especially in genetically heterogeneous populations. Thus,
novel prognostic parameters are urgently needed to develop
and improve the stratification of LGG with the use of multiple
advanced molecular platforms.

The complexity and heterogeneity of glioma cells is
not only related to its genetic polymorphisms, but also
to the characteristics of the microenvironment, such as
stemness features and oncogenic and tumor suppressive
pathways (Venteicher et al., 2017; Dirkse et al., 2019). Recent
advancements have revealed that the populations of glioma
stem-like cells are associated with the radio- and chemo-
resistance, and with prognosis and tumor recurrence (Yi
et al., 2016; Roos et al., 2017). To our knowledge, stemness
features have been extracted by the novel stemness indices,
including DNA methylation-based stemness index (mDNAsi),
mRNA expression-based stemness index (mRNAsi) (Malta
et al., 2018). Besides, Pan et al. (2019) developed a 13-gene
prognostic signature based on mRNAsi, which suggested the
stemness of cancer stem cells (CSCs) and the unfavorable
prognosis. However, no study has previously attempted

to identify the prognostic and predictive value of stem
cell-related genes in LGG.

The scores of mRNAsi in LGG were computed using a one-
class logistic regression machine learning algorithm (OCLR), and
Tathiane et al. found a strong relationship between mRNAsi
and prognosis of glioma, which provided new insights into
stratification tumors with distinct clinical outcomes (Malta et al.,
2018). However, that study mainly focused on comprehensive
pan-cancer analysis. Despite the significant association observed
between mRNAsi and OS, however, it was investigated based
only on the level of bulky tumor. It is reasonable to take the
tumor purity into account in order to further investigate the
prognostic value of the stemness index in tumor parenchyma.
In addition, a series of genes related to mRNAsi have not been
analyzed in detail, and their biological function is also unknown.
Meanwhile, the univariable and multivariable survival analyses
of predominant clinicopathological factors (age, gender, IDH
status, radiation, and chemotherapy status, etc.) and genes related
to mRNAsi have not been explored in different cohorts. In
order to identify the genes related to mRNAsi, the weighted
gene correlation network analysis (WGCNA) was employed. This
method takes the interrelation of genes into account for structure
generation, instead of regarding genes as single entities. WGCNA
has been applied to identify trait-related preserved modules for
discovering the key genes (Zhang and Horvath, 2005; Langfelder
and Horvath, 2008; Liang et al., 2019).

In addition, the ESTIMATE (Estimation of Stromal and
Immune cells in MAlignant Tumor tissues using Expression data)
algorithm is one of the most common methods to calculate
the tumor purity, and is based on scores related to the level
of immune cells infiltration and stromal cells in tumor tissues
(Yoshihara et al., 2013). In the current study, the primary
purpose was to identify the prognostic value of high- and low-
score groups based on the mRNAsi or mRNAsi/purity in a
Kaplan-Meier survival analysis. Next, differentially expressed
genes (DEGs) were screened from The Cancer Genome Atlas
(TCGA) database and the Genotype-Tissue Expression (GTEx)
database. Subsequently, the WGCNA was applied for identifying
the hub gene clusters and for selecting the stemness indices
associated key genes in LGG. Meanwhile, the Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was employed for function annotation. Finally, the
stemness-index associated gene signature was established and
validated in the TCGA database and the Chinese Glioma Genome
Atlas (CGGA) database, which were used for internal and
external validation, respectively.
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MATERIALS AND METHODS

Data Source
The high-throughput RNA-seq data of 529 patients with LGG
from the TCGA database and 1,152 normal brain tissue samples
from the GTEx project were downloaded from the University
of California Santa Cruz (UCSC) Xena website1. The gene
expression profiles were quantified by fragments per kilobase
of transcript per million mapped reads (FPKM) normalized
estimation and log2-based transformation. Next, DEGs were
selected by the “limma” package of R software under the threshold
of absolute value of the log2-transformed fold change (FC) > 1
and the adjusted P-value (adj.P) < 0.05. Besides, the ComBat
method was performed to remove the batch effects using the R
package “sva.”

Acquisition of Stemness Index Based on
RNA-Seq
Malta et al. (2018) provided a novel analysis for an oncogenic
dedifferentiation evaluation that considered the mRNAsi. The
mRNAsi scores of the LGG samples were calculated when a one-
class logistic regression machine learning algorithm (OCLR) was
applied to LGG datasets from TCGA. The gene expression-based
stemness index was represented using β values ranging from zero
(no gene expression) to one (complete gene expression). The
mRNAsi was obtained from the multiplatform analysis based on
this previous research.

Weighted Gene Correlation Network
Analysis for Building Stemness-Index
Associated Preserved Modules
The WGCNA was developed to discover the correlations among
genes by constructing significant modules. The WGCNA analysis
was performed by the “WGCNA package” for R (version 1.61)2

(Langfelder and Horvath, 2008).
Initially, the LGG transcriptome in the TCGA database was

taken as a data source. The correlation of the expression levels of
5490 DEGs was analyzed with high precision and accuracy, which
was a prerequisite for a WGCNA network development. Next,
a parameter β was set based on the correlations of each DEG,
which contributed to achieve a scale-free co-expression network.
Next, the “blockwiseModules” function was carried out for
constructing the network and detecting modules. Furthermore,
the relationship between the modules and mRNAsi score was
investigated, and the preserved module was determined by the
top ranked modules with the strongest connections.

Finally, the key genes from the preserved module were
explored. The Inclusive criterion for screening key genes
was as follows: correlation (cor.) Gene GS > 0.5 and cor.
Gene MM > 0.8 (Pan et al., 2019). Gene significance (GS)
was calculated to measure the correlation between genes and
sample traits (the values of mRNAsi), and Module Membership
(MM) was used to assess the correlation between gene

1https://xena.ucsc.edu/
2https://cran.r-project.org/web/packages/WGCNA/index.html

expression profiles and module eigengene. The associations
among eigengenes, MM, and sample traits were assessed by
Pearson’s correlation.

Evaluation and Bioinformatics Analysis
of Key Genes
The different expression levels of each key gene were visualized
in a heatmap, which was retrieved from the normal tissue and
tumor tissue. In addition, the interactions among key genes
was visualized in a heatmap based on correlations. Moreover,
the identification of the functional annotation was another vital
step in the exploration of the potential mechanism of key
genes. Thus, gene ontology (GO) enrichment analysis (Gene
Ontology Constorium, 2015 and Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa and Goto, 2000; Wanggou
et al., 2016) signaling pathways were performed on a list
of key genes. The visualization of results was implemented
with the R “ggplot2” package. A P value < 0.05, and a false
discovery rate (FDR) < 0.05 were considered to determine
statistical significance.

Inclusive and Exclusive Criteria of
Enrolled Patients for the Construction of
the Risk Signature
Inclusion criteria included: (1) patients who suffered from
primary LGG (except for recurrent LGG), (2) complete
clinicopathological feature, (3) diagnosed with WHO grade II or
III glioma, (4) the RNA-sequencing data of samples was available,
(5) the OS was set as the primary endpoint, and (6) patients with
a minimum follow-up of 90 days.

The exclusive criteria were as follows: (1) patients with a
pathological diagnosis of recurrence LGG, (2) patients who
suffered from brain tumors other than LGG, and (3) absent
survival status and clinicopathological parameters.

Survival Analysis of mRNAsi
ESTIMATE, an algorithm based on a web tool3 provided
information for the purity of the tumor tissue calculation
(Yoshihara et al., 2013). The data of mRNA expression-
based stemness index was calculated for each sample, and
the Kaplan Meier analysis for samples with the high and low
mRNAsi set was carried out. In view of the effects of tumor
purity on the corresponding mRNAsi, the corrected mRNAsi
(mRNAsi/tumor purity) was included. From another perspective,
the survival rate between the high and low mRNAsi groups
was re-compared using a Kaplan Meier analysis based on the
corrected mRNAsi scores.

Construction of a Prognostic Signature
A univariate Cox regression analysis was performed by the
"survival" package in R to identify genes that are highly associated
with and crucial for survival. The prognostic key genes were
then further optimized by the least absolute shrinkage and
selection operator (LASSO) regression model, using the R

3https://bioinformatics.mdanderson.org/estimate/
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package "glmnet." After completing the variable selection and
the shrinkage of prognostic key genes, a stepwise multivariate
Cox regression analysis was performed to generate the risk score
model. The following formula was built based on the coefficients
and expression levels for each gene.

Model : Riskscore =
k∑

i=1

βiSi

Where k indicates the number of signature genes, β is
equal to the coefficient index, and Si represents the expression
level of key genes.

Afterward, using the "survminer" package in R (Li et al., 2019),
the optimum cutoff value was obtained, and the primary LGG
patients in the TCGA database were clustered into high-risk and
low-risk groups. The gap of survival rates between the two groups
was tested by the Kaplan–Meier analysis. The time dependent
ROC was plotted in order to determine whether the risk score
can accurately predict the survival status. Finally, the expression
distributions of signature genes were shown in a heatmap using
the “ComplexHeatmap” R package. The risk plot showed that
the LGG patients in the TCGA database sorted by the rank of
corresponding risk score.

Prognostic Value of the
Seven-Gene-Based Signature
The patients suffering from primary LGG in the TCGA dataset
were randomly categorized into the training group (accounting
for 70%) and internal validation group (accounting for 30%) by
using the "caret" package4. The risk scores and the corresponding
clinical variants, including age, gender, grade, radiotherapy,
chemotherapy, and IDH status were subjected to univariate
and multivariate Cox model. Subsequently, proportional
hazards assumption for different variables (Therneau, 1994)
was examined by the scaled Schoenfeld residuals (Schoenfeld,
1982; R Development Core Team, 2014). In order to achieve the
clinical application of survival prediction model, a prognostic
nomogram was then constructed based on the outcomes of
the multivariate Cox regression analysis (method = “enter”).
Using the "rms," "foreign," and "survival" R packages, the
nomogram was plotted based on the prognostic signature
and six clinicopathology factors for the purpose of predicting
3-, and 5-OS of LGG. Furthermore, the concordance index
(C-index) (Harrell et al., 1996) was employed to quantify
predictive accuracies by using “survival” and “pec” package.
Using the "timeROC" package of R, the time-dependent ROC
curve was performed to estimate the prognostic power of the
nomogram. To compare the accuracy and discrimination of
different models (containing model 1: SI-risk signature; model 2:
mRNAsi; model 3: corrected mRNAsi; model 4: six predominant
clinic-pathological factors; model 5: model 4+ SI-risk signature),
the net reclassification improvement (NRI) and the integrated
discrimination improvement (IDI) were applied by using
“survIDINRI” package (Pencina et al., 2008). Calibration

4https://cran.r-project.org/web/packages/caret

curves were employed to evaluate the agreement between the
observed and the predicted probability (3- and 5-years OS) in the
nomogram. The bootstrap method with 1,000 resamples were
utilized to evaluate both discrimination and calibration.

External Validation of the Prognostic
Signature
Another primary LGG of gene expression information and
related predominant clinical and prognostic factors were
downloaded from the CGGA platform5. A total of 353 samples
were enrolled for external validation of the risk signature.
The samples were uniformly divided into two distinct groups
according to the same cutoff value (1.495), and the Kaplan–
Meier analysis was employed to assess the high-risk and low-
risk groups. Afterward, the ROC curve analysis was used to
assess the discriminatory power of the risk score in the external
validation set. Further, a heatmap was generated to show the
gene expression distributions of signature genes in the CGGA
database, and the risk plot showed the distribution of the LGG
patients according to their individual risk score. Similarly, the
C-index, the time-dependent ROC curves, and calibration curves
(bootstrap method with 1,000 resamples) were compared to
determine the performance of the risk signature.

Cancer Cell Line Encyclopedia (CCLE)
and Protein Expression Verification
The mRNA expression of seven genes profiled by RNA-Seq
extracted from database available at The Cancer Cell Line
Encyclopedia (CCLE)6 (Barretina et al., 2012). This portal covers
genomic and expression data for more than 1000 cell lines
from various tumors. The expression level of seven genes were
analyzed in different types of cancer including LGG using
CCLE. Cell lines of LGG were preliminary confirmed through
six dedicated websites7 and only the consistent LGG cell lines
be retained. In addition, the protein expression levels of the
seven genes between glioma tissue and normal control were
analyzed using Human Protein Atlas database8, and the data were
visualized using immunohistochemistry staining.

Statistical Analysis
The statistical analysis in our exploratory study was carried out
using the R software (version 3.6.0)9. For differentially expressed
gene selection, the Wilcoxon test was performed. The OCLR
method was implemented with the “gelnet” package1 with default
parameters (Sokolov et al., 2016). Pearson’s chi-square tests and
Kruskal–Wallis tests were used to detect the variables difference.
An analysis of the distinctness of survival between the two risk
groups was illustrated by the Kaplan–Meier curve (Klein and
Moeschberger, 1997) with the Wilcoxon logrank test using the

5http://cgga.org.cn/
6https://portals.broadinstitute.org/ccle
7https://web.expasy.org/cellosaurus/, https://www.atcc.org/, https://www.
pheculturecollections.org.uk/products/celllines/generalcell/search.jsp, http:
//igrcid.ibms.sinica.edu.tw, https://cansarblack.icr.ac.uk/, https://www.dsmz.de/
8http://www.proteinatlas.org/
9https://www.r-project.org/
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R package KMsurv. The univariate Cox regression analysis and
multivariate Cox regression analysis were performed to assess
the association between the factors and OS (Therneau, 2015).
A p< 0.05 was deemed as statistically significant.

RESULTS

Data Processing
Identification of DEGs
The overview of the stemness index-related signature
development and validation workflow is summarized in Figure 1.
A total of 774 patients with primary LGG were enrolled in the
generation of the stemness indices-associated risk signature, and
the clinicopathological characteristics are listed in Table 1. The
RNA-seq data (level 3) of 1,152 normal brain tissue samples
and 529 LGG samples from GTEx projects and the TCGA were
screened by the limma package. Before the identification of
DEGs, the normalization and batch effect removal were tested.
As illustrated in Supplementary Figures S1A,C, it performed
well in normalization. Correspondingly, TCGA and GTEx
samples separated obviously (Supplementary Figures S1B,D).
Altogether, using the cutoff of significance of the absolute value
of the log2-transformed fold change (FC) > 1 and the adjusted P
value (adj.P) < 0.05, the differential expression analysis between
1,152 normal control samples and 529 LGG identified a cohort
of 5,490 DEGs, of which 2,718 were upregulated and 2,772 were
downregulated (Supplementary Figures S2A,B).

mRNAsi Mining
Gene expression-based stemness indices for LGG were extracted
by the one-class logistic regression machine learning algorithm
(OCLR) (Malta et al., 2018). A cohort of LGG samples stratified
by the mRNAsi, which is based on the stemness index model,
were utilized for the integrative analyses.

WGCNA: Construction the Correlation
Matrix of mRNAsi and Module Eigengene
Values
Data Acquisition
Using the TCGA database, a WGCNA network was constructed
by the WGCNA package for the purpose of identifying stemness
indices-related modules. The LGG transcriptome in the TCGA
database was employed as the primary source for the analysis.
Afterward, a global view of RNA-seq data analysis specific to LGG
were provided by the WGCNA.

After data preprocessing, a correlation analysis of 5,490 DEGs
was conducted, and the soft threshold power of β was 5 (scale-free
R2 = 0.9) to assure a scale-free topology model (Supplementary
Figure S3A). A total of 5,490 DEGs were screened for further
analysis according to the exclusion criteria.

Next, a clustering analysis on this basis for LGG identified
a total of eleven diverse modules (module size ≥ 50 and cut
height ≥ 0.25) in the network (purple, turquoise, black, brown,
magenta, green, red, yellow, blue, pink, and gray). Genes in
the same color module demonstrated common gene expression
patterns (Supplementary Figure S3B).

Identification of Modules Associated With Stemness
Indexes of LGG
Fold enrichment > 1 and p < 0.05 was regarded as the
statistical threshold of significance for mRNAsi associated
modules selection. There were ten sets of genes (modules)
identified that were significantly associated with mRNAsi. The
purple, brown, magenta, red, and gray modules were correlated
negatively with mRNAsi (MEpurple:r = −0.094, P = 0.04,
MEbrown:r =−0.77, P = 3E−100, MEmagenta:r =−0.27, P = 4E−10,
MEred:r = −0.11, P = 0.01, MEgray:r = −0.13, P = 0.005).
The turquoise, black, yellow, blue, and pink modules were
correlated positively to mRNAsi (MEturquoise:r = 0.29, P = 3E−11,
MEblack:r = 0.15, P = 0.001, MEyellow:r = 0.36, P = E−16,
MEblue:r = 0.6, P = 4E−49, MEgray:r = 0.37, P = 2E−17) (Figure 2
and Supplementary Figure S3).

The module-trait relationships showed that the brown module
was most significantly related to mRNAsi, with the highest
correlation value (r = −0.77, P = 3E−100). Thus, the brown
module was selected for subsequent analyses to explore key genes.

Based on the threshold limits (cor. gene GS> 0.5 and cor. gene
MM> 0.8), 86 out of 748 hub genes were identified after selection
in the brown module.

Analysis and Functional Annotation of
Key Genes in the Brown Module
Analysis of Key Genes in the Brown Module
The expression values of each key gene were retrieved from
the normal control tissue and tumor tissue, which were
visualized as heatmap (Supplementary Figure S4A). The
heatmap showed that most of the key genes had median
expression levels in tumor tissue, whereas CD74 Molecule
(CD74), major histocompatibility complex, class I, E (HLA-E),
major histocompatibility complex, class II, DR Alpha (HLA-
DRA), major histocompatibility complex, class II, DR Beta 1
(HLA-DRB1), complement C1q B chain (C1QB), complement
C1q A chain (C1QA), and complement C1q C chain (C1QC)
exhibited the higher expression in samples from cancer patients.
The correlation analyses between key genes were also visualized
as a heatmap (Supplementary Figure S4B).

Functional Annotation of Genes Related to mRNAsi
The Gene ontology enrichment analysis was executed for
further describing the function of the key genes. In total 30
GO biological processes consisting of 10 biological processes
(BP) terms (regulation of leukocyte activation, etc.), 10 cellular
components (CC) terms (secretory granule membrane, etc.), and
10 molecular functions (MF) terms (peptide binding, etc.) were
enriched (Figure 3A).

In addition, KEGG signaling pathway analysis indicated
that the key genes were significantly enriched in 30 pathways,
and several pathways were immune-related, such as antigen
processing and presentation and cell adhesion molecules
(CAMs) (Figure 3B). The above results suggest the potential
regulatory mechanism of mRNAsi-associated genes in the
development of LGG.
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FIGURE 1 | Flowchart presenting the process of establishing the stemness index-related signature.

Survival Analysis of mRNAsi
After calculating the mRNAsi for all LGG samples, a cohort
of 447 patients with LGG were classified into either a high
mRNAsi score group or a low mRNAsi score group, using the
optimum cutoff value of 0.354. The survival curves showed
that the OS values were significantly different between the two
groups (P = 9.676E−4), based on Kaplan-Meier survival analysis
(Supplementary Figure S5A).

Considering the interferences of tumor purity, the corrected
mRNAsi (mRNAsi/tumor purity) was adopted. By applying
ESTIMATE (Yoshihara et al., 2013), the tumor purity was
calculated in any given LGG sample.

Similar results were also observed when the Kaplan-Meier
survival analysis was applied to all the 463 samples based on
corrected mRNAsi. There was a significant difference in OS
between high mRNAsi score group and low mRNAsi score group
(P = 5.019E−4) (Supplementary Figure S5B).

Identification of Key Prognostic Genes in Primary
LGG
To find out the prognostic value of stemness-index associated
genes, 86 key genes were tested by univariate Cox regression
analysis. It was found that 80 genes were significantly associated
with OS in primary LGG. Surprisingly, all prognostic key genes
were identified as risk factors (Figure 4).

Construction of Stemness-Index Associated
Prognostic Signatures
Taking co-linearity into account, 80 key prognosis-related
genes were subjected to LASSO Cox regression. A set
of 11 key genes were then included in the subsequent
analysis with non-zero regression coefficients. Next, 7 key
genes were filtered and optimized for constructing a risk
signature when implementing the stepwise multivariable Cox
regression analysis (Table 2). The 7 key genes contained
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TABLE 1 | Clinicopathological characteristics of primary LGG patients from the
TCGA and CGGA databases.

Characteristic Training
cohort

Internal
validation
cohorts

External
validation
cohorts

TCGA
(n = 297)

TCGA
(n = 124)

CGGA
(n = 353)

Age (Y)a

≤40 136 (46%) 63 (51%) 189 (54%)

>40 161 (54%) 61 (49%) 164 (46%)

Gender

Male 168 (57%) 65 (52%) 205 (58%)

Female 129 (43%) 59 (48%) 148 (42%)

Grade

I 144 (52%) 54 (44%) 196 (56%)

II 153 (48%) 70 (56%) 157 (44%)

Radiation

No 99 (37%) 53 (43%) 59 (17%)

Yes 198 (63%) 71 (57%) 294 (83%)

Chemotherapy

No 133 (45%) 58 (47%) 147 (42%)

Yes 164 (55%) 66 (53%) 206 (58%)

IDHb Status

Wild-type 53 (18%) 26 (21%) 94 (27%)

Mutation 244 (82%) 98 (79%) 259 (73%)

Risk score

Low risk 209 (70%) 80 (65%) 264 (75%)

High risk 88 (30%) 44 (35%) 89 (25%)

aAge, Age at pathological diagnosis of glioma. b IDH, Isocitrate dehydrogenase.

ArfGAP with dual PH domains 2 (ADAP2), arachidonate
5-lipoxygenase activating protein (ALOX5AP), apolipoprotein
B mRNA editing enzyme catalytic subunit 3C (APOBEC3C),
Fc fragment of IgG receptor and transporter (FCGRT), G
protein subunit gamma 5 (GNG5), leucine rich repeat containing
25 (LRRC25), and SP100 nuclear antigen (SP100). Finally,
a risk score formula was developed based on the seven key
genes along with their individual coefficients and expression
level, which was defined as follows: (−0.88603 × expression
level of ADAP2) + (0.416964 × expression level of ALOX-
5AP) + (0.914674 × expression level of APOBE-
C3C) + (−0.73585 × expression level of FCGRT) + (0.631697
× expression level of GNG5) + (−0.64501 × expression
level of LRRC25) + (0.745358 × expression level of
SP100).

Evaluation of Survival Predicts the Accuracy of
Seven-Gene-Based Signature
The robustness of the seven stemness-index associated genes
was validated by evaluating the ability of stratifying the high-
or low-risk group in TCGA datasets. Patients with primary
LGG were dichotomized into high- (risk score ≥ 1.495) or low-
risk group (risk score < 1.495) based on the optimal cutoff
values. The Kaplan–Meier survival curve analysis showed that
different risk groups by this risk scoring system were significantly

linked with OS (Figure 5A). Next, the 1y-, 3y-, and 5y-AUC
of the time-dependent ROC were 0.899, 0.875, and 0.778,
respectively (Figure 5B), confirming the satisfactory prediction
efficiency of the seven-gene stemness index-based signature in
OS. Furthermore, as observed in the heatmap, FCGRT and
GNG5 had the highest expression levels, whereas LRRC25, SP100,
ALOX5AP, ADAP2, and APOBEC3C exhibited low and medium
expression levels (Figure 5C). Consecutively, the distribution of
risk scores and survival status showed that patients with a risk
score of 1.495 or higher generally had poorer survival when
compared with another group (Figure 5D).

Prognostic Value of the Seven Gene-Based Signature
A cohort of 421 patients with primary LGG in the TCGA database
were classified into training set (n = 297) and internal validation
set (n = 124) randomly at a ratio of 7:3. In consideration of the
prognostic value of the stemness-index associated signature, the
risk score was set as a potential factor and explored by the
univariable and multivariable Cox regression analysis. The forest
plot of the univariable Cox regression analysis, based on 6
clinicopathologic features showed that risk group (HR = 6.648,
p < 0.001), age (HR = 3.573, p < 0.001), grade (HR = 2.864,
p < 0.001), radiation therapy (HR = 2.137, p = 0.014), and
IDH status (HR = 0.143, p < 0.001) were prognostic elements
associated with OS (Figure 6A). Next, the results revealed that
risk (HR = 4.545, p < 0.001), age (HR = 3.399, p < 0.001), and
IDH status (HR = 0.330, p < 0.001) were statistically significant
in multivariable Cox regression analyses (Figure 6B).

Based on the above results, the nomogram was established
for predicting primary LGG 3- and 5-years survival, which
integrated both the unique risk score and clinicopathologic
variables (Figure 6C). The C-index of the nomogram was 0.8701
(95% CI; 0.8358–0.9044). The area under the curves (AUCs) of
the 3- and 5-years OS predictions for the constructed nomogram
were 0.905, and 0.837 in the training set, respectively (Figure 6D).
Meanwhile, the calibration curves for this nomogram were
developed and plotted in Figures 6E,F.

In addition, the comparison of the accuracy and
discrimination in five models were conducted. The c-indexes
of five models were 0.775, 0.658, 0.615, 0.852, and 0.870,
respectively (Figure 7A). Moreover, as shown in Table 3, when
defined the model 1 as the reference, the continuous NRI
for the 1y-, 3y-follow ups were significant lower in mRNAsi
group (model 2) with NRIs were -0.598 (P = 0.01) and -0.548
(P = 0.022). Correspondingly, the continuous NRI for the 1y-,
3y-follow ups were also significant lower in corrected mRNAsi
group (model 3), with NRIs were -0.663 (P < 0.001) and -0.508
(p < 0.001). Conversely, the 1y-, 3y-NRI were significantly
improved in model 4 and model 5 with NRIs were 0.458
(P = 0.016), 0.317 (P = 0.028), 0.708 (P < 0.001), and 0.433
(P < 0.001). Furthermore, the comparison between the model
4 and model 5 was also conducted. The 1y-, 3y-NRIs were
also significant higher in model 5 (comprising all the seven
factors in nomogram).

Moreover, the 3y-, 5y IDI were significantly decreased in
model 2 (IDI = -0.146 and -0.189). The 1y-, 3y-IDI were
significantly decreased in model 3 (IDI = -0.063 and -0.178) with
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FIGURE 2 | The analysis of the weighted gene correlation network analysis (WGCNA) modules showed that there were ten sets of genes (modules) significantly
associated with mRNAsi. The purple, brown, magenta, red, and gray modules were correlated negatively with mRNAsi.

borderline significance in 5y-IDI (P = 0.056). Conversely, the 1y-,
3y-IDI were significant higher in model 4 (IDI = 0.084 and 0.165).
Interestingly, 1y-, 3y-, 5y-IDI were all significant improved in
model 5. In terms of the comparison of IDI between model 4 and
model 5, despite the IDI were all improved, however, the P values
could not reach the levels of significance.

Internal Validation of Seven-Gene Stemness-Index
Associated Prognostic Signature
Meanwhile, the clinical predictive model was evaluated in an
internal validation set. The C-index was 0.8474 (95% CI; 0.7081–
0.7971), the area under the curves (AUC) for 3 and 5-years-
survival were 0.915 and 0.828, respectively (Figure 7B). Taking
the calibration curves for the nomogram-probability of 3-years

survival (Figure 7C) and 5-years survival (Figure 7D) together,
the seven-gene signature was capable of predicting the OS of
primary LGG patients with high efficiency.

Development and External Validation of the
Prognostic Signature
According to the same cut-off value, the external validation
set of 353 patients in the CGGA platform was employed
and divided into high-risk cohort (n = 89) and low-risk
cohort (n = 264). Similar procedures were conducted to assess
the performance of the stemness-index associated signature.
Using the Kaplan-Meier curve analysis, the high-risk cohort
also showed a significantly poorer prognosis than the low-
risk cohort (P = 6.924E−13) (Figure 8A). The 1y-, 3y-,
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FIGURE 3 | Gene Ontology (GO) and KEGG pathway analyses. In total, 30 GO biological process consisting of 10 biological processes (BP) terms, 10 cellular
components (CC) terms, and 10 molecular functions (MF) terms were enriched (A). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis (B).
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FIGURE 4 | Forest plot showing the hazard ratios from the univariate Cox regression analysis.

5y-AUC in the external validation set were 0.708, 0.727,
and 0.725, respectively (Figure 8B). In accordance with
the risk plot in the TCGA database, In accordance with
the risk plot in the TCGA database, there was an inverse
relationship between risk score and survival (Figure 8C).

Subsequently, the AUCs for 3- and 5-years OS were 0.798,
and 0.74, respectively (Figure 8D). The C-index in the external
validation set was 0.7526. The calibration curves for the
nomogram 3- and 5-year survival probabilities are shown in
Figures 8E,F, respectively.
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TABLE 2 | Results of the seven key genes in the multivariable Cox regression analysis.

Genes Coef HR HR.95L HR.95H P-value

ADAP2 −0.886027724 0.412290235 0.22399138 0.758882942 0.004423098

ALOX5AP 0.416963664 1.517347377 1.10755058 2.07877013 0.009433367

APOBEC3C 0.914673555 2.495960324 1.783799483 3.492442955 9.47E-08

FCGRT −0.735850888 0.479097627 0.294704586 0.778863129 0.002997479

GNG5 0.631697047 1.880799678 1.385572452 2.553029562 5.09E-05

LRRC25 −0.645008868 0.52465789 0.315056856 0.873702304 0.01318087

SP100 0.745358173 2.107196041 1.21584173 3.652017402 0.00789528

Evaluation of the Correlation Between Clinical
Parameters and Signature
The relationship between the clinicopathological features (age,
gender, grade, radiotherapy, chemotherapy, and IDH mutation
status) and the seven-gene-based signature was explored. Older
patients, patients of grade III, and IDH wild type tended to
have higher risk scores than the younger, grade II, and the
IDH mutant type patients, respectively in the TCGA database
(Supplementary Figure S6A). As for the CGGA database, the
risk scores of patients with IDH1 mutant type, and grade II
were lower than IDH1 wild type, and grade III, respectively
(Supplementary Figure S6B).

Expression Analysis of Seven Genes From Cancer
Cell Line Encyclopedia (CCLE) and Human Protein
Atlas Database
To validate the mRNA expression of seven genes, the expression
levels of ADAP2, ALOX5AP, APOBEC3C, FCGRT, GNG5,
LRRC25, and SP100 in various human tumors and 14 LGG cell
lines from the CCLE were determined (Supplementary Figure
S7 and Table 4). As shown in Supplementary Figure S7, the
mRNA expression of APOBEC3C, FCGRT, GNG5, and SP100 was
elevated in glioma, whereas the expression of ADAP2, ALOX5AP,
and LRRC25 was low. To further explore the expression patterns
of the seven genes in tissue level, the Human Protein Atlas
database was employed to analyze the differential expression
between glioma tissue and normal control, and the protein
expression was evaluated using immunohistochemistry data as
shown in Supplementary Figure S8. Consistent with the RNA-
seq data, the protein expression levels of FCGRT, and GNG5
were upregulated in tumor tissues when compared with the
normal controls.

DISCUSSION

In previous studies, the risk stratification of the stemness
index has been investigated in pan-cancer cohorts. However,
the comprehensive prognostic value of the stemness index
has not been exploited in LGG. In addition, the function
annotation of the stemness index-associated genes and the
prognostic value of the risk signature have not been investigated.
In the current study, significant differences were found in
survival between low- and high mRNAsi (mRNAsi/purity) score
groups in the Kaplan Meier curve. Moreover, the detail of

stemness indices-related modules and genes were identified
after the application of WGCNA. A total of 86 key genes
were screened according to the threshold limits, which were
most significantly correlated with stemness-index. Next, for the
enrichment analysis of the brown module, GO terms consisting
of “regulation of leukocyte activation,” “positive regulation
of cytokine production,” and “neutrophil degranulation” were
ranked at the top of the list. In addition, KEGG pathway
results such as CAMs, natural killer cell mediated cytotoxicity,
and antigen processing and presentation were also obtained.
Next, after the application of univariate Cox regression analysis,
LASSO Cox regression model, and multiCox analysis, seven key
genes (ADAP2,ALOX5AP,APOBEC3C, FCGRT,GNG5, LRRC25,
and SP100) were enrolled as vital elements in stemness index-
related signature. Furthermore, age, grade, radiotherapy, IDH
status, and risk group were significantly associated with OS
in the univariable Cox regression analysis; however, only age,
IDH status, and risk group were significantly correlated with
OS for primary LGG patients by applying the multivariate Cox
regression analysis.

In the first part, it was found that the mRNAsi was significantly
associated with OS in primary LGG, which was consistent
with a previous study in pan-cancer cohorts (Malta et al.,
2018). However, it should be noticed that the population of
bulky tumor includes tumor cells, immune cells, and stromal
cells. Taking the tumor purity into account may accurately
reflect the actual stemness characteristic in tumor parenchyma.
Moreover, ESTIMATE is one of the most common algorithms
for quantifying tumor purity and composition of stromal and
immune cells. Hence, the concept of the corrected mRNAsi
(mRNAsi/tumor purity) was adopted to reduce the interference
of non-tumor tissue (Malta et al., 2018; Lian et al., 2019; Pan
et al., 2019). Of note, after employing the survival analysis, the
significant survival difference in OS was still observed between
high- and low- score groups based on the corrected mRNAsi
(mRNAsi/tumor purity), which was consistent with the results
from a previous study of bladder cancer (Pan et al., 2019).
Additionally, the comparisons of the accuracy and discrimination
among three models (model 1, model 2, and model 3) were
conducted. Interestingly, the constructed risk signature in
current study was superior to the mRNAsi and corrected mRNAsi
in predicting the overall survival of LGG. To our knowledge,
there is no previous study investigating the improvements of
the accuracy and discrimination between mRNAsi and corrected
mRNAsi. Further pan-cancer analyses are warranted.
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FIGURE 5 | Construction of a risk score based on the seven stemness indices-related gene signature in the TCGA cohort. (A) Kaplan-Meier analysis of OS for
low-risk and high-risk patients in the training cohort. Additionally, the table indicating the number at risk for each group at corresponding time points. (B) The
time-dependent receiver operating characteristics (ROC) curve for 1-, 3-, and 5-year OS predictions for stemness-index related risk signature. (C) Heatmap showing
the distribution of the expression of the seven genes of the stemness index in the TCGA cohort. (D) Risk plot presenting each point sorted based on risk score,
representing one patient. Green and red points represent patients with low- and high-risk, respectively.
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FIGURE 6 | Development of a prognostic stemness indices-related gene signature for primary low-grade glioma (LGG). (A) Univariable Cox regression analysis for
the training cohort. (B) Multivariable Cox regression analysis for the training cohort. (C) A nomogram including risk score and other clinical features for predicting 3-
and 5-years overall survival (OS) of primary LGG. (D) Time-dependent receiver operating characteristics (ROC) curve analysis for 3- and 5-years OS predictions for
the nomogram compared with actual observations. Calibration plot of nomogram for predicting probabilities of 3- (E) and 5-year (F) OS of primary LGG patients in
the TCGA database.
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FIGURE 7 | (A) The calculation of the C-indexes in five models. (B–D) Internal validation of a prognostic stemness index-related gene signature for primary LGG. (B)
Time-dependent ROC curve of the seven-gene-based risk score for 3- and 5-year OS probability in the internal validation cohort. Calibration plot for internal
validation of 3- (C) and 5-year (D) OS of primary LGG patients.

TABLE 3 | Comprehensive comparison of the accuracy and discrimination in five models.

Index Model 1 vs. Model 2 Model 1 vs. Model 3 Model 1 vs. Model 4 Model 1 vs. Model 5 Model4 vs. Model 5

IDI (1 year) −0.037 (p = 0.274) −0.063 (p = 0.02) 0.084 (p = 0.002) 0.108 (p < 0.001) 0.025 (p = 0.186)

Continuous NRI (1 year) −0.598 (p = 0.010) −0.663 (p < 0.001) 0.458 (p = 0.016) 0.708 (p < 0.001) 0.422 (p = 0.032)

IDI (3 year) −0.146 (p = 0.040) −0.178 (p = 0.006) 0.165 (p = 0.014) 0.214 (p < 0.001) 0.049 (p = 0.102)

Continuous NRI (3 year) −0.548 (p = 0.022) −0.508 (p < 0.001) 0.317 (p = 0.028) 0.433 (p < 0.001) 0.508 (p = 0.032)

IDI (5 year) −0.189 (p = 0.044) −0.211 (p = 0.056) 0.122 (p = 0.158) 0.177 (p = 0.018) 0.055 (p = 0.292)

Continuous NRI (5 year) −0.530 (p = 0.078) −0.366 (p = 0.058) 0.157 (p = 0.274) 0.410 (p = 0.036) 0.398 (p = 0.106)

Model 1: only the SI−risk signature was enrolled in the prognostic factor; Model 2: mRNAsi was enrolled in the prognostic factor; Model 3: corrected mRNAsi was
enrolled in the prognostic factor; Model 4: age, gender, grade, radiation therapy, chemotherapy, and IDH status were enrolled in the prognostic factors; Model 5: age,
gender, grade, radiation therapy, chemotherapy, IDH status, and risk group were enrolled in the prognostic factors. NRI, net reclassification improvement; IDI, integrated
discrimination improvement.
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To gain insights into the biological functions of key genes
in WGCNA, it was found that the key genes were mainly
enriched in infiltration, inflammation, and immune-related
pathways, which were critically involved in the initiation and
progression of glioma (Balkwill and Mantovani, 2001; Shacter
and Weitzman, 2002; Mantovani et al., 2008; Michelson et al.,
2016; Mostofa et al., 2017). Several studies have explored
the prognostic value of host inflammatory cells, such as
neutrophils in glioma. The role of neutrophils in glioma has
two sides, mainly depending on the maturation and activation
state. For example, the series of infiltrating neutrophils have
the ability of contributing to glioma infiltration and pro-
tumoral activity by secreting elastase (Iwatsuki et al., 2000).
Circulating neutrophil-induced immunosuppression can
promote tumor growth by secretion of arginase I (Sippel
et al., 2011). On the other side, it has been found that the
activation of neutrophils have an anti-tumor effect through
antibody-dependent cellular cytotoxicity (Hafeman and
Lucas, 1979; Fanger et al., 1989). Apart from making use
of the migration of neutrophils, anti-cancer drugs can be
delivered to the inflamed brain in glioma patients after
surgery, which may reduce the recurrence of glioma (Xue
et al., 2017). Moreover, recent evidence has revealed that the
potential role of phagosomes in tumorigenesis via different
mechanisms including its engagement in the autophagy pathway
(Kim and Overholtzer, 2013).

Several studies have focused on the role that stemness features
play in survival outcomes in human cancers. Similar to our
study, using 763 primary medulloblastoma patients from the
Gene Expression Omnibus (GEO) datasets, Lian and colleagues
identified and validated a stemness-related gene expression
signature to effectively stratify patients with Sonic hedgehog
medulloblastoma into different OS groups (HR = 1.80, 95%
confidence interval: 1.45–2.24, P = 1.10E−07) (Lian et al., 2019).
In terms of LGGs, age (≤40 years vs. > 40 years), tumor grade
(II vs. III), and IDH status (wild-type vs. mutation) are well-
established and widespread prognostic biomarkers in clinical
practice (Ricard et al., 2012; Cancer Genome Atlas Research
et al., 2015; Zeng et al., 2018; National Comprehensive Cancer
Network, 2019).

In the present study, a seven-gene signature based on the
mRNAsi was built to predict the prognosis of LGG. After
the univariate and multivariate analysis, the stemness index-
related gene signature, age, and IDH status were identified as
independent prognostic markers for predicting OS in primary
LGG patients. To our surprise, receiving radiation therapy
and chemotherapy or not was not associated with OS in the
multivariate analysis. The reason might be the undefined and
inconsistency treatment protocols, including the duration of
treatment, cycles of chemotherapy, total or fraction radiation
dose, and combined treatment regimens. Moreover, numerous
clinical trials have provided evidence for the adoption of
chemotherapy and radiotherapy in gliomas and confirmed
the OS benefit in adjuvant therapy. The Radiation therapy
oncology group (RTOG) 9802 trial showed that radiotherapy
combined with adjuvant procarbazine, 3 CCNU, and vincristine
(PCV) chemotherapy substantially improves the median OS

from 7.8 to 13.3 years (HR = 0.59; P = 0.002) in low-
grade glioma patients older than 40 years or who did not
undergo total tumor resection (van den Bent, 2014). Additionally,
despite the six clinic-pathological factors comprised model
performed fairly in predicting OS, however, integrating the risk
signature further improve the c-index as well as the significant
enhancements of 1y- and 3y-NRI. Thus, new prospective
studies are necessary to further verify the prognostic value of
the stemness index-associated risk signature in primary LGG
patients who receive a combined standard approach of surgery,
radiotherapy, and chemotherapy.

Among the seven genes, ALOX5AP, APOBEC3C, GNG5, and
SP100 were identified as risk-associated genes, whereas ADAP2,
FCGRT, and LRRC25 were confirmed as protective genes.
Regarding the risk-associated genes, APOBEC3C was discovered
as a vital member of the APOBEC family that encodes the
APOBEC3C (apolipoprotein B mRNA editing enzyme catalytic
subunit 3C, or A3C), clustered in the human chromosome
22 (Jarmuz et al., 2002). Some investigations have shown that
the expression of APOBEC3C played a positive role in the
invasiveness and prognosis of breast cancer (Zhang et al., 2015;
Wang et al., 2019), hepatocellular carcinoma (Yang et al., 2015),
and prostate cancer (Kawahara et al., 2019). Taking into account
investigations on the role of GNG5 in carcinogenesis, Orchel et al.
(2012) found that GNG5 may play a vital role in pathogenesis
or progression of endometrial cancer. In addition, it has been
revealed that GNG5 involved in PI3K-AKT and Wnt signaling
pathway, and associated with reduced E-cadherin expression in
invasive breast cancer (Alsaleem et al., 2019). ALOX5AP is one
of the essential genes in the production of leukotrienes from
arachidonic acid via encoding the ALOX5AP.Consistent with
our results, Wu et al. (2018) found that high expression of
ALOX5AP is associated with poor survival outcome in esophageal
carcinoma. Additionally, ALOX5AP also involved in a risk model
to serve as a prediction of osteosarcoma metastasis (Dong
et al., 2019). It is known that the nuclear autoantigen SP100
participates in various biological processes, such as cellular gene
expression, differentiation, and cell growth (Everett et al., 2006).
It was found that high expression of SP100 was associated
with poor cell differentiation in laryngeal cancer (Li et al.,
2010). Moreover, the expression of SP100 could regulate the
transcriptional activity of ETS1 and further influence the cell
invasion in breast cancer (Yordy et al., 2004). Regarding the
role of SP100 in glioma, previous study revealed that SP100 was
overexpressed in glioblastoma cells and involved in the regulation
of glioblastoma cell proliferation and migration (Held-Feindt
et al., 2011). With regards to the protective genes of FCGRT, it has
been found to be responsible for encoding neonatal Fc receptor
(FcRn), which participates in the transport and homeostasis of
immunoglobulin as well as anti-tumor immunity (Roopenian
and Akilesh, 2007; Ward and Ober, 2009). The expression of
FcRn in immune cells, particularly in antigen presenting cells, is
associated with its involvement in antigen presentation and cross-
presentation that contributes to its shape anti-tumor properties.
Studies showed that FcRn-expressed dendritic cells (DCs) are
critical for the number and activation of CD8 + T-cells and are
associated with prognosis in colorectal carcinoma (Baker et al.,
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FIGURE 8 | External validation of a prognostic stemness index-related gene signature for primary low-grade glioma (LGG). (A) Kaplan-Meier analysis of OS for
low-risk and high-risk patients in the external validation cohort. Additionally, the table indicating the number at risk for each group at corresponding time points. (B)
The time-dependent receiver operating characteristics (ROC) curve for 1-, 3-, and 5-years OS predictions for the nomogram compared with actual observations. (C)
The heatmap shows the expression of the seven genes between two risk groups in the CGGA cohort. (D) Time-dependent ROC for 3- and 5-years OS predictions
for the nomogram compared with actual observations. Calibration plot of nomogram for predicting probabilities of 3- (E) and 5-year (F) OS of primary LGG patients
in the CGGA database.
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TABLE 4 | List the expression of the seven genes in 14 LGG cell lines.

Gene ADAP2 ALOX5AP APOBEC3C FCGRT GNG5 LRRC25 SP100 ACTB RRID

Gene expression (TPM)

H4 −3.234 −2.279 4.977 0.095 4.544 −4.032 3.775 10.664 CVCL_1239

HS683 −2.058 −0.673 4.300 2.101 6.059 −6.675 3.185 11.276 CVCL_0844

KG1C −1.336 −1.609 6.160 0.334 5.218 −5.833 3.823 9.971 CVCL_2971

LN215 −3.879 −1.422 4.532 3.533 6.074 −7.049 4.243 10.537 CVCL_3954

LN235 −5.352 −1.489 4.216 3.967 6.028 −13.000 2.936 11.236 CVCL_3957

LN319 −4.063 −4.098 4.875 4.220 6.443 −13.000 1.443 9.752 CVCL_3958

LNZ308 −4.406 −3.171 2.872 0.317 7.113 −6.339 2.853 11.534 CVCL_0394

NMCG1 −3.648 −4.420 5.862 3.947 5.529 −8.266 2.392 11.488 CVCL_1608

SF268 −4.211 −1.512 0.554 3.739 6.236 −8.445 2.833 11.989 CVCL_1689

SNU738 −4.872 0.014 3.532 −3.016 6.417 −13.000 1.792 11.811 CVCL_5087

SW1088 −5.636 −2.916 5.441 1.140 6.274 −13.000 3.756 11.187 CVCL_1715

SW1783 −3.378 −1.839 4.975 2.773 5.975 −13.000 2.574 11.152 CVCL_1722

TM31 −2.523 −1.341 4.058 3.116 6.403 −8.164 1.793 10.397 CVCL_6735

U178 −3.724 −0.034 5.055 −3.648 5.367 −6.019 3.714 11.720 CVCL_A758

2013). The downregulation of FcRn is correlated with reducing
maturation and activation of natural killer cells that in turn
increase lung metastasis in an FcRn-depleted environment in
mice (Castaneda et al., 2018). The protein encoded by ADAP2
is a GTPase-activating protein and increases the stability of
microtubules. The investigation about the role of ADAP2 in solid
tumor is rare. Only one study found the expression of ADAP2 was
markedly decreased in in vivo tumors without further validation
about the function or mechanism (Laukkanen et al., 2015).
Correspondingly, the prognostic value of LRRC25 has not been
investigated in solid tumors. Hoffman et al. found that the
expression of LRRC25 was significantly associated with the risk
of breast cancer (Hoffman et al., 2017). Further investigations are
warranted to explore the mechanisms of LRRC25 in glioma.

Several limitations should be noticed in the current
study. First, the stemness index-related signature and the
nomogram developed were able to accurately predict survival
outcome in primary LGG. Nonetheless, the validation in
cellular experiments, and animal and tissue models warrants
further investigation. Second, due to an absence of 1p19q
characterization in the TCGA datasets, the status of 1p19q
co-deletion was not investigated by the univariate and
multivariate Cox regression analysis and was not employed for
the establishment of prognostic nomogram. Third, considering
a lack of standard treatment strategies in the TCGA and
CGGA databases, the effectiveness of the seven-gene signature
in primary LGG patients who received standard treatment
needs to be further verified in well-designed prospective
clinical investigations.

CONCLUSION

Our study identified a novel gene signature based on seven
genes relevant to the stemness index and developed a prognostic
nomogram composed of the gene signature and clinical
prognostic factors that effectively predict overall survival in

primary LGG patients. ALOX5AP, APOBEC3C, GNG5, SP100,
ADAP2, FCGRT, and LRRC25 might be candidate prognostic
biomarkers in primary LGG.
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FIGURE S1 | The normalization and batch effect removal from TCGA and GTEx
datasets. (A) Box plots illustrated the data distributions from TCGA and GTEx
datasets before normalization. (B) PCA plot illustrated the cluster of the samples
from TCGA and GTEx datasets before batch effect removal. (C) Box plots
illustrated the data distributions from TCGA and GTEx datasets after
normalization. (D) PCA plot illustrated the cluster of the samples from TCGA and
GTEx datasets after batch effect removal.

FIGURE S2 | (A) Heatmaps showing that the 5,490 differentially expressed genes
(DEGs) can effectively distinguish tumors from non-tumor tissues after integrated
analysis. (B) Volcano plot presenting DEGs between LGG and non-tumor tissues.

Red dots, and green dots represent up-regulated genes, and down-regulated
genes, respectively.

FIGURE S3 | Weighted gene correlation network analysis for building
stemness-index associated preserved Modules. (A) Determination of soft
threshold for adjacency matrix, and plots of mean connectivity versus soft
threshold. (B) Clustering results of WGCNA modules. The horizontal axis indicates
modules with different colors.

FIGURE S4 | Analysis of key genes in the module brown. (A) The heatmap
showing that the differentially expressed levels of the key genes between the
normal control tissue and tumor tissue. (B) The heatmap of the correlation
analysis among key genes.

FIGURE S5 | (A) Kaplan-Meier survival analysis of mRNAsi. (B) Kaplan-Meier
survival analysis of corrected mRNAsi. Additionally, the table indicating the number
at risk for each group at corresponding time points.

FIGURE S6 | Association between risk score and clinical-pathological
parameters. Association between risk score and age, gender, grade, radiotherapy,
chemotherapy, and IDH mutation status of primary LGG patients in TCGA cohort
(A), in CGGA cohort (B).

FIGURE S7 | The mRNA expression level of ADAP2 (A), ALOX5AP (B),
APOBEC3C (C), FCGRT (D), GNG5 (E), LRRC25 (F), and SP100 (G) in different
types of human cancers.

FIGURE S8 | The protein expression level of immunohistochemistry (IHC) images
collected from the Human Protein Atlas database of the risk genes between
glioma tissue and normal control (ADAP2 was not available).
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