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A B S T R A C T

Background: Classification models based on magnetic resonance imaging (MRI) may aid early diagnosis of
frontotemporal dementia (FTD) but have only been applied in established FTD cases. Detection of FTD patients
in earlier disease stages, such as presymptomatic mutation carriers, may further advance early diagnosis and
treatment. In this study, we aim to distinguish presymptomatic FTD mutation carriers from controls on an
individual level using multimodal MRI-based classification.
Methods: Anatomical MRI, diffusion tensor imaging (DTI) and resting-state functional MRI data were collected in 55
presymptomatic FTD mutation carriers (8 microtubule-associated protein Tau, 35 progranulin, and 12 chromosome 9
open reading frame 72) and 48 familial controls. We calculated grey and white matter density features from ana-
tomical MRI scans, diffusivity features from DTI, and functional connectivity features from resting-state functional
MRI. These features were applied in a recently introduced multimodal behavioural variant FTD (bvFTD) classifi-
cation model, and were subsequently used to train and test unimodal and multimodal carrier-control models.
Classification performance was quantified using area under the receiver operator characteristic curves (AUC).
Results: The bvFTD model was not able to separate presymptomatic carriers from controls beyond chance level
(AUC = 0.582, p= 0.078). In contrast, one unimodal and several multimodal carrier-control models performed
significantly better than chance level. The unimodal model included the radial diffusivity feature and had an
AUC of 0.642 (p= 0.032). The best multimodal model combined radial diffusivity and white matter density
features (AUC = 0.684, p= 0.004).
Conclusions: FTD mutation carriers can be separated from controls with a modest AUC even before symptom-
onset, using a newly created carrier-control classification model, while this was not possible using a recent
bvFTD classification model. A multimodal MRI-based classification score may therefore be a useful biomarker to
aid earlier FTD diagnosis. The exclusive selection of white matter features in the best performing model suggests
that the earliest FTD-related pathological processes occur in white matter.
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1. Introduction

Frontotemporal lobar degeneration is a common cause of early-
onset dementia with a similar prevalence to Alzheimer's disease in the
presenile population (Ratnavalli et al., 2002; Harvey et al., 2003;
Rabinovici and Miller, 2010; Seelaar et al., 2011; Rascovsky et al.,
2011). Although there are clinical disease criteria for the different
clinical variants of frontotemporal dementia (FTD) (Rascovsky et al.,
2011; Gorno-Tempini et al., 2011), diagnosis is often complicated and
delayed by clinical heterogeneity. This hinders clinicians in providing
accurate prognosis, effective disease management and developing new
treatments (Mohs et al., 2001; Mendez et al., 2007; Mendez, 2009;
Pressman and Miller, 2014).

Multimodal magnetic resonance imaging (MRI) has been suggested
as a promising biomarker to improve on diagnostic standards in FTD. In
FTD patients, MRI revealed specific patterns of neurodegeneration, in-
volving grey matter (GM) and white matter (WM) atrophy (Whitwell
and Jack, 2005; Whitwell et al., 2012; Möller et al., 2015a; Möller et al.,
2015b; Whitwell et al., 2015; Chao et al., 2007; Rabinovici et al., 2008;
Seeley et al., 2009; Frings et al., 2014; Zhang et al., 2011; Pan et al.,
2012; Risacher and Saykin, 2013), differences in diffusion tensor ima-
ging (DTI) measures (Möller et al., 2015b; Zhang et al., 2011; Zhang
et al., 2009; Agosta et al., 2012; McMillan et al., 2012; McMillan et al.,
2014; Mahoney et al., 2014; Daianu et al., 2016), and differences in
functional connectivity (Zhou et al., 2010; Zhou and Seeley, 2014; Farb
et al., 2013; Lee et al., 2014; Hafkemeijer et al., 2015; Hafkemeijer
et al., 2016).

These patterns have subsequently been utilised on an individual
level to create MRI-based classification algorithms that can discriminate
between FTD patients and control subjects (McMillan et al., 2014;
Davatzikos et al., 2008; Raamana et al., 2014; Koikkalainen et al., 2016;
Wang et al., 2016; Meyer et al., 2017; Bron et al., 2017; Bouts et al.,
2018). Accurate classification of FTD patients using MRI measures is an
important step towards a more substantiated diagnostic standard.
However, most classification models are based on established FTD
cases, limiting generalisability in patients who are at an earlier disease
stage. Still, detection of these early-stage FTD cases is necessary to fa-
cilitate precise subject recruitment into clinical trials and potential
early treatment with disease-modifying drugs (Huey et al., 2008).

In order to characterise FTD pathophysiology at an earlier stage,
presymptomatic carriers of autosomal dominant FTD gene mutations
were compared to controls in MRI group analyses (Borroni et al., 2008;
Whitwell et al., 2011; Cash et al., 2018; Borroni et al., 2012; Rohrer
et al., 2013; Premi et al., 2014; Dopper et al., 2014; Rohrer et al., 2015;
Lee et al., 2017; Bertrand et al., 2018; Papma et al., 2017). Carriers of
the three most common FTD gene mutations microtubule-associated
protein Tau (MAPT), progranulin (GRN), and chromosome 9 open
reading frame 72 (C9orf72) show brain alterations on MRI, even well
before symptom onset. In these subjects, WM diffusivity changes
(Borroni et al., 2008; Dopper et al., 2014; Papma et al., 2017) and
functional connectivity changes (Whitwell et al., 2011; Borroni et al.,
2012; Premi et al., 2014; Dopper et al., 2014) are often, but not ex-
clusively (Lee et al., 2017; Bertrand et al., 2018; Papma et al., 2017),
found in the absence of GM atrophy, suggesting that changes in the
functional architecture and WM tracts may precede structural dete-
rioration in the GM (Rohrer et al., 2013). Nonetheless, multi-centre
analyses of a large international cohort show GM loss in MAPT, GRN
and C9orf72 carriers even before conversion (Cash et al., 2018; Rohrer
et al., 2015). Although these presymptomatic group differences give
insight into the pathophysiological mechanisms of FTD, individual
heterogeneity complicates its utility in FTD diagnosis. Therefore,
translation from group differences to single-subject classification
models is imperative.

The present study brings two research areas together: we combine
machine learning with presymptomatic FTD mutation carriers to study
individual classification of FTD-pathology at an early stage. Our aim is

to distinguish individual presymptomatic FTD mutation carriers from
healthy controls using multimodal MRI.

2. Methods

2.1. Design

In order to distinguish presymptomatic FTD mutation carriers from
controls, we applied two models. First, we applied a recent behavioural
variant FTD (bvFTD)-control classification model (Bouts et al., 2018) to
our MRI data to investigate whether the model separates presympto-
matic mutation carriers from controls. We shall refer to this model as
the “bvFTD model”. In a second analysis, we trained a new classifica-
tion model on the presymptomatic mutation carriers and controls' data,
which we evaluated using cross-validation. We shall refer to this model
as the “carrier-control model”. MRI pre-processing, feature selection
and classification were performed identically to previous work (Bouts
et al., 2018).

2.2. Participants

This retrospective study partially included previously published
(Dopper et al., 2014; Papma et al., 2017; Jiskoot et al., 2016) and newly
acquired data from the Erasmus Medical Centre and Leiden University
Medical Centre. Participants and clinical investigators were blinded to
the participants' DNA status. The study was conducted in accordance
with regional regulations and the Declaration of Helsinki. The Erasmus
Medical Centre and Leiden University Medical Centre local medical
ethics committees approved the study, and every participant provided
written informed consent.

For the current study, we included 55 presymptomatic FTD muta-
tion carriers (8 MAPT, 35 GRN, 12 C9orf72) and 48 healthy familial
controls (6 MAPT family, 31 GRN family and 11 C9orf72 family) be-
tween May 2010 and March 2016. These subjects were recruited from a
cohort of healthy first-degree relatives of FTD patients with either a
MAPT, GRN or C9orf72 mutation (FTD-Risk Cohort; FTD-RisC) and
visited the Erasmus Medical Centre for a one-day assessment in order to
ascertain asymptomatic status, collect clinical data, and determine DNA
status as described before (Dopper et al., 2014; Papma et al., 2017;
Jiskoot et al., 2016). Participants were considered asymptomatic in the
absence of (1) behavioural, cognitive, or neuropsychiatric change re-
ported by the participant or knowledgeable informant, (2) cognitive
disorders on neuropsychiatric tests, (3) motor neuron disease signs on
neurologic examination, and (4) other FTD (Rascovsky et al., 2011;
Gorno-Tempini et al., 2011) or amyotrophic lateral sclerosis (Ludolph
et al., 2015) criteria. Healthy controls were assumed to have equal FTD
risk as the general population. For a more detailed description of the
recruitment protocol, see earlier work (Dopper et al., 2014; Papma
et al., 2017; Jiskoot et al., 2016). Inclusion criteria for the current study
were: age between 40 and 70 years, and availability of a T1-weighted 3-
dimensional MRI (3DT1w) scan, a diffusion-weighted imaging (DWI)
dataset, and a resting-state fMRI T2*-weighted (rs-fMRI) scan. Exclusion
criteria were: current or past neurologic or psychiatric disorders, his-
tory of drug abuse, large image artefacts, and gross brain pathology
other than atrophy.

For details on the sample on which the bvFTD model was trained,
please refer to Bouts et al. (2018) (Bouts et al., 2018). In short, 23
bvFTD patients and 35 controls between 40 and 80 years old were in-
cluded to undergo a clinical assessment and MRI between November
2009 and November 2012. The MRI acquisition protocol was similar to
the protocol applied in the current sample of carriers and controls.
Image processing steps were identical to processing steps in the current
sample.
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2.3. MRI data acquisition

All subjects were scanned at the Leiden University Medical Centre
using a 3 T MRI scanner (Achieva, Philips Medical Systems, Best, The
Netherlands) with an 8-channel SENSE head coil. The imaging protocol
included a whole-brain near-isotropic 3DT1w sequence for cortical and
subcortical tissue-type segmentation, a DWI sequence for assessments of
white matter integrity, and a rs-fMRI for the calculation of functional
connectivity measures. Participants were instructed to lie still with their
eyes closed and not to fall asleep during rs-fMRI. For scan parameters,
see Table 1.

2.4. Image pre-processing

For 3DT1w images, the following pre-processing steps were per-
formed: bias field correction (N4ITK (Tustison et al., 2010)), brain ex-
traction (FSL BET (Smith, 2002)), non-linear registration to the MNI152
2 × 2 × 2 mm T1 template (FNIRT (Anderson et al., 2007)), tissue-type
segmentation (SPM12 (Friston et al., 2007)) and segmentation of deep
grey matter structures, including the bilateral thalamus, caudate nu-
cleus, putamen, globus pallidum, nucleus accumbens, amygdala and
hippocampus (FIRST (Patenaude et al., 2011)).

Pre-processing for DTI datasets included correction of motion and
eddy-current induced distortion (eddy correct (Leemans and Jones,
2009)), calculation of voxel-wise measures of fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AxD, largest eigenvalue),
and radial diffusivity (RD, average of the two remaining eigenvalues,
DTIFIT (Smith et al., 2004)). A global mean FA image was created by
nonlinearly registering FA maps to the FMRIB58_FA template, and
tract-based spatial statistics (FSL TBSS (Smith et al., 2006)) was used to
extract FA, MD, AxD and RD values using the standard FSL TBSS ske-
leton. The skeleton was thresholded at 0.2 to ensure skeleton extracted
values originate from WM.

For rs-fMRI data, pre-processing included motion correction
(Jenkinson et al., 2002), brain extraction, spatial smoothing using a
Gaussian kernel with a full width at half maximum of 3 mm, grand
mean intensity normalisation, motion artefact removal, and high-pass
temporal filtering (cut-off frequency = 0.01 Hz). Motion artefacts were
removed using a single-session independent component analysis (ICA)
to decompose the rs-fMRI data into distinct statistically independent
components. Subsequently, motion-related components were auto-
matically identified and removed using the ICA-based automatic re-
moval of motion artefacts (ICA-AROMA, version 0.3-beta) procedure
(Pruim et al., 2015). Registration to standard space was performed in
two steps. First, a temporal mean image calculated from the 4D rs-fMRI
volume was registered to the 3DT1w image using Boundary-Based
Registration (Greve and Fischl, 2009). Next, resulting registration
parameters were concatenated to the 3DT1w-to-MNI152 template re-
gistration parameters to obtain the final registration parameters.

All registration and segmentation steps were critically reviewed and
errors were corrected accordingly.

2.5. Feature selection

Cortical GM density (GMD) and WM density (WMD) were calculated
as a weighted average of their respective regional WM or GM prob-
ability (SPM segmentation) weighted by the probability of a voxel being
part of that specific tract or region. The latter probabilities were derived
from the 48 Harvard-Oxford probabilistic anatomical brain atlas cor-
tical regions (split into left and right) and from the Johns-Hopkins
University white-matter tractography atlas for 20 WM tract regions.
Voxels with region probability values < 25% were excluded. This
provided a measure of brain atrophy of a specific GM region or WM
tract. For deep GM regions, GMD values were calculated as the regions'
volume (FIRST segmentations) divided by total intracranial volume.
This resulted in a feature vector of 110 average GMD values (48 left
cortical, 48 right cortical and 14 deep GM regions) and a feature vector
of 20 average WMD values per subject.

DTI-based features were calculated by projecting each subject's FA,
MD, AxD and RD values onto the TBSS group skeleton on a voxel-wise
basis. Like the WMD features, the 20 WM tracts of the probabilistic JHU
white-matter tractography atlas were then used to calculate a weighted
mean value per tract per subject. This resulted in 4*20 feature vectors
of mean FA, MD, AxD and RD values per subject.

In order to calculate the functional connectivity features, all pro-
cessed rs-fMRI images were combined in a temporally concatenated
independent component analysis (ICA (Beckmann and Smith, 2004)),
with dimensionality fixed at 70 components and an ICA threshold of
0.99 (Smith et al., 2013). This meant that each voxel included in the
ICA map was 99 times more likely to be part of that component than to
be caused by Gaussian background noise. For each subject, we calcu-
lated the mean time course for each component, weighted by the ICA
weight map and GM probability of that component's region. These
mean time courses were subsequently used to determine the functional
connectivity of a component with the 69 other components. Functional
connectivity was either expressed as full correlations (FCor) or as sparse
L1-regularised partial correlations (PCor) between the components'
time courses. Partial correlations were calculated using the graphical
lasso algorithm (Friedman et al., 2008). The functional connectivity
measures resulted in two feature vectors of each (70*69)/2 = 2415
(partial) correlations per subject. Finally, we concatenated all feature
vectors into one vector per subject.

2.6. BvFTD model

For our first analysis, a bvFTD patient-control classification model
(Bouts et al., 2018) was applied to each subject's extracted feature
vector. We applied the best performing, multimodal model that dis-
criminated bvFTD patients from controls, which included the features
GMD, FCor, FA, and MD (Bouts et al., 2018), as well as age and gender.
Each subject's feature vector was fed into the model, resulting in a
probability score from 0 to 1, where 0 represents a control subject and 1
represents a bvFTD patient. Extrapolated to our subjects, these scores
showed how alike our presymptomatic FTD mutation carriers and
healthy controls are to bvFTD patients.

Table 1
MRI sequence parameter settings.

Slices TR (ms) TE (ms) Flip angle (°) Matrix (mm) Voxel size (mm) Duration (min)

3DT1w 140 9.8 4.6 8 256 × 256 0.88 × 0.88 × 1.20 4.57
DWIa 70 8250 80 90 128 × 128 2.00 × 2.00 × 2.00 8.48
rs-fMRI 38 2200 30 80 80 × 80 2.75 × 2.75 × 2.99b 7.28

Scan protocol of whole-brain near-isotropic 3DT1-weighted (3DT1w), diffusion-weighted imaging (DWI), and resting-state functional MRI T2⁎-weighted MRI (rs-
fMRI) on a 3 T scanner at the Leiden University Medical Centre.
Abbreviations: TR: repetition time; TE: echo time.

a 60 directions, b = 1000, one b0 image.
b Including 10% interslice gap.
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2.7. Carrier-control model

For the second analysis, feature vectors were used to train a logistic
elastic net regression algorithm (Bouts et al., 2018; Zou and Hastie,
2005; Friedman et al., 2010; Schouten et al., 2016). The elastic net
regression procedure estimates a sparse regression model that includes
only a subset of the provided features by imposing a penalty for in-
cluding features and for the weight of each feature. This way, elastic net
provides a solution for the imbalance between the large number of
features and the small number of subjects. Age and gender were in-
cluded into the model without penalty to ensure that estimated feature
regression coefficients were conditional on subject age and gender.
Here, a probability score of 0 represented a control subject and 1 re-
presented a presymptomatic FTD mutation carrier.

2.8. Cross-validation

Similarly to previous work (Bouts et al., 2018; Schouten et al.,
2016), we trained our carrier-control model in a nested 10-fold cross-
validation scheme to reduce classification bias. One part of the data
(e.g. 10%) was set apart as a test set and served to test the generalised
classification performance of the elastic net regression model. The re-
maining parts (90%) were used to train the model. However, in addi-
tion to the classification performance, we also wanted to determine the
optimal penalty size without overestimating classification performance
(Varma and Simon, 2006; Kriegeskorte et al., 2009). To this end, we
used a second, nested 10-fold cross-validation loop on the training set
over a grid of hyperparameters to determine the optimal penalty. In the
nested loop, we estimated the model's hyperparameters that corre-
sponded with the lowest binomial deviance, a goodness-of-fit measure
that evaluates the difference between the predicted and actual ob-
servations. Next, these hyperparameters and corresponding penalties
were used to train a model using the training set of the outer loop.
Finally, the classification performance was tested on the test set of the
outer loop. This process was repeated ten times to make sure that each
subject was part of the test set at least once. Since the test set of the
outer loop was neither used for model training, nor for parameter op-
timisation, potential prediction bias was reduced as much as possible
(Kriegeskorte et al., 2009). The entire classification procedure was re-
peated 50 times to average classification outcome variability resulting
from random partitioning in training and test folds. All classification
analyses and evaluations were implemented in R version 3.3.2 (R core
2010, GLMnet package (Friedman et al., 2010)).

2.9. Classification performance

For both analyses, we quantified classification performances using
receiver operating characteristic (ROC) curves. ROC curves were cal-
culated by shifting the threshold for classifying an individual as patient
(bvFTD model analysis) or carrier (carrier-control model analysis) from
0 to 1, and plotting the true positive rate (sensitivity) versus the false
positivity (1 – specificity) for each intermediate point. The area under
this ROC curve (AUC) is a measure of classification performance in-
sensitive to the distribution between the groups (Fawcett, 2006). Ad-
ditionally, we calculated the optimal operating point on the curve to
calculate the model's sensitivity, specificity and classification accuracy,
given equal class distribution and equal penalty for false positive and
false negative predictions. For the carrier-control model analysis, we
averaged AUC, accuracy, sensitivity and specificity values from the 50
times repeated nested cross-validations.

2.10. Multimodal classification

To obtain the best multimodal carrier-control model using several
feature vectors, we performed step-wise feature concatenation as pre-
viously described (Bouts et al., 2018; Schouten et al., 2016). First, we

assessed classification performance for each feature separately. Subse-
quently, we added a new feature to the best performing feature com-
bination (i.e. highest AUC) of the previous step until all features were
included in the model. The best performing feature combination will be
referred to as the multimodal carrier-control model.

2.11. Statistical analysis

Statistical analyses of non-imaging data were performed using R (R
Core 2016, Vienna, Austria). We tested for carrier-control differences
using unpaired t-tests (age and education), the Mann-Whitney U test
(mini-mental state examination (MMSE) scores [0−30]) and the χ2 test
(gender distribution). Probability scores were compared using Mann-
Whitney U tests for overall carrier-control contrasts, and Kruskal Wallis
H tests and Dunn post-hoc tests for comparisons between all four groups
(MAPT, GRN, C9orf72 and controls). To compare models' AUC values
against chance level, we used permutation tests (N= 5.000)
(Noirhomme et al., 2014). In order to correct for multiple comparisons,
we took the maximum AUC difference of the family of tests for each
permutation. Then we compared the observed AUC difference to the
new distribution of maximum AUC differences to get a family-wise
error rate corrected p-value. The alpha level required for statistical
significance was set at p < 0.05.

3. Results

3.1. Demographics

In total, 103 subjects met the inclusion criteria (Table 2). Mean age
was similar for mutation carriers (52.0 ± 8.6 years) and healthy con-
trols (54.2 ± 7.5 years). The proportion of female participants be-
tween mutation carriers (67%) and healthy controls (58%) was not
different (p= 0.3). Education level was similar between groups (mu-
tation carriers, 13.6 ± 2.9 years; healthy controls, 13.2 ± 2.4 years).
MMSE was similarly distributed between groups (median [min-max],
mutation carriers: 30 (Agosta et al., 2012; McMillan et al., 2012;
McMillan et al., 2014; Mahoney et al., 2014; Daianu et al., 2016; Zhou
et al., 2010; Zhou and Seeley, 2014), healthy controls: 29 (Agosta et al.,
2012; McMillan et al., 2012; McMillan et al., 2014; Mahoney et al.,
2014; Daianu et al., 2016; Zhou et al., 2010; Zhou and Seeley, 2014)).

3.2. BvFTD model

Application of the bvFTD model resulted in low bvFTD probability
scores for most subjects (Fig. 1A), and the bvFTD probability scores
were not significantly different in presymptomatic carriers
(median = 0.038) than controls (median = 0.022, p= 0.15). ROC
analysis of the bvFTD probabilities resulted in an AUC of 0.582, which
was not significantly better than chance level (p= 0.078). Separated by
gene (Fig. 1B), there were no differences between the four groups'
bvFTD probability scores (p= 0.37). BvFTD probability scores of the
original patients and controls used for cross-validation of the bvFTD

Table 2
Demographics.

Carrier (n= 55)a Control (n= 48) P-value

Ageb 52.0 (8.6) 54.2 (7.5) 0.2
Gender, ♀ (%) 37 (67%) 28 (58%) 0.3
Education, yb,d 13.6 (2.9) 13.2 (2.4) 0.5
MMSEc 30 (24–30) 29 (24–30) 0.5

Abbreviations: MMSE: mini-mental state examination.
a 8 MAPT, 35 GRN, 12 C9orf72.
b Values denote mean (standard deviation).
c Values denote median (range).
d Education values were missing for four carriers and two controls.
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model were added as reference (Fig. 1C, data courtesy of Bouts et al.
(2018) (Bouts et al., 2018)).

3.3. Carrier-control model

The best performing unimodal carrier-control models included RD,
WMD and MD, with AUCs of 0.642, 0.592, and 0.587, respectively. Of
these models, only the RD model outperformed chance after family-
wise error rate correction (p= 0.032, Table 3). Step-wise concatenation
resulted in the best performing multimodal model, which included the
features RD and WMD, and outperformed chance with an AUC of 0.684
(p= 0.004). Classification performance did not improve when

additional features were added to this model (Table 4). Interestingly, all
multimodal models that outperformed chance level used exclusively
white matter features from DTI and/or structural scans: RD, WMD, MD,
and AxD).

Application of the best performing multimodal carrier-control
model resulted in carrier probability scores (Fig. 2), which were dif-
ferent between carriers (median = 0.589) and controls
(median = 0.435, p < 0.001, Fig. 2A). Furthermore, there was a dif-
ference between the four groups' carrier probability scores (p= 0.008)
when separated by gene (Fig. 2B). Post-hoc tests revealed that GRN
carriers had higher carrier probability scores than controls (Bonferroni
family-wise error rate corrected p= 0.009). The other groups did not

Fig. 1. Classification results bvFTD model.
Box and scatter plot of each subject's bvFTD prob-
ability score on a scale from 0 (representing control)
to 1 (representing bvFTD patient) after application of
the bvFTD model. Groups are defined by carrier
status (Fig. 1A) and genetic status (Fig. 1B). Prob-
ability scores were not significantly different for
carriers and controls (p= 0.15), and did not differ
between the four genetic groups (p= 0.37). Prob-
ability score results of the bvFTD patients and con-
trols on which the bvFTD model was cross-validated
were added for reference (Fig. 1C, data courtesy of
Bouts et al. (2018) (Bouts et al., 2018)). Abbrevia-
tions: C9orf72: chromosome 9 open reading frame
72; GRN: progranulin; MAPT: microtubule-asso-
ciated protein tau.
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differ from each other.

4. Discussion

This study investigated whether presymptomatic FTD mutation
carriers with MAPT, GRN and C9orf72 mutations can be individually
distinguished from healthy controls using MRI. Using a recently in-
troduced MRI-based classification model trained on established bvFTD
patients and controls, nearly all FTD mutation carriers and controls had
low probability scores. The bvFTD model was therefore not able to
separate carriers from controls beyond chance level. However, MRI-
based classification models that were trained on our own sample were
able to separate carriers from controls better than chance level. In our
carrier-control model, the RD feature proved sufficient to separate
carriers from controls better than chance, but the best performing
model used RD in combination with the WMD feature. All models that
outperformed chance used exclusively white matter features, such as
DTI features and WMD, supporting the hypothesis that WM alterations
are the first to appear in preclinical FTD pathology.

In an effort to improve on the FTD diagnostic criteria, single-subject
classification using MRI measures has recently received significant at-
tention (Möller et al., 2015b; McMillan et al., 2014; Davatzikos et al.,
2008; Raamana et al., 2014; Koikkalainen et al., 2016; Wang et al.,
2016; Meyer et al., 2017; Bron et al., 2017; Bouts et al., 2018). A recent
multimodal classification study incorporated structural, DTI and ar-
terial spin labelling data to classify FTD (behavioural and language
variants) from cognitively normal controls, and achieved an AUC of
0.96 (Bron et al., 2017). Another classification study included tissue
density, DTI and rs-fMRI measures, and achieved an AUC of 0.92 for
bvFTD versus cognitively normal controls (Bouts et al., 2018). These

high classification performances are promising, but they are based on
established FTD cases. It is unclear how FTD patient models generalise
to earlier FTD stages, where brain alterations are less distinct. To test
this, we applied a bvFTD model (Bouts et al., 2018) on FTD mutation
carriers in a presymptomatic stage. We hypothesised that if the bvFTD
model would be able to recognise early-stage FTD pathology, our pre-
symptomatic FTD mutation carriers would have higher probability
scores than controls. We found that it was not possible to separate
carriers from controls significantly better than chance using this model,
as most carriers and controls had very low bvFTD probability scores.
This could indicate that presymptomatic differences present in FTD
mutation carriers are too subtle to be picked up by a classification
model that was trained established bvFTD patients. However, it could
also mean that most of our mutation carriers were still too far from
conversion to have significant FTD-related changes. Since the bvFTD
model was trained on patients, it stands to reason that classification of
carriers and controls becomes more accurate as mutation carriers ap-
proach conversion. Vice versa, one might expect the carriers with high
probability scores to be closer to symptom-onset than carriers with
lower probabilities. Although it was not statistically significant, there
was a trend towards older age in carriers with a bvFTD probability
score higher than 0.25 than in the rest of the carrier group (data not
shown). It can therefore not be entirely ruled out that age is partly
associated with a higher bvFTD score. Longitudinal research is war-
ranted to formally test whether this model captures presymptomatic
FTD-related changes as mutation carriers approach conversion.

By training classifiers on presymptomatic FTD mutation carriers and
controls, we obtained a unimodal carrier-control model based on the
RD feature and several multimodal carrier-control models that sig-
nificantly outperformed chance level. This suggests that classification

Table 3
ROC characteristics.

Modality AUC Min – max Sensitivity Specificity Accuracy FWER Corr P-value (AUC > chance)

GMD 0.502 (0.427–0.554) 0.538 0.514 0.554 0.895
WMD 0.592 (0.547–0.656) 0.595 0.585 0.663 0.190
FA 0.494 (0.408–0.554) 0.528 0.504 0.535 0.897
MD 0.587 (0.523–0.629) 0.591 0.579 0.642 0.240
AxD 0.554 (0.500–0.598) 0.568 0.559 0.578 0.448
RD 0.642 (0.583–0.673) 0.637 0.629 0.669 0.032
FCor 0.509 (0.454–0.554) 0.537 0.527 0.590 0.818
PCor 0.505 (0.457–0.551) 0.542 0.492 0.540 0.836
Multimodal 0.684 (0.629–0.722) 0.664 0.640 0.735 0.004

Presymptomatic FTD mutation carriers versus controls classification. Multimodal represents the best combination from our step-wise multimodal procedure (i.e. RD
& WMD). Bold: best-performing model. Italicised: mean AUC significantly higher than chance level after family-wise error rate correction.
Abbreviations: AxD: axial diffusivity; FA: fractional anisotropy; FCor: full correlations between ICA components; FWER Corr: family-wise error rate corrected; GMD:
grey matter density; MD: mean diffusivity; PCor: L1-regularised partial correlations between ICA components; RD: radial diffusivity; WMD: white matter density;
AUC: area under the ROC curve.

Table 4
Multimodal classification performance.

Step: ddd
combined with:

RD WMD MD AxD GMD FA FCor PCor

1: – 0.642 0.592 0.587 0.554 0.502 0.494 0.509 0.505
2: RD – 0.684 0.621 0.600 0.565 0.564 0.516 0.501
3: RD + WMD – – 0.658 0.640 0.596 0.607 0.520 0.501
4: RD + WMD + MD – – – 0.627 0.612 0.614 0.524 0.502
5: RD + WMD + MD + AxD – – – – 0.612 0.609 0.531 0.507
6: RD + WMD + MD + AxD + GMD – – – – – 0.585 0.534 0.509
7: RD + WMD + MD + AxD + GMD + FA – – – – – – 0.530 0.500
8: RD + WMD + MD + AxD + GMD + FA + FCor – – – – – – – 0.510

Mean AUC values from 50 repetitions. Multimodal models result from step-wise addition of measures to the best performing classification model of the previous step,
starting with the best performing single MRI measure (i.e. RD). Bold: best performing model. Italicised: mean AUC significantly higher than chance level after family-
wise error rate correction.
Abbreviations: AxD: axial diffusivity; FA: fractional anisotropy; FCor: full correlations between ICA components; GMD: grey matter density; MD: mean diffusivity;
PCor: L1-regularised partial correlations between ICA components; RD: radial diffusivity; WMD: white matter density; AUC: area under the ROC curve.
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models should be trained using early-stage FTD patients or pre-
symptomatic FTD mutation carriers instead of advanced FTD cases, in
order to be sensitive to early-stage FTD pathology. Furthermore, our
carrier-control models demonstrate that MRI-based machine learning is
powerful enough to detect subtle pathological changes associated with
FTD even before symptom-onset and on a single-subject level. Although
classification performance beyond chance level is an important finding,
it must be noted that AUCs of 0.642 and 0.684 are modest and far from
sufficient for diagnostic use in the clinic. This is at least partly explained
by our heterogeneous sample, as we included carriers of several genes
in order to obtain sufficient sample size for robust cross-validation.
Heterogeneity further arose from the uncertain time to onset in our
sample. Investigating a uniform population a few years before
symptom-onset might lead to higher classification performance, but
these data were not available to us.

On a pathological level, it has been argued that neurodegeneration
in FTD starts in the WM (Rohrer et al., 2013; Möller et al., 2016; Suri
et al., 2014; Canu et al., 2017). Our results support this hypothesis, as
the only unimodal model that outperformed chance was based on the
RD feature, which was furthermore included in all multimodal models
that significantly outperformed chance. Additionally, all models that
outperformed chance level were based on DTI features, while three
models also included WMD. This means that our carrier-control model
was able to combine subtle WM differences from the diffusion-weighted
scans and the structural 3DT1w scan to classify a subject as mutation
carrier or healthy control. In our sample, inclusion of GMD and func-
tional connectivity features did not aid classification, but in fact drove

down classification performance. For instance, adding FCor or PCor to
the model resulted in probabilities near 0.5. This reinforces the notion
that feature selection is important for MRI-based machine learning.

In addition to the uncertain time-to-onset, there were several other
limitations. Firstly, the bvFTD model was trained on a relatively small
sample of 23 bvFTD patients and 35 controls. A model based on a larger
sample might capture the heterogeneity of bvFTD pathology more
completely, which could benefit generalisation to our presymptomatic
sample. Furthermore, the model was trained on sporadic bvFTD pa-
tients, while it was applied to carriers of MAPT, GRN and C9orf72
genes. Since correlations between genetics, pathology and phenotype
are not fully elucidated (Mann and Snowden, 2017), care must be taken
not to over interpret our results. Specifically, pathological changes as-
sociated with non-behavioural variants (Seelaar et al., 2011) may be
insufficiently recognised by the bvFTD model. Lastly, we used nested
cross-validation to estimate out-of-sample performance for the carrier-
control model, which minimises prediction bias (Kriegeskorte et al.,
2009). Still, measuring performance on a separate validation cohort
would further increase the validity of this study.

5. Conclusion

Our data show that presymptomatic FTD mutation carriers can be
distinguished from healthy controls on an individual level using a new
multimodal MRI-based carrier-control classification model, while this
was not possible using a recent bvFTD classification model. A multi-
modal MRI-based classification score may therefore be a useful

Fig. 2. Classification results carrier-control model.
Box and scatter plot of each subject's carrier prob-
ability score on a scale from 0 (representing control)
to 1 (representing presymptomatic FTD mutation
carrier) after application of the best performing
carrier-control model including the features RD and
WMD. Carriers had significantly higher scores than
controls (Fig. 2A, p < 0.001). Furthermore, there
was an omnibus difference between the four genetic
groups (Fig. 2B, p= 0.008), and post-hoc tests re-
vealed higher scores for GRN carriers than for con-
trols (p= 0.009). Abbreviations: C9orf72: chromo-
some 9 open reading frame 72; GRN: progranulin;
MAPT: microtubule-associated protein tau.
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biomarker to aid earlier FTD diagnosis. Successful single-subject re-
cognition of early-stage or presymptomatic FTD may facilitate more
precise subject recruitment into clinical trials. Furthermore, our mul-
timodal MRI-based carrier-control classification model supports the
hypothesis that FTD-related neurodegeneration starts in WM.
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