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Long non-coding RNAs (lncRNAs) play crucial roles in ovarian cancer (OC) development.

However, prognosis-associated lncRNAs (PALs) for OC have not been completely

elucidated. Our study aimed to identify the PAL signature of OC. A total of 663 differentially

expressed lncRNAs were identified in the databases. According to the weighted gene

coexpression analysis, the highly correlated genes were clustered into seven modules

related to the clinical phenotype of OC. A total of 25 lncRNAs that were significantly

related to overall survival were screened based on univariate Cox regression analysis.

The prognostic risk model constructed contained seven PALs based on the parameter

λmin, which could stratify OC patients into two risk groups. The results showed that

the risk groups had different overall survival rates in both The Cancer Genome Atlas

(TCGA) and two verified Gene Expression Omnibus (GEO) databases. Univariate and

multivariate Cox regression analyses confirmed that the risk model was an independent

risk factor for OC. Gene enrichment analysis revealed that the identified genes were

involved in some pathways of malignancy. The competitive endogenous RNA (ceRNA)

network included five PALs, of which four were selected for cell function assays. The four

PALs were downregulated in 33 collected OC tissues and 3 OC cell lines relative to the

control. They were shown to regulate the proliferative, migratory, and invasive potential

of OC cells via Cell Counting Kit-8 (CCK-8) and transwell assays. Our study fills the gaps

of the four PALs in OC, which are worthy of further study.

Keywords: ovarian cancer, lncRNA, weighted gene coexpression analysis, risk score model, cell function assays

INTRODUCTION

Ovarian cancer (OC) is a gynecological malignancy with the highest morbidity and mortality rates
worldwide (Stewart et al., 2019). Although the prognosis of patients in early cancer stages is better,
most patients are already in the late stages of OC during the first diagnosis (Kaldawy et al., 2016;
Eisenhauer, 2017). Thus, there is a need to identify novel biomarkers for predicting tumorigenesis
and clinical diagnosis in earlier stages and to develop new therapeutic strategies and targets for OC.

Long non-coding RNAs (lncRNAs) are endogenous RNA transcripts more than 200 nucleotides
in length that are not translated into polypeptides (Kopp andMendell, 2018). Previous studies have
found that lncRNAs could serve as strong prognostic biomarkers and play an important role in
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different cell processes such as cell migration, growth, invasion,
apoptosis, and differentiation in OC (Wang et al., 2019). For
example, SNHG9 was shown to serve as an anticancer biomarker
by regulating miR-214-5p (Chen et al., 2021). LINC01969 was
confirmed to be a cancer-promoting biological marker via the
miR-144-5p/LARP1 axis (Chen et al., 2020).

The pathogenesis of most cancers, including OC, are caused
by various genes rather than a single gene (Van Cott, 2020).
The risk model can estimate a set of risk genes in any given
cancer (Cintolo-Gonzalez et al., 2017; Tammemägi et al., 2019).
Weighted correlation network analysis (WGCNA) is a combined
method for analyzing clinical information and gene expression
data (Sun et al., 2017). Through the analysis of genemodules with
high correlation with clinical information, a series of key genes
with high connectivity in the modules were obtained, which
are potentially important for the occurrence and development
of tumors (Tian et al., 2017). Previous studies have identified
lncRNA-based signatures via WGCNA or by developing a risk
model for OC (Li and Zhan, 2019; Zhao and Fan, 2019). However,
these studies are still limited in their lack of cell function assays
and constantly updated databases.

Thereby, the purpose of our research was to identify a
prognosis-associated lncRNA (PAL) signature serving as a
noteworthy prognostic biomarker in OC by using WGCNA and
other comprehensive analyses. Two additional datasets from the
GEOwere used to check the accuracy of themodel. A competitive
endogenous RNA (ceRNA) network was established to explore
the mechanisms of candidate PALs. Finally, four candidate PALs
were selected for the in vitro assays.

MATERIALS AND METHODS

Data Extraction and Pre-treatment
The RNA data with corresponding clinical information were
downloaded from TCGA TARGET GTEx (https://toil.xenahubs.
net) (Goldman et al., 2020) and GEO (GSE32063 and
GSE17260, https://www.ncbi.nlm.nih.gov/geo/) (Yoshihara et al.,
2010, 2012). RNAs with expression levels >0 in 33% of
the samples were identified as messenger RNAs (mRNAs) or
lncRNAs based on annotation information from the GENCODE
database (https://www.gencodegenes.org/) (Harrow et al., 2012).
Differential gene analysis was based on linear regression
and empirical Bayes using the limma package (http://www.
bioconductor.org/packages/2.9/bioc/html/limma.html) (Ritchie
et al., 2015). Meanwhile, we evaluated the differences in multiple
and significance levels using Benjamini and Hochberg multiple
comparisons (P < 0.05, |logFC| > 2).

Screening Modules Related to Clinical
Phenotype
WGCNA considers not only the coexpression patterns
between two genes but also the overlap of neighboring

Abbreviations:GEO, Gene ExpressionOmnibus; HR, hazard ratio; K–M, Kaplan–
Meier; lncRNA, long non-coding RNA; OC, ovarian cancer; OS, overall survival;
PAL, prognosis-associated lncRNA; ROC, receiver operating characteristic; TCGA,
The Cancer Genome Atlas; WGCNA, weighted gene coexpression analysis.

genes (Langfelder and Horvath, 2008). A coexpression network
between differentially expressed mRNAs and lncRNAs was
established using WGCNA from the R package to identify
modular genes closely related to the clinical phenotype. Clinical
phenotypes in our study included age at initial pathological
diagnosis, clinical stage (stage I, II, III, or IV), lymphatic invasion
(no or yes), neoplasm histologic grade (grade I, II, III, or IV),
tumor residual disease (no macroscopic disease, 1–10mm,
11–20mm, or >20mm), venous invasion (no or yes), and vital
status (dead or alive).

The WCGNA analysis should be subject to scale-free
networks. Therefore, the applicable weight parameter β

(SoftPower) of the gene coexpression matrix was supposed to
conform to the scale-free distribution to the maximum extent.
The correlation coefficients (R) of connectivity k and p(k)
under each β were calculated, and then, β was selected when R2

reached 0.85 for the first time. The highly correlated genes were
clustered into modules based on clustering and dynamic pruning
methods (minModuleSize = 30; MEDissThres = 0.3). Finally,
the gene assembly modules closely related to the phenotype
were identified via the correlation between the module and
clinical phenotype.

Construction and Validation of Risk Model
The lncRNAs in the aforementioned modules were analyzed
by univariate Cox regression analysis based on their expression
values and overall survival (OS) of each OC sample (P <

0.05). Kaplan–Meier (K–M) analysis and log-rank test were
performed using the R package to select the PALs (P < 0.05)
for further analysis. Least absolute shrinkage and selection
operator (Lasso) regression of the glmnet package (version 2.0-
18) (Engebretsen and Bohlin, 2019) was carried out for further
dimensionality reduction to screen the more significant PALs
for risk model construction. According to multivariate Cox
regression analysis, a prognostic risk model was generated based
on the following formula:

Risk score =
∑

βlncRNA × ExplncRNA

In the risk score (RS) formula, βlncRNA represents the regression
coefficient for PALs, and ExplncRNA means the expression level
of homologous PALs. OC patients in the study were divided into
low- or high-risk groups according to the optimal cutoff point of
RSs gained from Survminer (version 0.4.3) from the R package,
and K–M survival analysis was performed between the two risk
groups using the log-rank test. In addition, GSE32063 (40 OC
samples) and GSE17260 (110 OC samples) were downloaded
from National Center for Biotechnology Information (NCBI)
GEO (Barrett et al., 2005) and used to develop a prognostic risk
model using the same method.

Furthermore, the RSs of different clinical indicators, including
age (age ≤60 years or >60 years), grade (grade II or III), and
stage (stage III or IV) were compared. Several clinical indicators,
such as age in GEO, grade I, grade IV, stage I, and stage II,
were excluded due to insufficient sample size. Tumor mutational
burden (TMB) scores were calculated for each OC patient from
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TCGA, and the relationship between the risk model and TMB
was also assessed.

Construction of ceRNA Network
The microRNAs (miRNAs) targeted by the corresponding PALs
were speculated by the DIANA-LncBase v2 (Paraskevopoulou
et al., 2016). The target mRNAs by the corresponding
miRNAs were speculated using miRTarBase (Hsu et al., 2011).
Subsequently, the ceRNA network based on the same miRNAs
of PAL–miRNA and miRNA–mRNA was constructed and
visualized using Cytoscape (Kohl et al., 2011).

Biofunctional Analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis
was performed on potential target mRNAs of clinical modules
or PALs based on clusterProfiler of R package (version:3.8.1,
pAdjustMethod= BH, pvalueCutoff= 0.05) (Yu et al., 2012).

In vitro Assays
With approval from the Ethics Committee, a total of 33
OC and 20 adjacent normal ovarian tissues were collected
from surgery OC patients between May 2019 and January
2021 at the Affiliated Hangzhou Hospital of Nanjing Medical
University (Hangzhou, China). The clinical features are shown in
Supplementary Table 1. The OC cell line SKOV-3 was supplied
by the Cell Bank of China Academic of Science (Shanghai,
China). The IOSE-80, HO-8910, and A2780 cells were purchased
from iCell Bioscience Inc. (Shanghai, China). SKOV-3 cells were
cultured in McCoy’s 5A medium supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin. IOSE-80,
HO-8910, and A2780 cells were cultured in 90% Roswell Park
Memorial Institute (RPMI) 1640 medium with 10% FBS and 1%
penicillin-streptomycin. All cells were incubated in a 5% CO2

incubator at 37◦C.
After RNA extraction and reverse transcription, real-time

quantitative PCR (qPCR) analysis was performed using an ABI
7500 instrument to evaluate the expression value of alternative
PALs in cells and tissues based on the kit of Takara (Shiga, Japan).
Primer sequences are listed in Table 1.

The plasmids used for the experiment were constructed
by TSINGKE Biological Technology (Hangzhou, China) based

TABLE 1 | The primer sequences in PCR analysis.

Symbol Sequences (5′-3′)

hGAPDH-F GTCAACGGATTTGGTCTGTATT

hGAPDH-R AGTCTTCTGGGTGGCAGTGAT

hTCL6-F ACCATCCCAAAGCCAACG

hTCL6-R AAGTCATAAGGAACGGCATAAA

hVLDLR-AS1-F TCATCACAGCATCCTTCACAGCC

hVLDLR-AS1-R AACAAGCCACACTGACAGACCAT

hRP11-356I2.4-F AGCCTTGTTGCCACGGAGAC

hRP11-356I2.4-R ACGCATGACGCACAGAAGAGT

hLINC00893-F GCTGCTCCTCACTCTCACTCCT

hLINC00893-R CCTCTCCTCATCCGACCACAGA

on the known sequences of TCL6, VLDLR-AS1, RP11-356I2.4,
and LINC00893 from NCBI. SKOV-3 and HO-8910 cells
were transfected with homologous plasmids (pcDNA-NC,
pcDNA-TCL6, pcDNA-VLDLR-AS1, pcDNA-RP11-356I2.4, and
pcDNA-LINC00893) using the jetPRIME transfection reagent
(Polyplus Transfection, Shanghai, China), according to the
manufacturer’s instructions.

Subsequently, transfected SKOV-3 and HO-8910 cells were
made into cell suspensions and then transferred to a 96-well
plate or upper chamber (with or without Matrigel) of 24-well
transwell inserts (8µm pore size). For the Cell Counting Kit-
8 (CCK-8) assays, the old culture media were removed, and 10
µl cell counting kit-8 solution (MedChemExpress, China) with
90 µl media was added to each well for an additional 2 h on
days 1–4. At the wavelength of 450 nm, the OD value of each
well was detected by a spectrophotometer (Thermo Scientific,
Massachusetts, America). For the transwell assays, the lower
chambers were added with 500 µl medium containing 30%
FBS. The bottoms of the upper chamber were fixed with 4%
paraformaldehyde and stained with crystal violet for 10min on
day 1. The number of cells that invaded through the membrane
to the lower surface was counted using Image J software after
photographing using a microscope.

The experiments were conducted in triplicate, and each
experiment was repeated three times. Statistical analysis was
performed using GraphPad Prism version 8.0.1. The data were
analyzed by Student’s t-test or one-way analysis of variance
(ANOVA). P < 0.05 was considered statistically significant.

RESULTS

To facilitate the understanding of our entire study, we created a
flowchart, which is shown in Figure 1.

Screening Modules Related to Clinical
Phenotype
After the difference analysis, a total of 1,467 upregulated mRNAs
and 1,431 downregulated mRNAs were extracted (Figure 2A),
and 307 lncRNAs expressed at high levels and 356 lncRNAs
expressed at low levels were obtained (Figure 2B).

WGCNA analysis was further conducted based on 3,560
differentially expressed genes to screenmodules related to clinical
phenotypes. We assigned the β value to 7 when R2 was first
∼0.85, which ensured that the network connection was close
to the scale-free distribution and was the minimum threshold
for smoothing the curve (Figures 2C,D). The modules with
correlation coefficients >0.7 (the divergence coefficient was
<0.3) were consolidated after clustering (Figure 2E). A total
of seven modules (M1-yellow, M2-black, M3-green, M4-brown,
M5-blue, M6-turquoise, and M7-gray) were integrated, and
the gray module could not be gathered into other modules;
hence, the gray module would not be considered in subsequent
analysis (Figure 2F).

Two further methods were used to mine the modules
associated with clinical phenotypes. First, the correlation between
each module feature vector gene and the clinical phenotype
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FIGURE 1 | Flow diagram of our study.
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FIGURE 2 | Results of differential analysis and WGCNA. (A) Volcano map of differential mRNAs. (B) Volcano map of differential lncRNAs. (C) Selection graphs of β.

(D) Schematic diagram of the mean connectivity. (E) The module clustering result diagram. The vertical axis represents the difference coefficient, and the blue line

represents the difference coefficient of 0.3. (F) Systematic cluster tree of genes and gene modules generated by dynamic clipping method.
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FIGURE 3 | KEGG pathway enrichment analysis. (A) WGCNA modules. (B) lncRNAs.
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was calculated. The feature vector gene was the first principal
component gene E of a specific module, which represents the
overall level of gene expression in the module. Second, the
absolute value of the correlation between gene expression in
each module and the clinical phenotype was taken as the
correlation between the module and the clinical phenotype
(Supplementary Figure 1).

Furthermore, the mRNA in each module was subjected
to KEGG pathway enrichment analysis, which showed that
the black, blue, brown, turquoise, and yellow modules were
significantly enriched in 13, 21, 11, 5, and 48 KEGG pathways.
Nonetheless, no significant pathways were enriched in the
green module. The KEGG pathway of each module was ranked
according to the P-value, and the top five were selected for
display (Figure 3A). Some of these modules are associated
with important biological processes in tumor genesis and
development, such as Ras signaling pathway and mitogen-
activated protein kinase (MAPK) signaling pathway of the
blue module, p53 signaling pathway of the brown module,
and inflammatory mediator regulation of TRP channels in the
turquoise module.

Construction and Validation of Risk Model
A total of 25 PALs that were significantly associated with OS were
screened based on univariate Cox regression analysis, including
one upregulated lncRNA (HR > 1) and 24 downregulated

lncRNAs (HR < 1) (Table 2; Supplementary Figure 2).
Among the 25 PALs, KEGG pathways were enriched to
19 lncRNAs, and the top five pathways were selected for
display (Figure 3B). Some PALs were enriched in several
classic signaling pathways of tumors, such as Ras signaling
pathway, MAPK signaling pathway, Hedgehog signaling
pathway, and so on. Interestingly, several lncRNAs were
enriched in ovarian steroidogenesis or the GnRH signaling
pathway (VLDLR-AS1, RP11-356I2.4, LINC00893, and so on)
in OC.

Lasso regression was performed on the above 25 PALs to
determine the optimal modeling parameter (λ) (Figure 4A). The
two dashed lines indicate two special λ values: λmin on the left
and λ1se on the right. The λ values between these two values
was considered to be appropriate. The model constructed by λ1se

was the simplest, that is, it used a small number of genes, while
λmin had a higher accuracy rate and used a larger number of
genes. Hence, λmin was selected to build the model for accuracy
in our study.

The final model contained seven PALs, namely, CTD-
2540B15.13, LINC00893, MIR503HG, RP11-356I2.4,
RP11-386G11.10, TCL6, and VLDLR-AS1. A total of 418
TCGA samples were divided into two risk groups, of which 201
were high risk (≥the optimal cut point) and 217 were low risk
(<the optimal cutoff point). The results revealed that OS in the
high-risk group was markedly lower than that in the low-risk

TABLE 2 | Kaplan–Meier survival analysis of 25 lncRNAs.

Gene HR Lower 0.95 Upper 0.95 P-value Type Moudle

CH507-254M2.2 0.89782612 0.84229443 0.95701896 0.00093768 down_lnc brown

RP1-179N16.6 0.86639416 0.79455643 0.9447269 0.00116431 down_lnc turquoise

CTD-2595P9.4 0.93999785 0.90293072 0.97858666 0.00257416 down_lnc turquoise

RP11-386G11.10 0.92534363 0.87642424 0.97699356 0.00511256 down_lnc blue

RP11-500G22.4 0.95173106 0.91827361 0.98640754 0.00673863 down_lnc turquoise

RP11-356I2.4 0.86427736 0.77671338 0.96171302 0.0074451 down_lnc turquoise

CTD-2227E11.1 0.9271007 0.87607788 0.98109509 0.00877255 down_lnc turquoise

TCL6 0.94990532 0.9140781 0.98713678 0.0087936 down_lnc brown

CTC-564N23.2 0.923453 0.8685364 0.98184193 0.01090358 down_lnc yellow

LINC00893 0.89868222 0.82738124 0.97612767 0.01131416 down_lnc turquoise

RP5-1180E21.5 0.96699305 0.94185858 0.99279825 0.0124944 down_lnc turquoise

RP11-66N24.4 0.88211727 0.79714411 0.97614831 0.01522047 down_lnc turquoise

RP11-454E5.4 0.87249941 0.78102511 0.97468725 0.01579247 down_lnc turquoise

CTC-246B18.8 1.08022122 1.01397626 1.15079409 0.01685716 up_lnc blue

MIR503HG 0.91727562 0.85356375 0.98574308 0.01872699 down_lnc blue

CTD-2013N24.2 0.91086867 0.84264021 0.98462159 0.01876848 down_lnc turquoise

RP13-39P12.3 0.91678305 0.85080369 0.98787908 0.02260895 down_lnc turquoise

CTD-2540B15.13 0.89876543 0.81847421 0.9869331 0.02538823 down_lnc yellow

CTC-510F12.7 0.90586195 0.83058035 0.98796687 0.02551983 down_lnc turquoise

RP11-254F7.3 0.94196846 0.89291289 0.99371909 0.02846161 down_lnc turquoise

VLDLR-AS1 0.92027511 0.85239314 0.99356299 0.03357438 down_lnc turquoise

SPACA6P 0.88785293 0.79493949 0.9916262 0.03493912 down_lnc turquoise

RP11-45A17.2 0.94046304 0.8881824 0.99582105 0.03542486 down_lnc turquoise

RP11-203B9.4 0.88611018 0.79063991 0.99310854 0.03763039 down_lnc turquoise

ASMTL-AS1 0.92770067 0.86065926 0.99996429 0.04989104 down_lnc turquoise
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FIGURE 4 | Construction of the prognostic risk model. (A) The λ selection diagram in the Lasso model. (B) K–M survival curves of high- and low-risk groups for

TCGA database. (C) Risk score distribution and lncRNA expression heat map for TCGA database. (D) K–M survival curves of high- and low-risk groups for GEO

database. (E,F) Time-dependent receiver operating characteristic (ROC) curve for predicting OS of the risk model. (G,H) The nomogram based on the signature and

clinical information.

TABLE 3 | Univariate and multivariate Cox analyses of risk signature in TCGA and GEO dataset.

Variables Univariate Multivariate

Coefficient HR (95% CI) P-value Coefficient HR (95% CI) P-value

TCGA dataset

Risk score 1.038 2.824 (1.98–4.026) <0.001 0.887 2.427 (1.601–3.681) <0.001

Age 0.023 1.023 (1.01–1.036) 0.001 0.024 1.024 (1.011–1.038) <0.001

Grade 0.119 1.126 (0.786–1.614) 0.517 −0.011 0.989 (0.684–1.429) 0.952

Figo stage 0.178 1.195 (1.017–1.405) 0.031 0.169 1.184 (0.996–1.407) 0.056

GEO dataset

Risk score 1.000 2.718 (1.173–6.3) 0.020 0.816 2.262 (0.96–5.328) 0.032

Grade 0.481 1.618 (1.122–2.335) 0.010 0.373 1.452 (0.987–2.136) 0.058

Figo stage 0.313 1.368 (0.953–1.963) 0.090 0.236 1.267 (0.859–1.868) 0.233
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FIGURE 5 | Difference between groups. (A–E) Risk scores of clinical indicators. (F) TMB between risk groups.
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group (Figure 4B). The heat map and RS distribution map of
seven lncRNA expression values in each sample were drawn as
shown in Figure 4C, which showed that the lower the expression
level of the seven PALs, the higher the RS and the shorter survival
time. Two GEO datasets were utilized to verify the risk model
according to the same method described above, and the K–M
curve proved the validity of the model constructed by the seven
PALs in survival prediction (Figure 4D).

Univariate and multivariate Cox regression analyses of risk
model, grade, Figo stage, and age for TCGA and GEO datasets
demonstrated that the risk model was an independent risk factor
for OC patients (Table 3). The 1-, 3-, and 5-year survival ROC
curves predicted by the risk model were drawn (Figures 4E,F).
To better predict prognosis at 1-, 3-, and 5-year OS of OC
patients, we constructed a nomogram of variables such as the risk
score, grade, and Figo stage (Figures 4G,H).

We also found that OC patients with grade III and stage IVOC
had higher RSs, while RS was not related to age (Figures 5A–E).
As for TMB, OC patients in the low-risk group had lower TMB
scores, which indicated that they may be more likely to respond
to immunotherapy (Figure 5F).

Construction of a PAL-Associated ceRNA
Network
We predicted 19,630 miRNA–mRNA pairs and 129 PAL–
miRNA relationship pairs. PALs and mRNAs that were

regulated by the same miRNA were screened, and the
positively coexpressed PAL–mRNA pairs were combined. Finally,
347 PAL–miRNA–mRNA relationship pairs were obtained,
including 5 PALs (TCL6,VLDLR-AS1, RP11-356I2.4, LINC00893,
and MIR503HG), 70 miRNAs, and 199 mRNAs (Figure 6).
There were 71 PAL–miRNA relationship pairs, 341 miRNA–
mRNA relationship pairs, and 242 PAL–mRNA coexpression
relationships in the ceRNA network, which could be used to
explore the molecular mechanisms involved in the development
of OC.

In vitro Assays
Among the five PALs in the ceRNA network we constructed,
the functions of lncRNA MIR503HG involved in OC have been
investigated (Zhu et al., 2020); hence, the remaining four PALs
were preliminarily selected as candidate molecules to perform
cell function assays in vitro. Analysis of TCGA dataset (418
OC samples), GSE32063 (40 OC samples), GSE17260 (110 OC
samples), and our cohort (33 OC samples) showed that the
four PALs were evidently downregulated in OC tissues when
compared with normal controls (Figures 7A–P). The expression
of the four PALs in three OC cell lines (SKOV-3, HO8910, and
A2780) and the normal ovarian epithelial cell line IOSE-80 was
detected. As shown in Figures 8A–D, the expression of the four
PALs was significantly lower in OC cells than in IOSE-80 cells
(p < 0.05).

FIGURE 6 | ceRNA network of five PALs. Different colors represented different modules. Diamonds represented lncRNAs, circles represented mRNAs, and white

squares represented predicted miRNAs. Dotted green lines represented coexpression of lncRNAs and mRNAs, gray arrows represented miRNA regulated mRNAs,

and orange T-shaped lines represented competing binding mRNAs.
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FIGURE 7 | The expression of four PALs in normal and OC samples. (A–D) TCL6. (E–H) VLDLR-AS1. (I–L) RP11-356I2.4. (M–P) LINC00893. ****P < 0.0001.

***P < 0.001.

The K–M survival curves confirmed that higher expression
of the four PALs was associated with better OS, which indicated
that they may serve as tumor suppressor genes for OC
(Supplementary Figure 2). Subsequently, we confirmed that the
expression levels of the four PALs increased following plasmid
transfection in SKOV-3 and HO-8910 cells (Figures 8E–H).

Later, data from the CCK-8 assay illustrated that overexpression
of TCL6, RP11-356I2.4, and LINC00893 reduced the viability
of OC cells (Figures 9A,B). Nevertheless, the proliferative
abilities of SKOV-3 and HO-8910 cells increased after
VLDLR-AS1 overexpression (Figures 9A,B). In addition,
the number of migrated and invaded OC cells declined with
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FIGURE 8 | (A–D) The expression of four candidate PALs in IOSE-80 and OC cells. (E–H) The expression level of four candidate PALs under SKOV-3 and HO-8910

transfection.

the overexpression of TCL6, RP11-356I2.4, and LINC00893,
according to data from transwell assays (Figures 9C–H). On
the contrary, overexpression of VLDLR-AS1 increased the
invasive and metastatic abilities of SKOV-3 and HO-8910
cells (Figures 9C–H).

DISCUSSION

Recent studies have shown that lncRNAs play an important
role in regulating the growth, division, metastasis, invasion,
proliferation, and drug resistance of OC cells (Braga et al., 2020).
Abnormal expression of some lncRNAs in OC may provide
important reference information for the diagnosis, treatment,
and prognosis of patients (Salamini-Montemurri et al., 2020).
However, compared with miRNA, the study of lncRNAs for
OC is still in its infancy (Razavi et al., 2021). Therefore, it is
necessary to further study lncRNAs in OC. Previous studies have
inspired us to explore potential prognosis-associated lncRNAs
in OC.

WGCNA is the most representative systems biology algorithm
based on transcriptome data to construct gene coexpression
networks (Zhang and Horvath, 2005; Langfelder and Horvath,
2008). Using WGCNA, information on gene expression in
biological systems can be analyzed quantitatively and at different
levels. Although previous studies have applied WGCNA to
established an lncRNA-associated signature in malignant tumors
(Gong and Ning, 2020; Han P. et al., 2020; Li et al., 2020; Tian
et al., 2021; Yuan et al., 2021), research on its application in
OC is sparse. In our study, seven stable modules with highly
correlated 3,560 genes and correlations with specific clinical
factors were clustered. The prognostic risk model based on
seven PALs could divide OC patients into two risk groups
according to optimal cutoff point, which was validated using two
datasets from GEO. After construction of the ceRNA network,
four PALs (TCL6, VLDLR-AS1, RP11-356I2.4, and LINC00893)
in the network were selected for further cell function assays.
In the WGCNA analysis, TCL6 was gathered into the brown

module, and VLDLR-AS1, RP11-356I2.4, and LINC00893 were
gathered into the turquoise module. Therefore, TCL6 may be
related to the clinical stage and histological grade of OC.
Meanwhile, VLDLR-AS1, RP11-356I2.4, and LINC00893 may
be associated with the clinical stage. The KEGG pathway of
coexpression analysis showed that three PALs were enriched
in several biological functions of OC, such as glutamatergic
synapse, inflammatory mediator regulation of TRP channels,
and ovarian steroidogenesis, which indicated their potential
therapeutic targets.

A previous study revealed that lncRNA miR503HG was
downregulated in OC, and downregulation of miR503HG
predicted poor survival of OC patients (Zhu et al., 2020),
which coincided with miR503HG in our prognostic risk model
signature. Coincidentally, the expression of MIR503HG was
decreased in colon cancer (Chuo et al., 2019; Han H. et al., 2020),
triple-negative breast cancer (Fu et al., 2019; Tuluhong et al.,
2020), non-small cell lung cancer (Lin et al., 2019; Dao et al.,
2020; Xu et al., 2020), cervical squamous cell carcinoma (Zhao
et al., 2020), bladder cancer (Qiu et al., 2019), and hepatocellular
carcinoma (Wang et al., 2018). MIR503HG was also proved to
serve as a tumor suppressor in in vivo experiment. TCL6 had
been demonstrated to be a potential tumor suppressor in breast
cancer (Zhang et al., 2020), hepatocellular carcinoma (Luo et al.,
2020), renal cell carcinoma (Yang et al., 2018; Kulkarni et al.,
2021), and B-cell acute lymphoblastic leukemia (Cuadros et al.,
2019). Overexpression of TCL6 in corresponding cancer cell lines
impairs their oncogenic functions, such as cell proliferation and
migration/invasion. RP11-356I2.4 (also known as WAKMAR2,
lnc-TNFAIP3, or LOC100130476) has been shown to act as a
tumor suppressor gene in esophageal cancer and gastric cardia
adenocarcinoma. In addition, upregulation of RP11-356I2.4 led
to the inhibition of proliferation and invasiveness of cancer
cells (Guo et al., 2016a,b). LINC00893 was lowly expressed in
thyroid carcinoma tissues and papillary thyroid cancer (PTC)
cells. Furthermore, LINC00893 overexpression abrogated the
proliferation and migration abilities of PTC cells (Li et al.,
2021). In our prognostic risk model signature, lncRNA TCL6,
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FIGURE 9 | CCK-8 and transwell assays. (A) CCK-8 assays of transfected SKOV-3. (B) CCK-8 assays of transfected HO-8910 cells. (C–H) Transwell assays of

transfected SKOV-3 or HO-8910 cells.

RP11-356I2.4, and LINC00893 were all downregulated in OC
cells and tissues. In addition, downregulation of these genes
indicated poor OS in patients with OC. Through gain-of-
function assays, we determined that the overexpression of the
three PALs restrained the proliferation and migration abilities

of OC cells, which would fill the gap in their study in OC.
Hence, these three molecules are also tumor suppressor genes
for OC, suggesting their potential as biomarkers and therapeutic
targets. Previous studies and our cell function assays further
illustrate the accuracy of our risk score model. However,
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more in-depth molecular mechanisms are yet to be studied by
subsequent researchers.

Although lncRNA VLDLR-AS1 was downregulated and
downregulation of VLDLR-AS1 indicated poor survival in OC,
VLDLR-AS1 seemed to be an oncogene in terms of OC cellular
function. Previous studies showed that VLDLR-AS1 is highly
expressed in esophageal squamous cell carcinoma (Chen et al.,
2019) and hepatocellular carcinoma (HCC) (Yang et al., 2017).
Knocking down the expression of VLDLR-AS1 inhibited the
proliferation of HCC cells, which was consistent with our cell
function assays. The differences in VLDLR-AS1 expression were
not consistent with the cell function experiment in OC, which is
worthy of further study by subsequent researchers.

There are some limitations to our study. First, there were
only 33 OC patients without OS in our cohort; hence, more
time and more samples are needed for follow-up. Second,
the cell function assays of four candidate lncRNAs were
preliminary, which requires further investigation to provide a
better understanding.

CONCLUSIONS

In summary, we performed weighted gene coexpression analysis
on differentially expressed genes obtained from datasets to screen
for modules related to clinical phenotypes and established a
seven-PAL-based signature with a prognostic value for OC, which
could stratify OC patients into two risk groups with significant
differences in prognosis. Two additional datasets were used to
verify the accuracy of themodel. Meanwhile, four candidate PALs
were selected to perform cell function assays, which need further
studies of subsequent researchers.
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