
ARTICLE

Received 12 Dec 2016 | Accepted 7 May 2017 | Published 9 Jun 2017

Different populations of CD11bþ dendritic cells
drive Th2 responses in the small intestine
and colon
Johannes U. Mayer1, Mimoza Demiri2, William W. Agace2,3, Andrew S. MacDonald4, Marcus Svensson-Frej2

& Simon W. Milling1

T-helper 2 (Th2) cell responses defend against parasites. Although dendritic cells (DCs) are

vital for the induction of T-cell responses, the DC subpopulations that induce Th2 cells in the

intestine are unidentified. Here we show that intestinal Th2 responses against Trichuris muris

worms and Schistosoma mansoni eggs do not develop in mice with IRF-4-deficient DCs

(IRF-4f/f CD11c-cre). Adoptive transfer of conventional DCs, in particular CD11b-expressing

DCs from the intestine, is sufficient to prime S. mansoni-specific Th2 responses. Surprisingly,

transferred IRF-4-deficient DCs also effectively prime S. mansoni-specific Th2 responses.

Egg antigens do not induce the expression of IRF-4-related genes. Instead, IRF-4f/f CD11c-cre

mice have fewer CD11bþ migrating DCs and fewer DCs carrying parasite antigens to

the lymph nodes. Furthermore, CD11bþCD103þ DCs induce Th2 responses in the small

intestine, whereas CD11bþCD103� DCs perform this role in the colon, revealing a specific

functional heterogeneity among intestinal DCs in inducing Th2 responses.
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of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, School of Biological Sciences, The University of Manchester,
46 Grafton Street, Manchester M13 9NT, UK. Correspondence and requests for materials should be addressed to S.W.M.
(email: Simon.Milling@glasgow.ac.uk).

NATURE COMMUNICATIONS | 8:15820 | DOI: 10.1038/ncomms15820 | www.nature.com/naturecommunications 1

mailto:Simon.Milling@glasgow.ac.uk
http://www.nature.com/naturecommunications


T
ype 2 immunity, the typical response against parasitic or
allergic stimuli, can protect against parasites or exacerbate
allergic conditions1. Approximately, a third of the world’s

population are infected with parasitic worms, most of which
affect the gastrointestinal tract2. Many of these infections develop
into chronic pathologies and are an enormous global health
burden. There is insufficient knowledge about how worm
infections, which can selectively infect either the small intestine
or the colon, are controlled by the intestinal immune system.
Helminth parasite infections in both the small intestine and colon
induce potent T-helper 2 (Th2) responses that can control
parasite burden or lead to chronic pathologies3.

Schistosoma mansoni eggs and their soluble egg antigens
(schistosome egg antigen, SEA) induce potent Th2 and interferon
(IFN)-g responses, both during infection with live parasites4,5 and
in experimental models in which eggs or SEA are injected into
tissues6,7. During the natural parasite infection, a proportion of
the eggs released by intravascular adult worms become lodged in
the intestinal wall and the liver, where they induce strong type 2
immune responses. These eggs are central to immunopathology
associated with this infection, as they induce granulomatous
inflammation and tissue fibrosis, which can lead to severe organ
damage5.

Both non-professional antigen-presenting cells, such as
basophils8 and monocyte-derived dendritic cells (DCs)9, and
conventional DCs10,11 have been shown to have functions in the
induction or maintenance of Th2 responses. However, the cells
that are sufficient to induce Th2 responses in the intestine have
not been clearly identified.

In the small intestine and colon, four different populations of
conventional DCs can be identified, categorized by their
differential expression of the integrins CD11b and CD103
(refs 12–14). These populations are present at different
frequencies in the small intestine and colon15,16, and migrate
via intestinal-draining lymphatics to the mesenteric lymph nodes
(MLN) to initiate T-cell responses14. Studies have indicated that
intestinal DC populations are specialized to induce different
facets of the T-cell response. For example, transcription
factor IFN regulatory factor (IRF)-8-dependent intestinal
CD11b�CD103þ (CD103 single-positive (SP)) DCs have a
predominant function in cross-presentation to CD8þ T cells and
induction of intestinal Th1 responses17,18, and IRF-4-dependent
CD11bþCD103þ (double-positive (DP)) DCs seem to drive
Th17 cell differentiation in intestine-draining MLNs13,19.
Although the function of these populations in intestinal Th2
responses is unclear, studies have demonstrated that IRF-4
expression by CD11cþ cells is crucial for the development of Th2
responses20,21. In the intestine, IRF-4 is predominantly expressed
by CD11bþCD103� (CD11b SP) DCs and DP DCs, and IRF-4
deficiency in CD11cþ cells results in fewer small intestinal DP
DCs, as well as the absence of DP DCs and fewer CD11b SP DCs
in the draining MLNs13.

To investigate how IRF-4-expressing DCs drive intestinal Th2
responses, we use two models of human parasite infection that
drive Th2 responses in the gastrointestinal tract. We address the
induction of Th2 responses in vivo by experimental immuniza-
tion with S. mansoni eggs and validate our findings during live
infection with the intestinal parasite Trichuris muris. We find that
CD11b-expressing DCs are specializd to drive antigen-specific
Th2 responses. Furthermore, different populations of CD11bþ

IRF-4þ DCs induce Th2 responses in the small intestine and
colon. DP DCs from the small intestine are the only population
sufficient to drive antigen-specific Th2 responses in the small
intestine-draining lymph nodes and CD11b SP DCs fulfil this
function in colon-draining lymph nodes. We thus demonstrate
that different DC populations have distinct functions in separate

regions of the intestine, which is important for understanding
how intestinal immune responses are controlled, and offers the
opportunity to develop more precise therapeutic targets.

Results
Intestinal Th2 responses require IRF-4-positive CD11cþ cells.
To identify the cellular mechanisms central to the induction of
Th2 responses in the intestine we developed a novel method of
experimental delivery of S. mansoni eggs directly into intestinal
tissue. Eggs were injected directly into sites where they become
trapped during live infection, thus providing a refined and
relevant method to investigate the Th2 responses generated
against trapped and penetrating eggs in the intestine
(Supplementary Fig. 1a,b). The method also allowed precise
temporal control of the induction of Th2 responses against
S. mansoni eggs in the gastrointestinal tract in vivo, which has not
been previously possible. We found that the injection of 1,000
S. mansoni eggs into the subserosal tissue of the small intestine
was sufficient to induce antigen-specific Th2 and IFN-g responses
in the MLNs, with the key Th2 cytokines interleukin (IL)-4, IL-5
and IL-13 induced in in vitro total MLN cell cultures, specifically
after the restimulation with SEA 5 days after in vivo immuniza-
tion (Fig. 1a and Supplementary Fig. 1c–e). Consistent with
published findings22, we observed no antigen-specific induction
of Th17 cytokines (Supplementary Fig. 1d). Intracellular
flow cytometric staining after phorbol 12-myristate 13-acetate
(PMA)/ionomycin stimulation confirmed that these cytokines
were produced by CD4 T cells that produced IFN-g or had
differentiated into Th2 cells (Fig. 1b and Supplementary Fig. 1f,g).
To determine whether intestinal egg injection could also be used
as a model of colonic Th2 induction, eggs were injected either in
the small intestine or colon and the small intestine-draining
MLNs (sMLNs) and colon-draining MLNs (cMLNs)16 were
harvested 5 days after immunization. Analysis of restimulated
individual lymph nodes revealed increased concentrations of
antigen-specific cytokines, compared with analysis of pooled
MLNs (Fig. 1a). These responses were only observed in the
sMLNs or cMLNs draining the respective injection sites (Fig. 1c).
Thus, intestinal S. mansoni egg injections can be used as an
experimental model to further investigate the mechanisms of Th2
induction in both tissues.

Many aspects of type 2 immunity are controlled by the
transcription factor IRF-4, which controls the development of
Th2 cells23, alternatively activated macrophages24 and CD11b-
expressing DCs25. However, little is known about how IRF-4
regulates the induction of Th2 responses in the intestine.
To determine what impact the expression of IRF-4 by antigen-
presenting cells had in driving intestinal Th2 responses in the
small intestine and colon, we used the IRF-4f/f CD11c-cre mouse
model that allows targeted deletion of IRF-4 on all CD11cþ

cells13, including intestinal macrophages and conventional DCs.
It has been reported that CD11c-cre expression in these mice
does not affect DC frequencies26,27. Subserosal injection of
S. mansoni eggs into the bone marrow (BM) chimeric mice,
generated by lethal irradiation and reconstitution of C57BL/6.SJL
mice with BM from IRF-4f/f CD11c-cre-positive (creþ ) or
IRF-4f/f cre-negative (cre� ) mice (Supplementary Fig. 2a–c),
resulted in dramatically impaired Th2 responses in the MLNs of
creþ chimeras, accompanied by an elevated IFN-g response
(Fig. 1d). The loss of IRF-4-dependent cells in these animals did
not affect the total number of cells in the small intestine
(Supplementary Fig. 2c). The impaired Th2 responses were
evident in both the small intestine and colon, demonstrating a
central requirement for IRF-4þ CD11cþ cells for Th2 induction
in both organs. When we assessed the expression of IRF-4 by DCs
and macrophages we observed that a high percentage of DCs
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expressed IRF-4, whereas only a few macrophages were IRF-4þ

(Supplementary Fig. 2d–g). Although macrophages expressed
lower levels of IRF-4, a role for IRF-4 in these cells cannot
be excluded. However, consistent with previous published
work14,18,28, we found that macrophages were absent from
thoracic duct lymph of mesenteric lymphadenectomized (MLNx)
mice (Supplementary Fig. 3c) and are therefore unable to prime
T-cell responses in the MLNs, excluding the possibility that
IRF-4þ macrophages are necessary to prime Th2 responses.
To further address whether IRF-4 in DCs was necessary for Th2
induction, we performed DC transfer experiments.

To verify that IRF-4þ DCs were also necessary for establishing
a physiological type 2 immune response against live parasites,
creþ and cre� mice were infected with B250–300 eggs from
the nematode T. muris by oral gavage. Under these conditions,
T. muris infection evokes a strong Th2 response in the colon of
C57BL/6 mice that mediates expulsion within 35 days29. We
observed that creþ mice did not effectively clear adult worms by
35 days post infection, suggesting an inefficient type 2 immune
response (Fig. 1e). Indeed Th2 responses were markedly
decreased in creþ mice and we observed reduced production
of IL-9 and IL-13 in in vitro MLN restimulation cultures 35 days
post infection (Fig. 1f).

Thus, Th2 responses to parasite antigen present in the small
intestine or colon require IRF-4-expressing CD11cþ cells for
their induction in the respective draining lymph nodes.

Lymph DCs prime responses to S. mansoni eggs. To determine
which migratory cell populations were responsible for transporting
parasite antigen from the periphery to the draining lymph nodes,

AlexaFluor660 (AF660)-labelled SEA was injected into the intestinal
serosa. To directly assess migrating cell populations, thoracic duct
lymph was collected from MLNx mice for 18 h after SEA-AF660
injection, using previously described techniques14. We observed
that among all lymph migrating cells, B cells and conventional DCs
labelled positive for Alexa660-labelled SEA (Fig. 2a and
Supplementary Fig. 3a). DCs were the most efficient population
to transport SEA-AF660 from the intestine, representing the highest
proportion of AF660-labelled cells. To determine which cells were
capable of inducing SEA-specific immune responses in vivo,
fluorescence-activated cell sorting (FACS)-purified donor cells
from egg-injected animals were transferred under the MLN
capsule of wild-type recipient mice. We have previously used this
technique to assess DC functions in vivo18, inspired by an elegant
study examining migration of transferred DCs into recipient lymph
nodes30.

Intranodal DC transfer allowed the direct assessment of the
in vivo priming capabilities of the transferred cells in their
physiological location. Five days after cell transfer, the injected
MLNs were harvested and restimulated with SEA in vitro to test
for antigen-specific immune responses. DCs from egg-injected
donors were the only cells able to induce antigen-specific immune
responses upon cell transfer, whereas B cells—despite carrying
antigen—could not drive antigen-specific immune responses
after transfer (Fig. 2b). In agreement with previous experiments
using BM-derived DCs in vivo6,31 or splenic DCs in vitro32,
SEA-specific Th2 induction by intestinal lymph DCs required
major histocompatibility complex II (MHCII) expression (Fig. 2c
and Supplementary Fig. 3b), but was independent of their ability
to produce IL-4 (Supplementary Fig. 3e).
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Figure 1 | Intestinal Th2 responses to S. mansoni eggs and T. muris worms are dependent on IRF-4þ CD11cþ cells. (a) One thousand S. mansoni eggs

were injected into the subserosal layer of the small intestine and resulting T-cell responses were analysed after 5 days by restimulating MLN cells for an

additional 3 days in the presence of SEA. Cytokines were measured from supernatants of restimulation cultures of unstimulated (Unstim) and restimulated

(Restim) MLN cells (n¼9 mice, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, ***Pr0.001). (b) Five days after immunization

with S. mansoni eggs (Egg inj), MLNs were harvested, CD44hi CD4 T cells identified by flow cytometry and levels of IFN-g, IL-4 and IL-13 cytokine

production measured after PMA/ionomycin stimulation and compared with cells harvested from naive animals (n¼ 10 mice per group, in three

independent experiments, mean±s.e.m., Mann–Whitney U-tests, ***Pr0.001). (c) Cytokine responses of individually harvested small intestinal (sMLN)

and colonic (cMLN) draining lymph node restimulation cultures 5 days after small intestinal (left panel) or colonic (right panel) egg injection (n¼9 mice

per group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, *Pr0.05, **Pr0.01 and ***Pr0.001). (d) Cytokine responses of

restimulated MLN cells from small intestinal (left panel) or colonic (right panel) egg injected IRF-4f/f CD11c-creþ or littermate IRF-4f/f cre� BM chimeric

mice (n¼6 mice per group, in two independent experiments, mean±s.e.m., Mann–Whitney U-tests, ***Pr0.001). (e) Worm burden in creþ or littermate

cre� mice following T. muris infection. Mice were infected with B300 infectious eggs by oral gavage and worms in the colon quantified at 35 days post

infection (n¼ 8–9 mice per group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, ***Pr0.001). (f) Secreted cytokines after

T. muris E/S antigen-specific restimulation of MLN cells 35 days after T. muris infection (n¼9 mice per group, in three independent experiments,

mean±s.e.m., Mann–Whitney U-tests, ***Pr0.001).
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Antigen-specific immune responses could also be induced by
DCs incubated with SEA in vitro. FACS-purified DCs from
the intestinal lamina propria (LP), the lymph, and the MLNs of
wild-type C57BL/6 animals were cultured with SEA for 18 h
and transferred into recipient animals. Transferred LP-derived
and lymph DCs induced antigen-specific immune responses,
measured in in vitro restimulation cultures. However, SEA-loaded
MLN DCs did not induce any antigen-specific responses after
transfer (Fig. 2d).

Thus, conventional DCs are sufficient to drive S. mansoni egg
antigen-specific immune responses in the intestinal draining
lymph nodes, and process and present egg antigens to CD4 T cells
in a MHCII-dependent manner.

SEA treatment of DCs does not affect IRF-4-related genes. To
identify the intestinal DC populations driving egg antigen-specific
immune responses, lymph DCs were separated by their
expression of CD11b and CD103 (Supplementary Fig. 3c). Thirty
thousand cells of each population were isolated from wild-type
C57BL/6 MLNx lymph, incubated with SEA in vitro and trans-
ferred under the MLN capsule of wild-type recipient mice. Both,
CD11bþCD103� SP (CD11b single-positive (SP)) and
CD11bþCD103þ double-positive (DP) DCs could induce anti-
gen-specific Th2 and IFN-g responses after transfer, whereas
CD11b�CD103� double-negative (DN) and CD11b�CD103þ

(CD103 SP) DCs could only induce antigen-specific IFN-g
responses (Fig. 3a). Thus, only CD11b-expressing DC

populations were specialized to induce Th2 responses, whereas all
DC populations could induce antigen-specific IFN-g.

To understand the underlying molecular mechanisms that
selectively enabled CD11b SP and DP DCs to prime antigen-
specific Th2 responses, we performed microarray analysis and
compared the gene expression profiles of sorted CD11b SP and
DP DCs after in vitro incubation with or without SEA. Five
thousand and eighteen significant loci of coding and non-coding
gene elements were identified as differentially expressed between
any of the four conditions (CD11b SP DCs/DP DCs, SEA-treated/
untreated). Principal component analysis revealed clustering of
replicate samples and a clear separation between the cell
populations and between treatments (Fig. 3b). Several of the
genes affected by SEA treatment have been shown to be involved
in antigen presentation and T-cell differentiation, and 41
differentially expressed genes changed their expression levels
more than 2-fold after SEA treatment of CD11b SP DCs.
The highest fold changes were observed in downregulated
MHCII-related genes, Ccl17 and Il1f9, which encodes the
proinflammatory cytokine IL-36g. Costimulatory molecules such
as Cd80 and Tnfsf4, which encodes OX40L, and Rasgrp3 and
Serpinb9b were upregulated by SEA treatment of CD11b SP DCs
(Fig. 3c). Thirty-three genes were differentially expressed after
SEA treatment of DP DCs and a downregulation of MHCII-
related genes and Il1f9, and an upregulation of Rasgrp3 and
Serpinb9b was again observed (Fig. 3c). We observed limited
overlap between the differentially expressed genes with high fold
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Figure 2 | Conventional DCs drive immune responses against SEA in the MLN. (a) Transport of parasite antigen was assessed by injecting

AF660-labelled SEA (SEA-AF660) into the small intestine of MLNx mice and measuring the percentage of fluorescent cells in intestinal draining lymph 18 h

after injection. Representative FACS plots of SEA-transporting DCs from PBS (PBS inj) and SEA (SEA inj) injected mice (left panel), and percentage of

SEA-transporting lymph migrating CD4 and CD8 T cells, B cells and DCs (DCs) (right panel) are shown (n¼ 7 mice in three independent experiments,

mean±s.e.m., Kruskal–Wallis test, ***Pr0.001). (b) Fifty thousand MHCIIhi CD64� B220� CD11chi DCs and 100,000 B cells were purified from the

lymph of egg injected MLNx donor mice 18 h after injection and delivered under the MLN capsule of wild type recipient mice. After 5 days, antigen specific

T-cell responses were measured in the injected MLNs by SEA restimulation for 3 days and subsequent cytokine measurement by ELISA (n¼6 mice per

group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, **Pr0.01). (c) Similar to b, CD11chi CD64� B220� DCs were purified

from the lymph of egg-injected C57BL/6 or MHCII� /� MLNx donor mice, transferred into the MLNs of recipient animals and antigen specific T-cell
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**Pr0.01). (d) Fifty thousand DCs were purified from the small intestinal LP (left panel), the lymph of MLNx mice (middle panel) or the MLNs (right

panel) of C57BL/6 mice and loaded with SEA for 18 h in vitro. Unbound antigen was washed off and cells transferred under the MLN capsule of wild-type

recipient animals. T-cell responses in the injected MLNs were measured 5 days after cell transfer by cytokine analysis of in vitro restimulation cultures with

(Restim) or without (Unstim) SEA (n¼ 10 mice per group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, **Pr0.01 and

***Pr0.001).
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change (absolute fold changeo� 2;42 and analysis of variance
P-valueo0.05) after SEA treatment of CD11b SP and DP DCs,
which were Rasgrp3, H2-Eb2 and Il1f9 (Fig. 3d). However, none
of these genes have previously been associated with Th2 cell
polarization. Strikingly, IRF-4-associated genes did not change
their expression profile upon treatment with SEA (Fig. 3e),
despite the fact that IRF-4 expression by CD11cþ cells was
required for the induction of Th2 responses against S. mansoni
eggs and T. muris worms.

IRF-4 affects the migration of intestinal DCs. Our observation
that egg antigens did not induce the expression of IRF-4-
associated genes in DCs suggested that the defect of Th2
responses observed in IRF-4f/f CD11c-creþ mice was not due to
the defective induction of these genes. We therefore investigated
whether other mechanisms were involved and assessed whether
IRF-4 deletion in CD11cþ cells affected the number of each of
the DC populations in the intestine. Consistent with reports in
IRF-4f/f CD11c-creþ mice13, creþ BM chimeras showed a
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decrease in the DP DC population in the small intestine (Fig. 4a
and Supplementary Fig. 4a). In the colon, a general decrease of
DCs, again most strikingly observed in DP DCs, was observed
(Fig. 4b). However, this developmental defect did not impair
intestinal DC function. Antigen uptake, visualized by the
injection of Alexa660-labelled SEA, was not affected in creþ
mice and comparable numbers of intestinal LP DCs labelled
positive for SEA-AF660 18 h after injection in the small intestine
and colon (Fig. 4c). Furthermore, transferred SEA-loaded DP
DCs from the small intestinal LP of creþ animals induced
similar antigen-specific cytokine responses to C57BL/6 small
intestinal LP DCs after transfer into wild-type recipient animals
(Fig. 4d). Thus, IRF-4 deficiency in CD11cþ cells influenced the
development of intestinal LP DCs, in particular the DP DC
population, and the numbers of CD11b-expressing DCs in the
MLN, but did not inhibit the ability of the remaining intestinal
DCs to drive Th2 cell differentiation.

To investigate whether the IRF-4-dependent reduction of LP
DCs was reflected in the draining lymph nodes, we analysed DC
populations in the small intestinal sMLNs and the colonic
cMLNs. We observed a 50% reduction of migratory CD11b SP
DCs and a near absence of migratory DP DCs in the sMLNs, as
previously observed13. Reciprocally, the percentage of migratory
CD103 SP DCs increased dramatically, but total numbers of
CD103 SP DCs were not affected by the deletion of IRF-4 (Fig. 4e
and Supplementary Fig. 4b). Migratory DC populations were
affected to a similar extent in the cMLNs, where numbers of
CD11b SP were reduced by half, DP DCs became almost absent
and the numbers of CD103 SP DCs remained unaffected by the
deletion of IRF-4 (Fig. 4f). Similar to LP DCs, the T-cell priming
capabilities of these migratory MLN DC populations were not
affected by the deletion of IRF-4. In in vitro co-cultures
ovalbumin (OVA), pulsed migratory DC populations from
the sMLNs and cMLNs of creþ animals drove equivalent
proliferation of OVA-specific OT-II CD4þ T cells compared
with their cre� counterparts (Fig. 4g and Supplementary
Fig. 4c). In contrast, antigen delivery to the MLNs was strongly
affected in vivo. Eighteen hours after AF660-SEA injection into
the small intestinal or colonic LP, the number of AF660-SEAþ

DCs was greatly reduced in the sMLNs and cMLNs of creþ
animals (Fig. 4h). Thus, IRF-4 deficiency in CD11cþ cells did not
influence the capacity of DCs to prime T cells and drive Th2
differentiation, consistent with our conclusions from gene
expression analysis. Rather, the striking loss of migratory
CD11b SP and DP DCs from the draining lymph nodes,
combined with the decrease in the amount of transported
parasite antigen, were the probable cause of the inadequate

intestinal Th2 responses observed in IRF-4f/f CD11c-creþ
animals.

Distinct DCs drive Th2 response in small intestine and colon.
As the composition of CD11b-expressing DC populations varies
between the small intestine and colon15, we assessed whether
tissue-specific roles could be attributed to CD11b SP and DP DCs
in priming intestinal Th2 responses. To directly assess the
migration of DCs from the small intestine to the sMLNs, where
priming occurs, we collected DCs from thoracic duct lymph from
small intestinal MLNx (sMLNx) mice16. We observed that DP
DCs, the most abundant DC population in the small intestine,
migrated at an increased frequency, compared with PBS-injected
controls, after the injection of S. mansoni eggs into the small
intestine (Fig. 5a and Supplementary Fig. 5a,c). DP DCs were also
the predominant population to transport small intestinally
injected SEA-AF660 in sMLNx lymph (Fig. 5b). Importantly,
the transfer of FACS-purified sMLNx lymph DC populations
from egg-injected donor mice into recipient animals revealed that
DP DCs were the only population sufficient to drive antigen-
specific immune responses after transfer (Fig. 5c). This was
confirmed after SEA loading of small intestinal LP DC
populations, to ensure that any differences in antigen
availability did not influence the results. Again, DP DCs were
the most efficient population to prime antigen-specific Th2
responses against egg antigens. Similar to our previous
observations, IFN-g responses could be induced by all DC
populations (Fig. 5d).

Thus, DP DCs specialize in transporting and presenting
S. mansoni egg antigens from the small intestine and prime
antigen-specific Th2 cells in the draining lymph nodes.

Examination of DC populations migrating from the colon
revealed a different picture. In contrast to the small intestine,
CD11b SP DCs migrated in increased frequency in colon-
draining cMLNx lymph after the injection of S. mansoni eggs into
the colon (Fig. 5e and Supplementary Fig. 5b,d). As well as being
the predominant DC population within the colonic LP15, CD11b
SP DCs were the only population to carry fluorescently labelled
SEA-AF660 in the lymph after colonic injection (Fig. 5f).
Furthermore, colonic CD11b SP LP DCs were the most efficient
at inducing Th2 responses against in vitro-loaded SEA after
transfer (Fig. 5g).

Thus, in contrast to the small intestine, CD11b SP DCs were
responsible for transporting and presenting S. mansoni egg
antigens from the colon and were the most efficient population
for priming antigen-specific Th2 cell in the colon-draining lymph
nodes.

Figure 3 | CD11bþ DCs drive antigen-specific Th2 responses but SEA does not alter IRF-4-related gene expression. (a) Thirty thousand cells of each of

the four intestinal DC populations, distinguished by their expression of CD11b and CD103, were purified from the MLNx C57BL/6 animals and incubated

with SEA for 18 h in vitro. Unbound antigen was washed off and cells transferred under the MLN capsule of wild-type recipient animals. T-cell responses in

the injected MLNs were measured 5 days after cell transfer by cytokine analysis of in vitro restimulation cultures with (Re) or without (Un) SEA (n¼6 mice

per group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, **Pr0.01 and ***Pr0.001). (b) The gene expression profiles of

SEA-treated or -untreated CD11bþCD103� single-positive (CD11b SP) and CD11bþCD103þ double-positive (DP) DCs were analysed by microarray

analysis. Principle component analysis of the 5,018 significant loci of coding and non-coding gene elements identified to be differentially expressed between

any of the four conditions (n¼ 3 samples per condition, unpaired one-way (single factor) analysis of variance (ANOVA) for each pair of condition groups,

ANOVA P-value (condition pair)o0.05). (c) All gene loci from CD11b SP (left panel) and DP DCs (right panel) were compared between SEA-treated and -

untreated cells and the absolute fold change and ANOVA P-value visualized using volcano plots. Coding genes of interests are highlighted (n¼ 3 samples

per condition, unpaired one-way (single factor) ANOVA for each pair of condition groups). (d) All coding genes that were found to be differentially

expressed within each condition pair with absolute fold changeo� 2;42 and ANOVA P-valueo0.05 were selected and summarized. Genes that changed

in both CD11b SP and DP DCs are highlighted (n¼ 3 samples per condition, unpaired one-way (single factor) ANOVA for each pair of condition groups;

ANOVA P-value (condition pair) o0.05). (e) The relative expression intensities of the overlapping genes from d and of IRF-4- and Th2-associated genes

determined from the literature are shown for each individual sample (changes of overlapping genes are significant, whereas changes of IRF-4- and Th2-

associated genes are not significant) (n¼ 3 samples per condition, unpaired one-way (single factor) ANOVA for each pair of condition groups for the two

condition groups; ANOVA P-value (condition pair)o0.05).
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Figure 4 | IRF-4 deficiency alters DC population composition to reduce antigen availability in the MLNs. (a) Representative percentages and total

numbers of CD11b and CD103-expressing DC populations from the small intestines of IRF-4f/f CD11c-creþ or littermate IRF-4f/f cre� ) bone-marrow

(BM) chimeras (n¼8 mice per group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, *Pr0.05 and **Pr0.01).

(b) Representative percentages and total numbers of DC populations from the colon of creþ and cre� BM chimeras (n¼ 8 mice per group, in three

independent experiments, mean±s.e.m., Mann–Whitney U-tests, *Pr0.05, **Pr0.01 and ***Pr0.001). (c) Uptake of AF660 labelled SEA (SEA-AF660)

by intestinal DCs from creþ and cre� BM chimeras 18 h after injection into the small intestine or colon. Representative FACS plots from the small

intestine (left panel) and total numbers of SEA-AF660þ small intestinal (middle panel) and colonic (right panel) DCs are shown (n¼ 7–10 mice per group,

in three independent experiments, mean±s.e.m., Mann–Whitney U-tests (not significant)). (d) Thirty-thousand CD11bþCD103þ double-positive (DP)

DCs from the small intestine of C57BL/6 or creþ BM chimeras were incubated with SEA for 18 h in vitro and transferred under the MLN capsule of wild-

type recipient animals. Antigen specific T-cell responses in the injected MLNs were measured 5 days after cell transfer by cytokine analysis of in vitro SEA

restimulation cultures (n¼ 6 mice per group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests (P(IFN-g)¼0.59, P(IL-4)¼0.82,

P(IL-5)¼0.09 and P(IL-13)¼0.50). (e) Representative percentages and total numbers of DC populations from the sMLNs of creþ and cre� BM

chimeras (n¼ 5–12 mice per group, in three independent experiments, mean±s.e.m., Mann–Whitney U-tests, ***Pr0.001). (f) Representative

percentages and total numbers of DC populations from the colonic draining MLNs (cMLNs) of creþ and cre� BM chimeras (n¼ 12 mice per group, in

three independent experiments, mean±s.e.m., Mann–Whitney U-tests, ***Pr0.001). (g) Six thousand sMLN (left panel) or 3,000 cMLN (right panel) DC

populations from creþ and cre� BM chimeras were pulsed with OVA and co-cultured with CFSE-labelled OT-II MLN cells for 3 days. In vitro OT-II CD4

T-cell proliferation was assessed by CFSE dilution and compared between creþ and cre� DC populations (n¼ 3–16 duplicate cocultures per group, in

three independent experiments, mean±s.e.m., Mann–Whitney U-tests (not significant)). (h) Transport of SEA-AF660 by creþ and cre� migratory DCs

to the draining lymph nodes 18 h after injection into the small intestine or colon. Representative FACS plots from the sMLN (left panel) and total numbers of

SEA-AF660þ migratory sMLN (middle panel) and cMLN (right panel) DCs are shown (n¼8 mice per group, in three independent experiments,

mean±s.e.m., Mann–Whitney U-tests, *Pr0.05 and ***Pr0.001).
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Figure 5 | Th2 responses in the small intestine and colon are driven by distinct CD11bþ DCs. (a) Frequency of lymph migrating DC populations 18 h

after the injection of PBS (PBS inj) or S. mansoni eggs (Egg inj) into the small intestine of sMLNx C57BL/6 animals (n¼ 10–11 mice per group, in three

independent experiments, mean±s.e.m., Mann–Whitney U tests (P(CD11b SP)¼0.25, P(DP)¼0.02, P(CD103 SP)¼0.04 and P(DN)¼0.14).

(b) Transport of AF660-labelled SEA (SEA-AF660) by lymph-migrating DC populations 18 h after small intestinal injection into sMLNx animals.

Representative FACS plots from CD11bþCD103� single-positive (CD11b SP) and CD11bþCD103þ double-positive DCs (left panel) and total numbers of

SEA-AF660þ DC populations (right panel) are shown (n¼ 5 mice per group in two independent experiments, mean±s.e.m., Kruskal–Wallis test,

***Pr0.001). (c) Thirty-thousand DCs from each population were isolated from the lymph of small intestinal egg-injected sMLNx mice and transferred

under the MLN capsule of wild-type recipient animals. Antigen-specific T-cell responses in the injected MLNs were measured 5 days after cell transfer by

cytokine analysis of in vitro SEA restimulation cultures (n¼6 mice per group, in three independent experiments, mean±s.e.m., Kruskal–Wallis test,

**Pr0.01). (d) Thirty-thousand DCs from each population were isolated from the small intestine of C57BL/6 mice, incubated with SEA in vitro and

transferred under the MLN capsule of wild-type recipient animals. Antigen-specific immune responses were analysed as in c (n¼6 mice per group, in three

independent experiments, mean±s.e.m., Kruskal–Wallis test, ***Pr0.001). (e) Frequency of lymph-migrating DC populations 18 h after the injection of

PBS or S. mansoni eggs into the colon of colonic MLNx (cMLNx) C57BL/6 animals (n¼6–7 mice per group, in three independent experiments,

mean±s.e.m., Mann–Whitney U-tests (P(CD11b SP)¼0.17, P(DP)¼0.17, P(CD103 SP)¼0.22 and P(DN)¼0.71). (f) Transport of SEA-AF660 by lymph-

migrating DC populations 18 h after injection into the colon of cMLNx animals. Representative FACS plots from CD11b SP and DP DCs (left panel), and total

numbers of SEA-AF660þ DC populations (right panel) are shown (n¼ 5 mice per group, in two independent experiments, mean±s.e.m., Kruskal–Wallis

test, **Pr0.01). (g) Thirty-thousand DCs from each population were isolated from the colon of C57BL/6 mice, incubated with SEA in vitro and transferred

under the MLN capsule of wild-type recipient animals. Antigen-specific immune responses in the injected MLNs were measured 5 days after cell transfer

by cytokine analysis of in vitro SEA restimulation cultures (n¼ 6 mice per group, in three independent experiments, mean±s.e.m., Kruskal–Wallis test,

*Pr0.05 and **Pr0.01).
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Discussion
Many cell types have been implicated in inducing type 2 immune
responses against S. mansoni egg antigens, including monocyte-
derived DCs7, conventional DCs11 and basophils33. In this context,
the intestine is an important tissue, being heavily affected by
penetrating S. mansoni eggs during live infection, and the target of
many Th2-inducing helminth parasite infections34. To investigate
which cell populations are sufficient to induce intestinal Th2
responses, we establish an experimental immunization procedure
for controlled delivery of eggs into intestinal subserosal tissue. We
observe that egg antigen-specific CD4 T-cell responses are induced
in the draining MLNs (Fig. 1), which, as previously reported11,35,36,
produced both IFN-g- and the Th2-associated cytokines IL-4, IL-5
and IL-13. S. mansoni eggs induce antigen-specific immune
responses in both the small intestinal and colonic draining
lymph nodes after injection into the respective tissues. IRF-4-
expressing CD11cþ cells are critical for the induction of Th2
responses both in the small intestine and colon (Fig. 1), as Th2
immune responses did not develop in IRF-4f/f CD11c-creþ mice,
similar to previous reports in the lung21 and the small intestine
during Nippostrongylus brasiliensis infection20.

As CD11c is expressed by monocyte-derived DCs, conven-
tional DCs and macrophages in the intestine37, we address which
specific cell population transports egg antigen from the intestine
to the draining lymph nodes and is sufficient to drive antigen-
specific immune responses. Injection of fluorescently labelled
SEA enables identification of B cells and conventional DCs
transporting egg antigens to the MLN. Transfer of cells directly
under the MLN capsule allows for delivery of cells by their
physiological route of entry and to assess their priming
capabilities in vivo18,30. MHCII-expressing DCs, but not B cells,
from egg-injected donor mice are sufficient to induce egg antigen-
specific immune responses in the recipient MLN (Fig. 2).
Furthermore, both intestinal LP DCs and lymph DCs isolated
from wild-type C57BL/6 mice can present SEA after in vitro
incubation. Thus, our data indicate that conventional DCs
transport parasite antigen from the intestine to the draining
lymph nodes and are sufficient to directly prime antigen-specific
immune responses. Further analysis of the four intestinal DC
populations that can be defined by the expression of CD11b and
CD103 (refs 12–14) reveals that SEA-loaded CD11bþCD103�

single-positive (CD11b SP) and CD11bþCD103þ double-
positive (DP) DCs are specialized to prime antigen-specific Th2
and IFN-g responses upon transfer, whereas CD11b�CD103�

double-negative (DN) and CD11b�CD103þ single-positive
(CD103 SP) DCs can only induce IFN-g responses (Fig. 3).
This observation is in line with previous findings that
demonstrate that CD11b-expressing DCs from the spleen, lung
and skin induce Th2 responses9,31,38–40. In contrast, CD103 SP
DCs have been shown to negatively regulate Th2 responses, by
their constitutive expression of IL-12 (ref. 41). The balance
between the different DC populations is therefore critical for
determining the outcome of the T-cell response.

Microarray analysis of the Th2-priming CD11b-expessing
DCs reveals that the expression levels of genes involved in
antigen presentation and T-cell differentiation are influenced by
incubating CD11b SP and DP DCs with SEA. For example, CD80
and Tnfsf4, which encodes OX40L, are upregulated by SEA. These
costimulatory markers are required for T-cell differentiation and
OX40L has been previously been shown to be induced by SEA42.
Furthermore, the downregulation of MHCII-related genes,
proinflammatory mediators such as IL-36g, encoded by Il1f9,
and the chemokine CCL17, which has been shown to recruit
proinflammatory Th2 cells during allergy43 could suggest that
SEA dampens proinflammatory responses, as previously observed
in vitro and in vivo31,32,44.

We anticipated that our expression analysis would reveal genes
induced in both CD11b-expressing DC populations that con-
tribute to their common ability to prime Th2 responses. However,
we observe little overlap and only three genes are differentially
expressed in SEA-cultured CD11b SP and DP DCs. Rasgrp3 is
upregulated, whereas H2-Eb2 and Il1f9 are downregulated upon
SEA incubation in both populations. RAS activators, such as
RasGRP3, provide a key link between cell surface receptors
and RAS activation, and RasGRP3 has been shown to control
CCR9-dependent entry of early thymic progenitors in the
thymus45, B-cell receptor signalling46 and the production of
Toll-like receptor (TLR)-triggered proinflammatory cytokines in
macrophages47. Together with the downregulation of H2-Eb2 and
Il1f9, a dampening of proinflammatory responses is thus observed
in these SEA-cultured DCs. However, no direct involvement of
these genes in type 2 immune response has previously been
reported and comparison with data sets from Th2-impaired
Mbd2� /� bone-marrow DCs35 reveal no commonality.
Surprisingly, the expression of IRF-4 and its binding partner
PU.1, encoded by Spi1, are not upregulated by SEA, despite the
fact that IRF-4 expression by CD11cþ cells is required to drive
Th2 polarization. These genes have been shown to promote the
expression of OX40L48, IL-10 and IL-33 (ref. 21), which influence
Th2 polarization, but are not upregulated in DCs after SEA
treatment. Other genes that have been implicated in polarizing
and enhancing Th2 responses, such as Mgl2 (refs 20,49), Pdcd1lg2
(refs 50,51), which encodes PDL2, Stat5a/b52 and Mbd2 (ref. 35)
are also not upregulated by SEA (Fig. 3), leading us to conclude
that S. mansoni egg antigens induce the ability to drive Th2
polarization in intestinal DCs by mechanisms that may not be
revealed by gene expression analysis.

A key element of our work is that we have discovered that
IRF-4 deficiency does not directly interfere with intestinal DC
ability to induce T-cell priming or drive Th2 differentiation
(Fig. 4), despite being previously suggested in the literature21,53.
Rather, IRF-4 deficiency limits the number of intestine-derived
CD11b-expressing DCs in the draining lymph nodes, consistent
with previous observations in the intestine13 and the skin12.
Impaired survival12,13 and lack of migration54 have both been
suggested to cause this pronounced IRF-4-dependent decrease in
CD11b-expressing DCs. As a result, limited amounts of egg
antigen are present in the MLNs of IRF-4f/f CD11c-creþ mice,
which probably causes the impaired Th2 responses in these mice
(Fig. 4). Thus, IRF-4 does not directly control the ability of
intestinal DCs to polarize Th2 cells, but rather affects the number
of CD11b-expressing DCs, probably by influencing their
differentiation and survival, and thus the amount of presented
antigen in the draining lymph nodes.

As the composition of CD11b-expressing DCs varies along the
gastrointestinal tract, we assessed whether CD11b SP and DP DC
populations play tissue-specific roles. We and others have
observed that DP DCs are the most abundant DCs in the small
intestine, whereas CD11b SP DCs are more frequent in the
colon15,16. These differences can be observed within the lamina
propria (LP), as well as in tissue-specific draining lymph, and the
respective draining lymph nodes16. We observe that after small
intestinal egg injection DP DCs are present at increased frequency
within lymph, suggesting increased migration (Fig. 5). It is well
established that TLR activation can lead to DC migration in the
intestine, which has been shown for R848 (ref. 55), a TLR7/8
agonist, and soluble flagellin3,56, which activates TLR5. DCs do
not require MyD88-mediated TLR signalling to induce Th2
responses against S. mansoni eggs57, but the effects of S. mansoni
eggs on DC migration have not previously been addressed.
Diverse pathogen-associated molecular patterns, such as
Omega-1, have been identified in S. mansoni eggs and SEA58,59,
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indicating that a range of parasite molecules may influence DC
migration.

As well as displaying increased migration, DP DCs are the
most numerous population to carry fluorescently labelled SEA
from the small intestine to the draining lymph nodes. Transfer of
purified DC populations from egg-injected donor mice reveals
that DP DCs are also the only DCs capable of inducing antigen-
specific immune responses in recipient animals (Fig. 5). This is
likely to be both due to their ability to capture egg antigen but
also an intrinsic specialisation for inducing Th2 responses, which
we verified by transfer of in vitro SEA-loaded small intestinal LP
DCs. In this system, all populations can induce antigen-specific
IFN-g responses but only DP DCs induce strong Th2 responses,
suggesting that DP DCs from the small intestine are either
specialized to process and present specific Th2-inducing antigens
within SEA or, more probably, can generate specific signals that
drive the differentiation of Th2 cells. In contrast to the small
intestine, CD11b SP DCs migrate in increased frequency in
lymph of egg-injected animals after colonic egg injection,
transport fluorescently labelled SEA from the colon and are the
predominant population to induce Th2 responses when loaded
with SEA (Fig. 5). Unexpectedly therefore, the Th2-inducing DC
populations in the small intestine and colon are different,
revealing unappreciated complexity in the functional specialisa-
tions of DCs in different tissues.

We thus demonstrate that specific populations of intestinal
CD11b-expressing DCs are specialized to prime Th2 cells in the
small intestine and colon, and speculate that this capacity extends
beyond antigens from S. mansoni eggs and may also be relevant
for other parasitic antigens or intestinal food allergens. The
differences in the functions of CD11b-expressing DC populations
between the small intestine and colon also provide clear evidence
that the induction of immune responses in these tissues is
controlled differently. This idea is supported by recent findings
that have demonstrated that oral tolerance in the small intestine
and colonic tolerance are driven by distinct populations of tissue-
specific DCs60. Beyond advancing our understanding of the
immunological differences between these tissues, this raises the
possibility that diseases in the small intestine and colon could also
be influenced by distinct populations of DCs. Many important
infections and inflammatory conditions (for example, parasite
infections, Crohn’s disease, ulcerative colitis and celiac disease)
selectively affect the small intestine or colon and DCs have been
shown to contribute to disease induction or progression.
Delineation of the roles of specific DC populations in these
conditions could thus reveal novel pathways that may be
precisely and independently targeted to beneficially modify the
involved protective or pathogenic immune responses. Thus, our
identification of the tissue-specific DC populations that induce
Th2 responses against S. mansoni eggs in the intestine reveals
novel insight into the induction of intestinal type 2 immune
responses. It also impacts our understanding of intestinal
immune responses in general, by demonstrating that different
tissue-specific DC populations are responsible for driving similar
responses in anatomically distinct intestinal locations.

Methods
Mice. C57BL/6 (C57BL/6JOIaHsd) were ordered from Envigo and C57BL/6.SJL,
IL-4� /� , OT-II, IRF-4f/f CD11c-cre and IRF-4f/f cre� mice (all on C57BL/6
background) were bred and housed under specific pathogen free conditions at the
University of Glasgow, UK, or at Lund University, Sweden. Age- and gender-
matched adult animals were used in each individual experiment, which were
approved by the University of Glasgow Animal Welfare Ethical Review Board and
the Malmö/Lund Ethical board for Animal research and performed under licenses
issued by the UK Home Office and the Swedish Board of Agriculture. IRF-4f/f

CD11c-cre and IRF-4f/f cre� bone-marrow (BM) chimeras were created by
lethally irradiating 6-week-old C57BL/6.SJL recipients with 10 gray using a Small

Animal Radiation Research Platform (Xstrahl) and reconstituted with 2–4� 106

IRF-4f/f CD11c-creþ or IRF-4f/f cre� BM cells. Experiments with irradiated
animals were performed 8–10 weeks after irradiation.

Surgical procedures. All surgical procedures were carried out under aseptic
conditions and inhalation anaesthesia with Isoflurane (Abbot Animal Health). For
egg injections, 1,000 freeze/thawed S. mansoni eggs were resuspended in 20 ml
DPBS (Life Technologies) and injected into the intestinal LP of anaesthetized mice.
S. mansoni eggs for these studies were isolated under sterile conditions from the
livers of infected C57BL/6 mice before cryopreservation and SEA was prepared by
homogenization and ultracentrifugation of eggs, and concentrated by vacuum
dialysis to 1 mg ml� 1 in DPBS61. For subcapsular injections, 6-week-old male mice
were fed 0.2 ml olive oil to visualize the MLN capsule and MLNs were accessed by
laparotomy. Cells were resuspended in 5 ml DPBS and injected under the MLN
capsule. MLNx was performed on 6-week-old male mice by laparotomy and blunt
dissection of the small intestinal or colonic draining lymph nodes. After 6 weeks,
MLNx mice were fed 0.2 ml olive oil to visualize the lymphatics and the thoracic
lymph duct was accessed by laparotomy and cannulated by the insertion of
a polyurethane medical grade intravascular tube (2Fr; Linton Instrumentation).
Lymph was collected for 18 h on ice in DPBS supplemented with 20 U ml� 1 of
heparin sodium (Wockhardt UK).

Infection models. Mice were infected with B250–300 infective T. muris eggs
from the E (Edinburgh) isolate by oral gavage. Adult worms were isolated from
the colons of infected C57BL/6 mice. For the preparation of eggs and parasite
E/S antigens worms were cultured in sterile RPMI 1640 supplemented with
500 U ml� 1 penicillin and 500 mg ml� 1 streptomycin (all Thermo-Fisher
Scientific) and incubated at 37 �C for 24 h. Eggs were collected by centrifugation
and parasite antigens concentrated using centriprep-centrifugal columns
with 10,000 NMWL (Merck-Millipore) and dialysed to DPBS using Amicon
Ultracel-3 K Centrifugal Filters with 3000 NMWL (Merck-Millipore) to a final
concentration of 1 mg ml� 1. To assess worm burden, colons were isolated and
frozen at � 20 �C; tissues were subsequently thawed and worms scraped free from
the tissue and counted under a microscope.

Cell isolation. MLNs were digested using RPMI 1640 (Life Technologies)
supplemented with 8 U ml� 1 Liberase and 10 mg ml� 1 DNase (all Sigma-Aldrich)
for 45 min at 37 �C in a shaking incubator and single-cell suspensions were
prepared using a 40mm cell strainer (Greiner Bio One). Intestines were excised,
cleaned and cut into 0.5 cm segments. Segments were washed in HBSS (Life
Technologies) supplemented with 2 mM EDTA (Sigma-Aldrich) twice for 15 min
at 37 �C in a shaking incubator. Small intestinal segments were digested in RPMI
1640 supplemented with 1 mg ml� 1 Collagenase VIII (Sigma-Aldrich) and 10%
FCS for 15 min at 37 �C in a shaking incubator. Colons were digested with RPMI
supplemented with 0.425 mg ml� 1 Collagenase V (Sigma-Aldrich), 0.425 mg ml� 1

Collagenase D (Roche), 1 mg ml� 1 Dispase (Gibco), 30mg ml� 1 DNase (Roche)
and 10% FCS for 40 min at 37 �C in a shaking incubator. Single-cell suspensions
were prepared using a 100 and 40 mm cell strainer (Corning). Lymph cells were
passed through a 40 mm cell strainer (Greiner Bio One) and stained directly.

In vitro restimulation cultures and cytokine measurement. MLN cells (1� 106)
were cultured in X-vivo 15 media (Lonza) supplemented with 1% L-glutamine
(Invitrogen), 0.1% 2-mercaptoethanol (Sigma-Aldrich) and 15 mg ml� 1 SEA in
round bottom 96-well plates (Corning) at 37 �C and 5% CO2. Supernatants were
collected after three days and cytokines detected using the IL-4 (88-7044-77), IL-5
(88-7054-77), IL-13 (88-7137-77), IL-17 (88-7371-77) and IFN-g (88-7341-77)
‘ready-set-go’ ELISA kits (eBioscience) following the manufacturer’s instructions.
For T. muris E/S-antigen-specific restimulation of total MLN cells, 0.5� 106 cells
were cultured with 50 mg ml� 1 E/S antigens for 48 h at 37 �C and 5% CO2.
Supernatants were collected and frozen at � 20 �C before cytokine analysis.
Cytokine concentrations were determined by cytometric bead array kit (BD
Biosciences) according to the manufacturer’s instructions. Samples were acquired
on a BD LSR II flow cytometer (BD Biosciences) and data analysed with FCAP
array v3.0 software.

Antibodies for flow cytometric analysis and cell sorting. Mouse tissue cell
surface markers and intracellular cytokines were stained using combinations
of fluorescently labelled primary antibodies at a dilution of 1:200. These
included anti-CD4 (clones GK1.5 and RM4-5), anti-CD8a (53–6.7), anti-CD44
(IM7), anti-CD45R/B220 (RA3-6B2), anti-CD11c (N418), anti-I-A/I-E
(M5/114.15.2), anti-CD11b (M1/70), anti-CD103 (2E7), anti-CD64 (X54-5/7.1),
anti-Ly6C (HK1.4), anti-TCR Va2 (B20.1), anti-IL4 (11B11), anti-CD45
(30-F11), anti-CD45.1 (A20) and anti-CD45.2 (104) purchased from Biolegend,
and anti-IFNg (XMG1.2), anti-IRF-4 (3E4), anti-GATA3 (TWAJ) and anti-IL13
(eBio13A) from eBioscience. SEA was fluorescently labelled using the Microscale
Antibody Labelling Kit (Life Technologies) following the manufacturer’s
instructions. For intracellular transcription factor staining, cells were fixed and
permeabilized using the eBioscience Foxp3/Transcription Factor Staining Buffer
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Set and intracellular staining was performed following the manufacturer’s
instructions. Cells were analysed using a LSRII flow cytometer running FACSDiva
Software (BD Bioscience) and analysed using FlowJo Software (Tree Star). 7AAD
(Biolegend) or Fixable Viability Dye eFluor780 (eBioscience) were used to exclude
dead cells from analysis. For cell sorting, DCs were gated on by selecting live
CD45þ CD45R/B220� CD64� Ly6C� CD11chi MHCIIhi single cells and indi-
vidual CD11b/CD103-expressing populations were sorted using an AriaIII cell
sorter (BD Bioscience). Cells undergoing subsequent antigen loading were incu-
bated in supplemented (as above) X-vivo 15 media (Lonza) with 15 mg ml� 1 SEA
for 18 h or 2 mg ml� 1 OVA protein (Sigma-Aldrich) for 2 h at 37 �C and 5% CO2.

In vitro cell stimulation. For intracellular staining experiments 2� 106 MLN
cells were incubated in RPMI 1640 supplemented with 2.5 ng ml� 1 PMA (Sigma-
Aldrich), 1 mg ml� 1 ionomycin (Invitrogen), 0.5% GolgiStop (BD Bioscience) and
10% FCS for 4 h at 37 �C, after which cell surface markers were stained. Cells were
fixed and permeabilized using the eBioscience Foxp3/Transcription Factor Staining
Buffer Set (eBioscience) and intracellular staining was performed following the
manufacturer’s instructions.

In vitro co-cultures. For in vitro OT-II co-cultures 2� 105 OT-II MLN cells were
labelled with CFSE (eBioscience) at a dilution of 1:1,000 and cocultured with 6,000
sMLN or 3,000 cMLN FACS-sorted DCs from each population. Each population
had been pulsed with 2 mg ml� 1 of OVA (Worthington, Lakewood) for 2 h at
37 �C and 5% CO2 and then extensively washed. After 3 days of co-culture, cells
were stained for flow cytometry and CFSE dilution was assessed to quantify cell
proliferation.

Microarray analysis. Total RNA from SEA-incubated lymph DC populations
(as above) was isolated with the RNeasy micro kit (Qiagen) and prepared for
microarray analysis at Hologic Ltd using the Affymetrix Mouse Transcriptome
Pico Assay 1.0. RNA samples were applied to a Mouse Transcriptome Array 1.0
(Affymetrix). Scanned CEL files were background corrected, normalized and
summarized by using the Affymetrix Expression Console Software 1.4. Differential
gene expression was analysed using the Affymetrix Transcription Analysis
Console Software 3.0 and visualized using Prism 6 Software (GraphPad). Principal
component analysis analysis and heatmap visualization were conducted using
ClustVis62.

Statistical analysis. Based on analyses of preliminary experiments, group sizes
were chosen to ensure that a twofold difference between means, where the common
standard deviation was less than or equal to half of the smaller mean, could be
detected with a power of at least 80%. Prism 6 Software (GraphPad) was used to
calculate the s.e.m. and statistical differences between groups were calculated using
Mann–Whitney U-tests and Kruskal–Wallis tests, where appropriate, with Po0.05
being considered as significant.

Data availability. Microarray gene expression data are available from the Gene
Expression Omnibus, accession number GSE91381. All other relevant data are
available from the authors.
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