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ORIGINAL RESEARCH

Baseline and Dynamic Risk Predictors 
of Appropriate Implantable Cardioverter 
Defibrillator Therapy
Katherine C. Wu , MD; Shannon Wongvibulsin , PhD; Susumu Tao, MD, PhD; Hiroshi Ashikaga, MD, PhD; 
Michael Stillabower, MD; Timm M. Dickfeld, MD, PhD; Joseph E. Marine, MD; Robert G. Weiss, MD;  
Gordon F. Tomaselli, MD; Scott L. Zeger, PhD

BACKGROUND: Current approaches fail to separate patients at high versus low risk for ventricular arrhythmias owing to over-
reliance on a snapshot left ventricular ejection fraction measure. We used statistical machine learning to identify important 
cardiac imaging and time-varying risk predictors.

METHODS AND RESULTS: Three hundred eighty-two cardiomyopathy patients (left ventricular ejection fraction ≤35%) underwent 
cardiac magnetic resonance before primary prevention implantable cardioverter defibrillator insertion. The primary end point 
was appropriate implantable cardioverter defibrillator discharge or sudden death. Patient characteristics; serum biomarkers of 
inflammation, neurohormonal status, and injury; and cardiac magnetic resonance-measured left ventricle and left atrial indices 
and myocardial scar burden were assessed at baseline. Time-varying covariates comprised interval heart failure hospitali-
zations and left ventricular ejection fractions. A random forest statistical method for survival, longitudinal, and multivariable 
outcomes incorporating baseline and time-varying variables was compared with (1) Seattle Heart Failure model scores and (2) 
random forest survival and Cox regression models incorporating baseline characteristics with and without imaging variables. 
Age averaged 57±13 years with 28% women, 66% white, 51% ischemic, and follow-up time of 5.9±2.3 years. The primary end 
point (n=75) occurred at 3.3±2.4 years. Random forest statistical method for survival, longitudinal, and multivariable outcomes 
with baseline and time-varying predictors had the highest area under the receiver operating curve, median 0.88 (95% CI, 0.75-
0.96). Top predictors comprised heart failure hospitalization, left ventricle scar, left ventricle and left atrial volumes, left atrial 
function, and interleukin-6 level; heart failure accounted for 67% of the variation explained by the prediction, imaging 27%, and 
interleukin-6 2%. Serial left ventricular ejection fraction was not a significant predictor.

CONCLUSIONS: Hospitalization for heart failure and baseline cardiac metrics substantially improve ventricular arrhythmic risk 
prediction.
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Identifying patients most at risk for ventricular ar-
rhythmias and sudden cardiac death (SCD) remains 
a clinical challenge.1 Current guidelines directing 

the use of primary prevention implanted cardioverter 
defibrillator (ICDs) rely on a reduced left ventricular 

ejection fraction (LVEF), which has low predictive ef-
ficiency.1 Estimated annualized rates of appropriate 
ICD therapy in recipients of primary prevention ICDs 
with ischemic and nonischemic cardiomyopathy 
range from 8% per year in historical randomized ICD 
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trials2 and older national registries3 to as low as 1% 
per year more recently.4 More precise discrimination 
between high versus low risk ICD candidates could 
improve personalized, shared decision-making re-
garding the risk to benefit ratio of ICD insertion.2

The use of a single snapshot LVEF measurement 
is a poor surrogate for the pathophysiologically com-
plex interplay of factors that increase risk for ventricular 
arrhythmias. A major prerequisite for the initiation and 
propagation of reentrant ventricular arrhythmias is a 
vulnerable underlying arrhythmogenic substrate char-
acterized by the presence, amount, and architecture 

of myocardial scar and fibrosis.5–9 Increasingly recog-
nized is the variable trajectory of both LVEF and the 
clinical course of cardiomyopathies,10,11 though the true 
impact of LVEF improvement/recovery on ventricular 
arrhythmic outcomes remains understudied, as does 
the relative importance of decompensated heart failure 
(HF).

We conducted the current investigation to iden-
tify factors predictive of appropriate ICD shocks in 
a cohort of patients who met clinical guidelines for 
primary prevention ICD insertion. We aimed to build 
on the current knowledge base by leveraging a sta-
tistical learning method based on random forests 
to examine the complex relationships more deeply 
among multiple risk predictors, both baseline and 
time varying, and thereby isolate those factors most 
important in separating patients along a spectrum 
of risk. Specifically, we explored how ≥ 1 HF hospi-
talization and temporal trends in serial LVEFs, both 
surrogates for cardiomyopathy trajectory, affect risk 
stratification. We further investigated the incremen-
tal value of these time-varying factors in conjunction 
with a rich set of pathophysiologically driven markers 
of abnormal myocardial substrate measured by car-
diac magnetic resonance imaging with late gadolin-
ium enhancement (CMR-LGE).

METHODS
The data that support the findings of this study are 
available from the corresponding author upon reason-
able request.

Study Participants and Design
The prospective observational registry, Left 
Ventricular Structural Predictors of Sudden Cardiac 
Death (NCT01076660), enrolled 382 patients be-
tween November 2003 and April 2015 at 3 sites: 
Johns Hopkins Medical Institutions (Baltimore, MD), 
Christiana Care Health System (Newark, DE), and the 
University of Maryland Medical System (Baltimore, 
MD); details of the study protocol and interim results 
have been previously described.12–16 The institutional 
review boards at all sites approved the protocol and 
all patients signed informed consent. Patients meet-
ing clinical criteria for primary prevention ICD insertion 
based on LVEF≤35% were approached for enrollment; 
328 patients co-enrolled in PROSE-ICD (Prospective 
Observational Study of Implantable Cardioverter 
Defibrillators, NCT00733590).15 Patients underwent 
CMR-LGE using 1.5-T whole body scanners (Signa 
CV/I, GE Healthcare, Milwaukee, WI; or Siemens 
Avanto, Erlangen, Germany) with a standard, uniform 
imaging protocol and centralized image analysis at 

CLINICAL PERSPECTIVE

What Is New?
• In primary prevention implanted cardioverter 

defibrillator (ICD) recipients, an interim hospi-
talization for heart failure identified a group at 
high risk for subsequent ventricular arrhythmia 
defined as an appropriate ICD shock.

• Among ICD recipients without heart failure hos-
pitalizations, baseline cardiac magnetic reso-
nance imaging metrics (specifically, left ventricle 
heterogeneous gray and total scar, left ventricle 
and left atrial volumes, and left atrial total emp-
tying fraction) as well as serum interleukin-6 lev-
els were the strongest predictors of subsequent 
appropriate ICD shock; serial left ventricle ejec-
tion fraction did not provide additional prognos-
tic value for the arrhythmic outcome.

• Machine learning statistical methods may im-
prove risk score development by accounting for 
complex and dynamic interactions among risk 
variables and temporally varying risk.

What Are the Clinical Implications?
• The combination of clinical heart failure course, 

baseline cardiac magnetic resonance imaging 
metrics, and levels of the inflammatory bio-
marker interleukin-6 can most accurately stratify 
subsequent high versus low ventricular arrhyth-
mic risk and may be useful for decision-making 
as primary prevention ICD recipients approach 
elective generator change.

Nonstandard Abbreviations and Acronyms

LGE late gadolinium enhancement
RF-SLAM random forest survival, longitudinal 

and multivariate outcomes
SCD sudden cardiac death
SI signal intensity
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the Johns Hopkins core laboratory. See Data S1 for 
exclusions.

At enrollment, patients underwent a baseline history 
and physical examination, 12-lead electrocardiogra-
phy, and fasting blood collection before implantation of 
a single-chamber or dual-chamber ICD, or cardiac re-
synchronization therapy with an ICD based on guide-
lines. Device programming was at the discretion of 
the operators. Participants were evaluated biannually 
and after any ICD discharge. ICDs were interrogated in 
person or via remote transmission. Records for interim 
HF hospitalizations and/or LVEF measurements were 
reviewed.

The primary end point was appropriate ICD shock 
for ventricular tachycardia above the programmed 
rate cutoff (generally 180  bpm) or ventricular fibril-
lation or definite or suspected sudden arrhythmic 
death after review of ICD interrogations when avail-
able, medical records, death certificates, autopsy 
reports, and eyewitness accounts. Hinkle-Thaler cri-
teria were used when ICD interrogations at time of 
death were unavailable. All arrhythmic events were 
adjudicated centrally by 2 clinical cardiac electro-
physiologists. A third electrophysiologist reconciled 
disagreements. Hospitalization for HF required con-
firmatory documentation of signs and symptoms and 
intensified HF treatment.

CMR Imaging Protocol
Steady-state free precession and post-gadolinium in-
version-recovery fast gradient-echo CMR sequences 
were used and images were analyzed with custom 
research software Cinetool (GE Healthcare). Cines 
were quantified for left ventricle (LV) and left atrial 
(LA) volumes and LV mass. Two observers blinded 
to clinical outcome determined the presence of LGE 
by reviewing all cross-sections. When present, LGE 
was quantified into core and heterogeneous scar 
(gray zone) extents using published methodology.12,13 
Core extent comprised all pixels with signal intensity 
(SI) >50% of maximal SI within the hyperenhanced 
region. Gray zone extent comprised all pixels with 
SI>peak SI in the normal myocardium but<50% of 
maximal SI within the hyperenhanced region. Total 
LV scar comprised the sum of gray zone and core 
extents. Phasic LA volumes and function were ana-
lyzed by Multimodality Tissue Tracking software (ver-
sion 6.0, Toshiba, Japan) as described16 (see Data 
S1).

Serum Biomarker Assessment
Patients co-enrolled in PROSE-ICD had peripheral 
blood analyzed at baseline for serum biomarkers of in-
flammation, neurohormonal activation, and myocardial 
infarction as detailed15 and included high-sensitivity 

C-reactive protein (ALPCO Diagnostics, Salem, NH); 
interleukin-6 (IL-6) (R&D Systems, Minneapolis, MN); 
interleukin-10 (R&D Systems); tumor necrosis factor 
α receptor II (R&D Systems); NT-proBNP (N-terminal 
pro-B-type natriuretic peptide) (ALPCO Diagnostics); 
creatine kinase MB-fraction, myoglobin, and car-
diac troponin T and I (all with Meso Scale Discovery, 
Rockville MD).

Comparison to Seattle Heart Failure 
Model Risk Scores
We calculated and compared the mortality rates and 
proportions of sudden deaths predicted by the Seattle 
Heart Failure Model (SHFM) model for ICD recipients 
(SHFM-D)17 and the Seattle Proportional Risk model 
(SPRM)18, which use a subset of demographic and 
clinical variables (see Data S1).

Statistical Analysis
Event data were censored at 8  years after enroll-
ment or at time of death, first appropriate ICD firing, 
cardiac transplant, or LV assist device implantation 
or loss to follow-up. Few primary end point events 
accrued beyond 8  years. Continuous data are re-
ported as mean ± SD or as median with interquartile 
ranges for highly skewed distributions. We adapted 
the random forest survival algorithm (fast unified 
random forests for survival, regression, and clas-
sification, RF-SRC, R package, version 2.9.0)19,20 to 
incorporate Survival with time-dependent predictors, 
Longitudinal (repeated over time), and/or Multivariate 
outcomes in discrete time analysis (RF-SLAM) and 
described the development, methodology, and ap-
proach to visualization displays in 2 recent technical 
papers.21,22 Random forest has been a standard ma-
chine learning method since its description in 2001; 
it combines an ensemble of predictions from a col-
lection ("forest") of individual decision trees.23 Each 
individual tree generates a prediction and the overall 
random forest prediction is the average vote from all 
the trees in the forest. Random forest uses the “wis-
dom of the crowd” concept to minimize prediction 
error by averaging a large number of relatively uncor-
related bootstrap replications of the original training 
data.

For RF-SLAM,21,22 we included (1) baseline predic-
tors consisting of demographics, comorbidities, med-
ications, electrophysiologic parameters, laboratory 
values, enrollment LVEF, and CMR imaging metrics 
detailed in Table 1 (including 14 CMR variables and 9 
biomarkers of inflammation, neurohormonal activation 
and myocardial infarction); and (2) dynamic predic-
tors comprising ≥1 HF hospitalization (n=329 total HF 
hospitalizations) and serial LVEFs, with times of occur-
rence/measurement relative to the enrollment date. To 
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Table. Patient Characteristics by Primary End Point*

No Primary End Point 
(n=307)

Primary End Point 
(n=75) P Value

Demographics and clinical characteristics

Age, y 59 (49, 66) 58 (51, 65) 0.89

Male (%) 211 (69) 63 (84) 0.01

Race: White/Black/Other 200 (65)/ 99 (32)/ 8 (3) 51 (68)/ 21 (28)/ 3 (4) 0.66

Body surface area, m2 2.0 (1.8, 2.2) 2.1 (1.9, 2.3) 0.02

Ischemic cardiomyopathy etiology 149 (49) 44 (59) 0.15

Years from index Myocardial infarction/
cardiomyopathy diagnosis

3.83 (5.18) 5.43 (5.61) 0.02

New York Heart Association functional class I/II/III 64 (21)/ 137 (45)/ 106 (35) 20 (27)/ 31 (41)/ 24 (32) 0.55

Cardiac risk factors

Hypertension 180 (59) 44 (59) >0.99

Hypercholesterolemia 180 (59) 45 (60) 0.93

Diabetes mellitus 85 (28) 19 (25) 0.79

Nicotine use 133 (43) 44 (59) 0.02

Medication usage

Angiotensin-converting enzyme inhibitor or 
angiotensin receptor blocker

275 (90) 66 (88) 0.85

Beta blocker 288 (94) 68 (91) 0.48

Lipid-lowering 199 (65) 56 (75) 0.14

Antiarrhythmic drugs† 18 (6) 8 (11) 0.22

Diuretics 173 (56) 54 (72) 0.02

Digoxin 50 (16) 16 (21) 0.39

Aldosterone-inhibitor 80 (26) 21 (28) 0.85

Aspirin 215 (70) 55 (73) 0.67

Electrophysiologic variables

 History of atrial fibrillation 51 (17) 14 (19) 0.80

 Ventricular rate, bpm, 72 (63, 83) 69 (59, 81) 0.09

QRS duration, msec, 108 (96, 140) 120 (100, 144) 0.14

 Presence of left bundle branch block 79 (26) 14 (19) 0.26

Biventricular implantable cardioverter defibrillator 90 (29) 17 (23) 0.31

Laboratory values/ biomarkers

Sodium, mEq/L 139 (137, 141) 137 (137, 141) 0.97

Potassium, mEq/L 4.2 (4, 4.5) 4.3 (4, 4.5) 0.91

Creatinine, mEq/L 1.0 (0.8, 1.2) 1.0 (0.9, 1.2) 0.06

Estimated glomerular filtration rate, mL/min/1.73 m2 81 (24) 80 (21) 0.64

Blood urea nitrogen, mg/dL 18 (13, 24) 20 (13, 24) 0.35

Glucose, mg/dL 103 (91, 126) 106 (93, 114) 0.93

Hematocrit, % 40.0 (37.4, 43.2) 41.3 (37.9, 44.6) 0.03

High-sensitivity C-reactive protein, µg/mL 3.2 (1.2, 7.8) 4.6 (2.0, 10.1) 0.06

IL-6, pg/mL 1.4 (0.8, 2.8) 2.0 (1.4, 4.2) <0.01

IL-10, pg/mL 1.4 (0.9, 2.5) 1.3 (1.0, 2.8) 0.89

Tumor necrosis factor α receptor II, pg/mL 2989 (2199, 4124) 3014 (2295, 3858) 0.68

N-terminal pro-B-type natriuretic peptide, pmol/L 1750 (706, 3070) 2065 (1300, 3450) 0.08

 Cardiac troponin T, ng/mL 0 (0, 0.02) 0 (0, 0.02) 0.43

 Cardiac troponin I, ng/mL 0.02 (0, 0.05) 0.02 (0, 0.07) 0.98

 Creatine kinase MB-fraction, ng/mL 2.6 (1.7, 4.0) 3.2 (2.1, 4.6) 0.19

 Myoglobin, ng/mL 23.5 (20.8, 28.0) 23 (20.7, 29.3) 0.91

Entry LVEF by echo, % 24±8 23±7 0.1

(Continues)
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incorporate time-varying covariates, we created count-
ing process information units, a preprocessing step 
that partitions the multiple time-varying events and 
other variables for each person into user-specified bins 
of time. We prespecified bins at 6-month intervals to 
reflect biannual clinic visits. By using counting process 
information units, we accounted for the timeline of prior 
events and temporal variability in covariates. Further 
details of RF-SLAM are summarized in Data S1.

We used the Hosmer-Lemeshow statistic24 to test 
the null hypothesis that the RL-SLAM predictions are 
well calibrated to the observed rates of events. To com-
pare RF-SLAM with other approaches, we constructed 
random forest survival and Cox proportional hazards 
models including baseline covariates with and without 
imaging metrics (see Data S1). Model performance 
was evaluated using time-dependent area under the 
receiver-operator characteristic curves (AUC), an ex-
tension to the case of longitudinal data with time-vary-
ing predictors.25 Eight models were compared (see 
Table S1).

To improve the interpretation of the RF-SLAM 
model results, we summarized its predictions using a 
single summary regression tree.22 The summary tree 
was grown until it explained ≥ 95% of the variation in 
the RF-SLAM predictions. We also calculated variable 

dependence plots to visualize how the predictions vary 
with the main categories of covariates (HF hospital-
izations, imaging variables, and IL-6) selected into the 
summary tree, controlling for the others in the model. 
Further details are provided in Data S1.

Analyses were conducted with R version 3.6.3 
(https://www.r-proje ct.org). Statistical significance was 
defined as P value < 0.05.

RESULTS
Baseline Characteristics
Baseline cohort characteristics are shown in 
Table 1, with all covariates included in the statistical 
models. At a median follow-up of 5.8 years, the pri-
mary end point, appropriate shocks or sudden ar-
rhythmic death, occurred in 75 patients (incidence 
rate of 3.7 per 100 person-years) after enrollment 
with 2 deaths and 73 shocks. There were 140 
all-cause deaths (incidence rate of 5.3 per 100 
person-years). Among patients without a primary 
event, the incidence rate of death was 4.7 per 100 
person-years versus 7.3 in those with an event (cu-
mulative hazard ratio 1.5; 95% CI, 1.1-2.2; P<0.02). 
Patients with the primary end point were more 

No Primary End Point 
(n=307)

Primary End Point 
(n=75) P Value

CMR structural and functional indices

LVEF, % 27.8±10.3 25.1±8.8 0.04

LV end-diastolic volume index, ml/m2 115.6 (94.3, 141.2) 128.9 (101, 156.9) 0.02

LV end-systolic volume index, ml/m2 80.2 (63.6, 110) 100 (68.4, 124.7) 0.01

LV mass index, ml/m2 71.8 (58.4, 85.3) 76.8 (64.8, 95.7) 0.02

LA maximal volume index, ml/m2 40.6 (31.1, 57.6) 43.4 (32.4, 63.4) 0.13

LA minimal volume index, ml/m2 22.8 (16.2, 39.7) 29.0 (20.4, 47.2) 0.01

LA preatrial volume index, ml/m2 32.8 (24.7, 48.6) 38.1 (27.2, 58.8) 0.04

LA total emptying fraction, % 40.4 (27.7, 49.4) 33.1 (20.4, 45.3) <0.01

LA passive emptying fraction, % 13.3 (7.6, 21.1) 13.3 (7.3, 19.0) 0.54

LA active emptying fraction, % 28.4 (17.4, 38.3) 21.7 (11.7, 31.1) <0.01

CMR hyperenhancement

Late gadolinium enhancement present, % 176 (66) 56 (86) <0.01

Gray zone, grams 4.5 (0, 14.4) 13.3 (3.1, 22.6) <0.01

Core, grams 7.2 (0, 19.7) 18.5 (3.7, 24.0) <0.01

Total scar, grams 14.0 (0, 36.7) 30.5 (7.0, 50.2) <0.01

Other clinical outcomes

All-cause mortality (%) 99 (32) 41 (55) <0.01

Time to death (years) 6.8±3.3 7.5±3.3 0.14

CMR indicates cardiac magnetic resonance; IL-10, interleukin-10; IL-6, interleukin-6; LA, left atrium; LV, left ventricle; LVEF, left ventricle ejection fraction. 
(Parts of the table were included in21 and 22 [https://medin form.jmir.org/2020/6/e1579 1/] and reprinted here with permission. Both are open-access articles 
distributed under the terms of the Creative Commons Attribution License (https://creat iveco mmons.org/licen ses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium.)

*Results shown are number (%), median (interquartile range), or mean (SD).
†Amiodarone was the only antiarrhythmic prescribed for the indication of atrial arrhythmias.

Table. Continued

https://www.r-project.org
https://medinform.jmir.org/2020/6/e15791/
https://creativecommons.org/licenses/by/4.0/
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frequently male, smokers, and had higher body 
surface areas and longer durations of cardiomyo-
pathy. All patients were well treated medically for 
HF with similar regimens except for higher diuretic 
use among those with events. Concentrations of 
IL-6 were higher among those with primary events. 
Most CMR indices were abnormal in the primary 
event group with lower LVEF, higher LV volumes 
and mass, and larger scar extents. LA minimal and 
preatrial contraction volumes were larger among 
those with events and total and active LA emptying 
fractions were lower.

SHFM and SPRM Model Predictions
Mean SHFM-D-predicted life expectancy was simi-
lar for patients with versus without events (14.7 ± 6.1 
versus 15.1  ±  6.0  years) translating into similarly low 
risk scores for all-cause death (Table S2). The SPRM-
predicted proportion of mortality attributable to SCD 
was slightly higher in those eventually experiencing a 
primary event versus those who did not (0.62 versus 
0.57, P=0.05, Table S3).

HF Hospitalizations and LVEF 
Measurements
One hundred and forty patients experienced at least 1 
HF hospitalization (incidence rate of 6 per 100 person-
years). Among the 75 primary event patients, 41 (55%) 
had≥1 preceding HF hospitalization (incidence rate of 
5.2 per 100 person-years). Among the 307 event-free 
patients, 99 (32%) had ≥1 interval HF hospitalization 
during follow-up (incidence rate of 9.4 per 100 person-
years). The cumulative unadjusted hazard ratio for HF 
among those with versus without a primary event was 
1.8; 95% CI, 1.2-2.6; P=0.002. 91% of the cohort un-
derwent≥1 subsequent LVEF measurement at 2 years 
after enrollment; 73% had a second LVEF at 3.7 years; 
and 53% had a third LVEF at 5.2 years. All LVEFs were 
used in RF-SLAM.

Diagnostic Performance of the Models
For primary end point prediction, the diagnostic 
performances over time for all 8 models (Table  S1) 
are shown in Figure 1. Inclusion of baseline imaging 
metrics improved the performance of each method. 
With only baseline, nonimaging covariates, the AUC 
for RF-SLAM at 5  years was estimated to be 0.73 
(95% CI, 0.58-0.86). Adding imaging to baseline co-
variates improved the estimated AUC for RF-SLAM 
to 0.78 (95% CI, 0.63-0.89). With the further addi-
tion of time-varying indices of ≥ 1 HF hospitalization 
and serial LVEFs to baseline covariates including 
imaging, RF-SLAM model performance was highest 
with estimated AUC of 0.88 (95% CI, 0.75–0.96). In 

comparison, the AUC for SPRM was 0.57 and SHFM 
at 5 years was 0.53.

RF-SLAM Prediction Model Results
Calibration of RF-SLAM was excellent (χ2=9.94, 
P=0.26) with no significant difference between pre-
dicted and observed event rates and no evidence of 
systematic bias (eg, overprediction at one extreme 
and underprediction at the other). A summary tree 
representing aggregate results from all bootstrapped 
trees for RF-SLAM that included baseline imaging 
and nonimaging risk factors and time-dependent 
covariates is shown in Figure  2. It depicts the top 
7 predictor variables and the decision rules at each 
node for prediction of outcomes at 5 years following 
enrollment. These top variables accounted for 96% 
of the total variation in the predicted values from RF-
SLAM. HF hospitalizations accounted for 67% of the 
total variation. Imaging metrics, namely, LV diastolic 
volume, total and gray zone scar extents, indexed LA 
minimum volume, and total LA emptying fractions, 
together accounted for another 27% of the total vari-
ation. Interleukin-6 concentration accounted for 2%. 
Patients can be separated along a gradient of en-
suing yearly primary event risk ranging from low to 
high. Notably, serial LVEFs did not significantly add to 
the prediction when HF hospitalizations and imaging 
metrics were already incorporated.

Figure 3 complements the results shown in Figure 2 
by depicting the relationships between each set of top 
predictors and the primary end point. The 3 panels 
show the relationship with increasing numbers of HF 
hospitalizations (Figure 3, panel A); the collective ef-
fect of the 5 imaging variables stratified by HF status 
and controlling for IL-6 level (Figure 3, panel B); and the 
effect of IL-6, conditional on the rest of the variables 
(Figure 3, panel C). The HF dependence is strongest 
with any interval HF hospitalization (≥1) being more as-
sociated with risk of the end point with an increase of 
roughly 10 events per 100 person-years in absolute 
event risk (range of 4 to 14% or 3.5-fold). HF hospital-
izations beyond the first one did not further add sig-
nificantly to the prediction model. The risk association 
of imaging variables is strongest among people with-
out interval HF hospitalizations. Together, the imaging 
variables explain roughly a 3-fold risk of the primary 
end point between the range of 2-6 events per 100 
person-years. There is a relatively weak relationship 
with IL-6.

DISCUSSION
Our principal finding is that a HF hospitalization sig-
nificantly predicts subsequent life-threatening ven-
tricular arrhythmia following ICD insertion. Larger 
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CMR-derived LV and LA volumes, larger total scar 
and gray zone extents, and lower LA emptying frac-
tions and serum IL-6 concentrations were the top 
baseline variables and contributed to risk prediction 
particularly among patients without HF. When clinical 
HF events and baseline CMR metrics and IL-6 levels 
are already included as covariates, serial LVEFs did 
not add significantly to the prediction model and no 
LVEF threshold could be identified above which risk 
is reduced. Identifying temporal changes to covariates 
as contributors to ventricular arrhythmic prediction is 
novel and pathophysiologically relevant because of the 
highly variable progression of cardiac disease and risk 
factors. Our findings may apply to risk assessment at 
the time of ICD generator end of life to inform decision-
making regarding the risk/benefit of replacement and 
warrant further investigation.

An interim HF hospitalization26 has been identified 
previously as a risk factor for subsequent appropriate 
ICD shocks. In the ICD arm of the MADIT-II (Multicenter 

Automatic Defibrillator Intervention Trial II), interim HF 
hospitalization was associated with a 2.5-fold in-
creased hazard ratio for subsequent appropriate ICD 
therapy.26 We also found a marked 3.5-fold increase 
in relative risk for a HF hospitalization with subsequent 
ICD firing generally occurring not immediately after-
wards but on average 2.4±1.7  years later. This sug-
gests that clinical HF decompensation is a marker for 
more chronic adverse mechanical and/or electrical 
remodeling that is proarrhythmic. Our results further 
highlight and emphasize the importance of clinical HF 
instability rather than trajectories in LVEF in predicting 
increased propensity for arrhythmias.

Including baseline CMR variables improved the 
predictions for all statistical models compared with 
baseline variables without imaging. Although an HF 
hospitalization significantly improved RF-SLAM per-
formance regardless of inclusion of the imaging vari-
ables, SCD risk remains elevated among those without 
HF. Among patients with a primary event, 45% did 

Figure 1. Median area under the curve (AUC) performances for predicting the primary end point 
for each of the 8 models.
Models incorporating only baseline covariates are shown as dotted or dashed lines. The 95% CIs for the 
AUCs over time for random forest statistical method for survival, longitudinal, and multivariable outcomes 
(RF-SLAM) incorporating time-varying covariates with (pink shaded area) and without (gray shaded area) 
imaging are also shown. RF-SLAM with both imaging and time-varying covariates (dark red solid line) had 
the highest AUC. RFS indicates random forest survival method.
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not have a preceding HF hospitalization, highlighting 
the need for multiple highly performing risk metrics. 
The variable dependence plots for the imaging met-
rics demonstrate their additive predictive value among 
those without HF hospitalizations. Hence, our findings 
reinforce and quantify the incremental significance 
of the identified imaging covariates, supplementing 
published results. Scar and gray zone extents are 
important underlying pathophysiologic substrates 
supporting the initiation and propagation of reentrant 
ventricular arrhythmias.5,27 Severe LV chamber dilation 
measured by echocardiography predicted appropri-
ate ICD shocks in a mixed ischemic and nonischemic 
cardiomyopathy HF cohort28 and among SCD cases 
from a community-based study.29 Chronic LV dilation 
resulting from adverse LV remodeling is associated 
with changes in cardiac ion channels and the distribu-
tion and expression of connexin proteins that may be 
proarrhythmic.30 Here, we found that elevated indexed 
LV diastolic volume was an informative predictor with 
the advantage over prior studies of high reproducibility 
and decreased variability associated with CMR mea-
surements of LV size.

The predictive importance of atrial remodeling as 
a marker of the cumulative, long-term effects of el-
evated LV filling pressures and LV wall stress has 
been highlighted in studies of patients with HF and 
reduced LVEF. Smaller, retrospective analyses using 
CMR31,32 and echocardiography (the MUSIC Study 
[Muerte Súbita en Insuficiencia Cardiaca])33 suggest 
that lower LA emptying fractions and larger indexed 
LA size independently predict SCD. Our findings sup-
port the relevance of atrial abnormalities as markers of 
chronic diastolic dysfunction for predicting ventricular 
arrhythmia even among low LVEF patients. Although 
NTproBNP, which we measured only at baseline, was 
not among the top variables of importance after im-
aging variables were incorporated, larger LA minimum 
volumes were associated with higher baseline BNP 
levels (P < 0.01). LA structural indices likely better re-
flect chronic and cumulative elevations of LV pressure 
rather than single BNP measures. Further investigation 
of mechanisms are warranted.

Prior studies of the role of inflammation in predict-
ing ICD therapy have been inconsistent. Some stud-
ies reported associations between increased levels 

Figure 2. Summary tree of RF-SLAM depicting the top 7 predictors for the primary end point at 5 years of follow-up that 
accounted for > 95% of the prediction.
Decision rules at each tree node are shown in bold italics and the number of cohort patients meeting criteria at each node is noted. 
The annual predicted ventricular arrhythmic (VA) risk is shown at the bottom of the decision tree. The VA risk boxes are color coded 
according to the magnitude of the annual risk, with white corresponding to the lowest risk subgroup and dark red corresponding to the 
highest risk subgroup. EF indicates ejection fraction; HF, heart failure; IL, interleukin; LA, left atrium; LV, left ventricle; and RF-SLAM, 
random forest statistical method for survival, longitudinal, and multivariable outcomes.
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of proinflammatory biomarkers and appropriate ICD 
shocks.15,34,35 Cytokines such as IL-6 may modulate 
expression and/or function of ion channels through 
direct cardiomyocyte effects to promote arrhythmo-
genesis.34 Although we found a very small contribution 
of IL-6 level accounting for only 2% of the variance in 
prediction, it was a top predictor combined with HF 
hospitalizations and CMR measures. Prior statistical 
approaches that suboptimally controlled for variable 
interactions may explain the equivocal associations 
between inflammatory marker levels and SCD.

Published studies of primary prevention ICD re-
cipients with and without cardiac resynchronization 
therapy suggest that although an improved LVEF re-
duces the relative risk of SCD outcomes, absolute risk 
remains elevated at 3-5% per year.36,37 Our results fur-
ther build upon prior findings by suggesting the lack of 
significant incremental value of serial LVEFs when HF 
hospitalization and CMR indices are already consid-
ered and reinforce the imperfect predictive capability 
of LVEF for SCD, particularly at the individual patient 

level.1,5 Although we did not impose any threshold val-
ues to define LVEF recovery, RF-SLAM methodology is 
able to detect a meaningful threshold, if present.

Risk scores such as SHFM-D and SPRM17,18 use 
simple demographic and clinical characteristics. 
Although most effective at stratifying patients based 
on low probability of benefit from ICDs but who are 
at increased risk for nonarrhythmic mortality,38 they 
have limited discrimination of differences in appro-
priate ICD therapy.39 Although such risk models 
reduce the number of eligible ICD candidates, they 
fail to distinguish those at lowest risk for ventricu-
lar arrhythmia in whom an ICD might be safely de-
ferred that comprise>25% of potential candidates. 
This observation is relevant because, as the rates 
of both total and arrhythmic mortality decrease with 
advances in atherosclerotic disease and HF treat-
ment and concerns about rising health costs inten-
sify, it will be crucial to balance the risk/benefits of 
primary prevention ICDs by targeting those with the 
highest risk of ventricular arrhythmia most likely to 

Figure 3. Variable dependence plots calculated from the RF-SLAM predicted values, stratified by interim HF hospitalization.
(A) shows an individual’s risk of the primary end point as a function of the number of interim HF hospitalizations. (B) shows the 
collective effect of all 5 imaging variables, stratified by HF status, holding IL-6 constant, and plotted against the scale of the imaging 
variable gray zone mass, selected because it best illustrates the collective effect of all imaging variables and reflects the largest range 
of effects. (C) is the risk attributable to IL-6, controlling for all of the other variables. The dependence plots can be used to ascertain 
a person’s risk given his/her HF status along the gradient of imaging results (here gray zone mass) and ≥1 interval HF hospitalization 
or by IL-6 level and HF status. HF indiates heart failure; IL, interleukin; and RF-SLAM, random forest statistical method for survival, 
longitudinal, and multivariable outcomes.
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benefit paired with an acceptably low risk of noncar-
diac mortality.

Finally, our approach demonstrates how machine 
learning methods can improve ventricular arrhythmic 
risk prediction and interpretation. Compared to tradi-
tional regression methods, advantages of RF-SLAM 
include easy accommodation of time-varying pre-
dictors such as HF; missing data common to clinical 
research and practice; key predictor selection from 
a potentially large number, most of which are unim-
portant; and nonlinear effects including interactions 
among predictors. With a time-to-event outcome, the 
most important potential interaction comprises the 
follow-up time duration. In many chronic diseases, 
the major predictors change over the course of the 
process. For example, we have shown how dramati-
cally the occurrence of a HF hospitalization increases 
the risk of a primary event. RF-SLAM also empha-
sizes depiction of time-varying risk performance 
(AUC) on an interval-to-interval (eg, biannual clinic 
visit) basis rather than aggregately at 1 time point. 
This may better inform clinical decision-making when 
the quality of predictions changes throughout the 
disease process.

Visualization as a method for explaining RF-SLAM 
predictions is increasingly important in clinical appli-
cations because black-box predictions lacking ex-
planation raise concerns for clinical translation. With 
a single classification tree summarizing nearly all of 
the information in the RF predictions, the user can 
better understand the most important predictors 
that comprise the tree and how they interact with 
one another in a more clinically intuitive manner. The 
tree methods utilized here can be implemented on 
a smart phone or other simple calculating device. A 
second visualization approach with clinical utility is 
the variable dependence plot, scaled to functional 
dependence of the relationship of the absolute risk of 
the primary end point on each predictor or set of pre-
dictors of interest, controlling for the other values by 
computationally assigning them their average values. 
In this case, stratifying by interval HF hospitalization 
makes it easier to see the association of risk with the 
imaging variables and IL-6 within the subgroup with-
out HF. Finally, because our algorithm is built using 
the open-source R-environment, it is readily adapt-
able to incorporate new data and for applications to 
other areas.

We recognize our study’s limitations. Our study was 
by design observational with a long enrollment phase 
and ICD programming parameters were not prescrip-
tive. There was a slight decline over time in appropri-
ate ICD therapies but a greater decline in inappropriate 
therapies (Table  S4) likely influenced by published 
studies triggering changes in device programming. 
The relatively small number of primary events limits the 

power to detect small deviations in risk predictions. 
Our results require independent validation using a 
larger number of arrhythmic events from other cohorts, 
particularly to refine and improve the identification of 
sufficiently low-risk patients in whom an ICD could be 
deferred. However, the ability to identify extremes and 
gradations of arrhythmic risk as we do here may en-
hance the design of future randomized controlled trials 
by identifying specific risk strata. Although we did not 
incorporate serial CMR-LGE scans to track temporal 
changes in cardiac structure and tissue characteriza-
tion, an ongoing study addresses this (NCT00733590, 
clinicaltrials.gov). Serial LVEFs were not mandated, 
similar to other studies that investigated the prognos-
tic value of recovered LVEF on SCD outcomes but did 
not account for CMR covariates as we do here.37,40 
The clinically obtained LVEFs were not centrally inter-
preted. The LVEF findings require further confirmation. 
Similarly, future investigations could focus on the in-
cremental predictive value of serial measurements of 
other variables, which is beyond the scope here. We 
did not investigate other statistical machine learning 
approaches. Optimizing visualization approaches to 
explaining machine learning-based model results re-
main a work in-progress. Genetic information was not 
available.

In conclusion, our proof-of-concept study high-
lights the potential to improve individualized risk as-
sessment for ventricular arrhythmias by incorporating 
both a temporally varying risk factor and baseline co-
variates. Specifically, a set of 7 predictors consisting 
of HF hospitalization, CMR variables, and IL-6 levels 
parsimoniously accounted for the vast majority of sub-
sequent appropriate ICD shocks. Our results support 
the importance of the complex interplay of pathophys-
iologically driven markers of underlying myocardial 
substrate, temporal changes in clinical HF status, and 
systemic inflammation in identifying increased risk for 
ventricular arrhythmias.
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Data S1.

Expanded Methods 
Exclusion criteria 

Exclusion criteria comprised contraindications to CMR, New York Heart 
Association (NYHA) functional class IV, acute myocarditis, acute sarcoidosis, infiltrative 
disorders (e.g. amyloidosis), congenital heart disease, or hypertrophic cardiomyopathy. 
Renal insufficiency was an exclusion for contrast (n=42) with creatinine clearance, 
CrCl<30 ml/min after July 2006; CrCl<60 ml/min after February 2007, though non-
contrast images for LV and LA structure and function were used.    

Quantification of phasic LA volumes and function16, 41 
Endocardial and epicardial borders of the LA were planimetered. A pixel-to-pixel 

matching technique automatically tracks voxels during the cardiac cycle.  Maximum LA 
volume (Vmax; LA volume at end-systole before mitral valve opening), minimum LA 
volume (Vmin; LA volume at end-diastole immediately after mitral valve closure), and 
pre-atrial contraction LA volume (VpreA; LA volume before atrial contraction) were 
measured using the LA volume curve.  LA functional metrics were calculated as: LA 
total emptying fraction (LAef) = (Vmax-Vmin)×100% / Vmax; LA passive ef = (Vmax-
VpreA)×100% / Vmax; and LA active ef = (VpreA-Vmin) ×100% / VpreA. 

RF-SLAM methodology21, 22 
A key feature of RF-SLAM is the creation of counting process information units 

(CPIUs) to account for time-varying covariates.  A person’s event hazard is assumed to 
be constant within each CPIU but this strategy then allows predictor variables to change 
from one interval to the next.  The estimated hazard is (a Bayesian analogue of) the 
total events divided by the total person-time at risk. People can contribute more or fewer 
person-times. For example, persons who are censored or have an event during the 
interval contribute fewer person-times than someone who completes the interval without 
an event.  If no person completes the full interval, the constant hazard is based upon 
the evidence from the earlier part of the interval.  

After partitioning the follow-up time into CPIUs, we use a Poisson regression 
splitting criterion that does not impose the proportional hazards assumption that the 
predictors have a common effect across the entire follow-up period.  Bootstrapping is 
performed at the patient-level and the predictions for each CPIU for each person are 
used to generate discrete-time piece-wise constant hazard functions for each bootstrap 
replication. Variable selection and imputation of missing covariates are inherent to the 
RF methods used here.  For time-varying covariates, the values for those covariates are 
only recorded for that interval if they were measured during that interval of time. If 
values were not measured during the interval, then they were set to not available (NA, 
missing). These NA values were then imputed during the RF approaches using adaptive 
tree imputation.20, 21, 42, 43  We used default values of 1000 as the number of trees, 10% 
of the number of CPIUs as the minimum terminal node size, and the number of 
variables to test at each potential split point as the square root of the number of 
predictors in the model. 

We compared RF-SLAM with both baseline and time-varying covariates and RF-
SLAM with baseline covariates only. 



RF-SLAM partial dependence plots44 
The goal of a partial dependence plot is to display the relationship of the 

predicted risk of the outcome with a single or set of predictor(s) controlling for the others 
in the model. In this application, we have estimated partial dependence plots using 
linear regression with the RF-SLAM out-of-bag predicted values as the outcome and a 
natural spline of each set of predictors with 3 degrees of freedom that interacts with an 
indicator variable for having had ≥1 interval HF hospitalizations. The model was 
estimated with complete cases only and using multiple imputation by chained equations 
(MICE) that were not qualitatively different.  

RFS methodology20, 42, 43 
To compare to the RF-SLAM methods, we also constructed RFS models. We 

used default settings for the number of trees (1000), node size (15), and number of 
variables to try at each potential split (square root of the number of predictors in the 
model).  After building a random forest with the RFS approach, the survival and 
cumulative hazard estimates are obtained.  Although the RFS method does not provide 
piecewise-constant hazard predictions, we developed an approach to obtain the 
discrete-time hazard estimates to facilitate comparisons between the methods. 
Specifically, the survival predictions were obtained from the RFS method and a smooth 
curve was fitted to the predictions to obtain an estimate of the survival function. 
Afterwards, the value of the derivative of the log of the estimated survival function was 
obtained every half-year (i.e. 0.5, 1, 1.5 years, etc.) to derive comparable hazard 
estimates to the RF-SLAM approach.   

Cox regression methodology45 
For Cox regression models, a subset of the possible predictor variables was 

chosen using forward variable selection; multiple imputation was used to impute missing 
data. 

AUC and confidence intervals 
The AUC and 95% confidence intervals were obtained from 500 bootstrap 

iterations using the time-dependent AUC (https://cran.r-
project.org/web/packages/risksetROC/index.html) as described previously.22, 25, 46  

Comparison to Seattle Heart Failure Model risk scores 
We derived the SHFM-D scores using covariates consisting of: age, gender, 

NYHA class, weight, LVEF, systolic blood pressure, ischemic/nonischemic etiology, 
medication use (angiotensin converting enzyme inhibitor or angiotensin receptor 
blocker; beta-blocker; statin; allopurinol; aldosterone blocker; diuretic type and dose; 
hemoglobin; total cholesterol; and serum sodium); and accounting for presence of 
LBBB, QRS-duration, and device type (ICD or CRT-D).   

SPRM scores were derived from the following covariates: age, gender, NYHA 
class, diabetic status, use of digoxin, body mass index, LVEF, systolic blood pressure, 
and serum sodium and creatinine levels. 

Both SHFM-D and SPRM metrics were compared between those with and 
without the primary endpoint using Cox proportional hazards regression. 

https://cran.r-project.org/web/packages/risksetROC/index.html
https://cran.r-project.org/web/packages/risksetROC/index.html


Expanded Results 

Table S1. Statistical models compared (n=8).

Cox 
regression 

RFS RFSLAM* 

Covariates included in each model 

Baseline non-CMR variables only X X X 

Baseline non-CMR and CMR variables X X X 

Time-varying with baseline non-CMR variables 
only 

X 

Time-varying with baseline non-CMR and CMR 
variables 

X 

*RF-SLAM incorporates CPIUs and Poisson log likelihood in all iterations.

Table S2. Predicted mortality by Seattle Heart Failure Model for ICD patients (SHFM-
D).  

No primary event 
(n=307) 

Primary event 
(n=75) 

p-value

1 year predicted mortality (%) 3.5 ± 3.6 3.5 ± 2.8 0.34 

2 year predicted mortality (%) 6.9 ± 6.7 6.8 ± 5.3 0.42 

5 year predicted mortality (%) 17.1 ± 14.0 17.5 ± 12.2 0.39 

Mean life expectancy (years) 15.1 ± 6.0 14.7 ± 6.1 0.38 

5 year SHFM score (median, IQR) -0.38 (-0.9-0.26) -0.22 (-0.89-0.20) 0.39 

Table S3. Predicted proportion of sudden deaths by Seattle Proportional Risk Model 
(SPRM). 

No primary event 
(n=307) 

Primary event 
(n=75) 

p-value

SPRM-predicted proportion of SCD 
(median, IQR) 

0.57 (0.50-0.67) 0.62 (0.52-0.69) 0.054 

Predicted ICD hazard ratio 0.66 (0.54-0.77) 0.60 (0.51-0.73) 0.06 



(median, IQR) 

Table S4. Incidence rates (per year) by enrollment phase. 

Enrollment years 

2003-2006 
(n=148) 

2007-2011 
(n=131) 

2012-2015 
(n=103) 

Primary endpoint events 

0-3 year incidence rate 5.4% 3.7% 2.6% 

3-5 year incidence rate 2.9% 1.0% 4.0% 

>5 year incidence rate 3.3% 4.1% 3.2% 

Inappropriate ICD firings 

0-3 year incidence rate 5.6% 3.8% 0.8% 

3-5 year incidence rate 5.3% 1.0% 0.4% 

>5 year incidence rate 1.9% 0.6% 1.4% 
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