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Abstract

Seasonal influenza vaccines are often ineffective because they elicit strain-specific antibody

responses to mutation-prone sites on the hemagglutinin (HA) head. Vaccines that provide

long-lasting immunity to conserved epitopes are needed. Recently, we reported a nanoparti-

cle-based vaccine platform produced by solid-phase peptide synthesis (SPPS) for targeting

linear and helical protein-based epitopes. Here, we illustrate its potential for building broadly

protective influenza vaccines. Targeting known epitopes in the HA stem, neuraminidase

(NA) active site, and M2 ectodomain (M2e) conferred 50–75% survival against 5LD50 influ-

enza B and H1N1 challenge; combining stem and M2e antigens increased survival to 90%.

Additionally, protein sequence and structural information were employed in tandem to iden-

tify alternative epitopes that stimulate greater protection; we report three novel HA and NA

sites that are highly conserved in type B viruses. One new target in the HA stem stimulated

100% survival, highlighting the value of this simple epitope discovery strategy. A candidate

influenza B vaccine targeting two adjacent HA stem sites led to >104-fold reduction in pulmo-

nary viral load. These studies describe a compelling platform for building vaccines that tar-

get conserved influenza epitopes.

Introduction

The rapid mutation rate of influenza viruses fuels seasonal epidemics that cause >0.25 million

deaths annually and facilitates occasional pandemic outbreaks that can lead to>20 million

fatalities [1–5]. Human infections are caused by type A (IAV) and B (IBV) viruses. Strains are

classified based on antigenic variation in hemagglutinin (HA) and neuraminidase (NA), the

two major surface proteins which respectively enable viral fusion and budding. While vaccina-

tion is the best prophylactic, there is still tremendous need for improvement. The fundamental

problem with current vaccines is that they elicit antibodies to mutable regions of the HA head

that have limited homology between strains [6, 7]. Thus, antigenic mismatch between vaccine

and circulating strains severely limits effectiveness. Moreover, selective pressure on unstable

epitopes favors escape mutants with substitutions that abrogate antibody binding, thereby

undermining long-term protection. This continual antigenic drift forces vaccines to be

updated annually based on prediction of the strains that will dominate the upcoming year [8].
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Influenza vaccines that can stimulate long-term broadly protective humoral immunity are

needed.

Foundational studies have identified sequences on the three surface proteins (HA, NA, and

M2, a proton channel critical for viral replication) that are highly conserved across strains,

making them potential targets for broadly protective vaccines. These sites do not naturally

stimulate appreciable antibody responses and much effort has been devoted to overcoming

this problem [9]. One of the most common targets is the HA stem, which is substantially more

conserved than the head subunit [10]. Many antigens have been designed to focus antibody

responses on this locale. For instance, hyper-glycosylated, computationally optimized

(COBRA), and mosaic HA vaccines are in preclinical development [11–15]. A phase I trial

testing headless stem-ferritin nanoparticles is underway (clinicaltrials.gov, NCT03814720)

[16]. Interim phase I results for chimeric HA-based vaccines showed suboptimal memory

responses to the stem [17]. Epitope-targeting platforms–e.g., conjugate, virus-like particle

(VLP), and peptide vaccines–have also been tested in clinical trials [6, 7, 18–20]. These anti-

gens present conserved epitopes outside their native context, which avoids interference from

the HA head and other mutation-prone domains [21]. Epitope-targeting platforms have

largely concentrated on M2e, the exposed ectodomain of M2 that is conserved separately

within IAV and IBV [20, 22–24]. These vaccines elicit M2e-specific antibodies in humans, but

at inefficacious levels [25]. Furthermore, it is unclear whether targeting M2e alone can stimu-

late sufficient protection [6, 26–31]. Designing antigens that elicit strong focused responses to

conserved influenza epitopes remains a major challenge.

We are developing a vaccine platform based on peptide nanoparticles that induce func-

tional antibodies to small molecules and protein-based epitopes. This technology is based on

peptide monomers (~70 amino acid) made using solid phase synthesis that consist of three

functional domains: an amphipathic helix that drives nanoparticle self-assembly, two universal

CD4 T cell epitopes that mediate high-affinity and long-lived antibody responses, and a tar-

geted B cell epitope at one or more predetermined sites [32–35]. To enhance immunogenicity,

the nanoparticles are paired with GLA-SE, an adjuvant consisting of a toll-like receptor-4 ago-

nist in a stable emulsion [36]. This adjuvant promotes TH1-mediated antibody class switching

and antibody-dependent cellular cytotoxicity (ADCC), which are requirements for protection

mediated by non-neutralizing antibodies to sites such as M2e [20, 37]. Previously, we used the

platform to target Helix A, a conserved site on the HA stem that is bound by broadly neutraliz-

ing antibodies [35]. The vaccine partially protected mice from a lethal H1N1 challenge, con-

firming the antiviral potential of the platform. This proof-of-concept also illustrated the

platform’s unique ability to present helical epitopes in their native conformation, which is dif-

ficult for most epitope-targeting platforms [38, 39]. Herein, we demonstrate how this platform

can be used to construct pan-subtype influenza vaccines.

Materials and methods

Ethics

This study was carried out in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health, the US Public Health

Service (PHS), and the Association for Assessment and Accreditation of Laboratory Animal

Care International (AAALAC). Protocol #2019–17 was approved by the Institutional Animal

Care and Use Committees (IACUC) of the Infectious Disease Research Institute which oper-

ates under a currently approved Assurance #A4337-01, which is in accordance with PHS Pol-

icy for Humane Care and Use of Laboratory Animals.
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Peptides

Peptides were synthesized by Bio-Synthesis Inc. (Lewiston, TX). All peptides contained N-ter-

minal acetyl units and chloride counterions. The peptide monomer used in these experiments

contains 4 IKKIEKR heptad repeats fused to TCEs selected from Measles virus F2 protein

(LSEIKGVIVHRLEGV) and Hepatitis B surface antigens (FFLLTRILTIPQSLD) [40, 41].

These peptides were made using standard SPPS chemistry with Fmoc protecting groups. The

M2e 1xC-terminus antigen was made by synthesizing the M2e sequence (SLLTEVETPT) onto

the C-terminal of the coiled-coil domain with a Gly linker. Peptides with two epitope copies

on the self-assembly domain were synthesized in the following manner: 1), the target B cell epi-

tope sequence was synthesized separately and purified with its reactive functionalities pro-

tected; 2), the self-assembling peptide monomer was synthesized with labile protecting groups

on the desired Lys sidechains (heptad f positions) located in the first and fourth heptad repeats,

3), while still on the SPPS solid support, these Lys z-amine groups were deprotected and

bonded to the C-terminal carboxylic acid of the B cell epitope sequence using standard SPPS

amide formation chemistry, and 4), all remaining protecting groups were removed to yield the

final peptide. This strategy was used to build antigens targeting M2eIAV, M2eIBV, NA222,

NA238, HA127, and HA1231. The Helix AH1 and Helix AIBV sequences were synthesized onto

the N-terminus of the carrier peptide during SPPS.

Dynamic light scattering

DLS spectroscopy was performed using a Zetasizer Nano (Malvern Instruments, UK) with a 4

mW He–Ne laser (633 nm) and a fixed detection angle (173˚). To avoid interference from the

adjuvant emulsion, peptides were formulated without GLA-SE in PBS or MOPS (100 mM, 50

mM NaCl, pH 7.5) at the concentration used for immunizations. Solutions were filtered through

a 0.2 μm nylon membrane and loaded into a plastic microcuvette. Measurements were carried

out in general purpose model with the following parameters: material setting was protein (refrac-

tive index = 1.440), dispersant setting was water (viscosity = 0.8872 cP, refractive index = 1.330),

10 cycles averaged per measurement, and 30 second temperature equilibration at 25˚C.

B cell epitope discovery

Protein sequences of influenza B viruses were created using human isolate sequences from the

NIAID Influenza Research Database and Global Initiative on Sharing All Influenza Data [42,

43]. Sequences were sorted to exclude duplicate sequences. The final data set contained 3182

HA and 3331 NA sequences. Epitopes were aligned with this library using MUSCLE to identify

contiguous regions of homology between strains [44]. Homologous regions were identified on

published X-ray diffraction structures of representative HA (B/Yamanashi/166/1998) and NA

(B/Brisbane/60/2008) proteins. The numbering of NA238, HA127, and HA1231 are relative to

the position of the start codon Met residue in the respective proteins.

Sequence homology

Homologous and nonhomologous substitutions were tallied for each residue in the putative B

cell epitopes. Amino acid identity and frequency at each position was calculated. The relative

prevalence of each substitution was used to generate a visual representation of conservation.

Protein modeling

Files depicting X-ray crystallography structures of representative HA [42] and NA [43] pro-

teins were downloaded from the RCSB Protein Data Bank (PDB). These PDB files were
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opened with the Visual Molecular Dynamics (VMD) viewer [45]. Proteins were depicted with

the ColorID coloring method and Surf drawing method. Glycosylation was depicted using

bonds.

Animals

Mice (Charles River Laboratories) were housed and handled by highly trained researchers

under specific pathogen-free conditions with easy access to food and water within the Infec-

tious Disease Research Institute vivarium (Seattle, WA). Since the vaccine’s CD4 T cell epi-

topes bind promiscuously to a broad repertoire of MHCII molecules, our experiments

employed outbred female CD-1 mice (6–8 wks) to more accurately model immune responses

in a genetically diverse population like humans. Peptides were dissolved phosphate-buffered

saline (PBS) or MOPS (100 mM, 50 mM NaCl, pH 7.5) buffers and filtered through a 0.2 μm

nylon membrane to create immunization stocks. Final concentrations of these stocks were

determined by amino acid analysis (AAA Service Laboratory, Damascus, OR). The peptides

were combined on the day of immunization with GLA-SE adjuvant containing 5 μg of the syn-

thetic TLR4 agonist, GLA, formulated in a final 2% oil-in-water stable emulsion. The adjuvant

was provided by Immune Design Corp (Seattle, WA). Mice, which were inoculated under iso-

flurane anesthesia, received 10 μg of each indicated peptide diluted in 100 μL total volume,

50 μL of which was injected in each hind limb using a prime-boost regimen (d0 and d21).

Serum was collected on d35 and used to measure antibody responses. Influenza challenge

experiments were performed by infecting mice intranasally with 5LD50 dose of A/California/

07/2009 or B/Florida/04/2006 in 50 μL PBS. Mice were monitored daily for 14 days to measure

overall health, body weight changes and survival rates. According to the humane endpoint

guideline, mice losing 25% of their body weight relative to the baseline weight were euthanized

immediately by carbon dioxide overdose followed by cervical dislocation (euthanized mice,

n = 262; found dead mice, n = 26). Mice were monitored for weight loss and other signs of

virus induced morbidity daily and sacrificed if weight loss exceeded 25% of initial body weight.

Monovalent challenge data represents three combined experiments with ntotal = 18 (M2eIAV),

25 (NA222), 22 (Helix AH1), 21 (M2eIBV), 16 (NA328), 21 (Helix AIBV), 20 (HA127), and 20

(HA1231). The bivalent studies were single experiments (n = 10 mice/group for M2e + Helix A

bivalents and n = 11/group for HA127 formulations). Each mouse received 10 μg of the indi-

cated peptides. HA127 monovalent and M2eIBV + Helix AIBV bivalent groups (n = 3/group)

were included as pulmonary controls for the second bivalent study. For the pulmonary analy-

sis, whole lungs of a subset of mice (n = 3/group, chosen randomly from groups receiving

HA127 formulations) were flash frozen on day 4 post infection for viral titer determination.

Briefly, frozen lungs were homogenized using the gentleMACS™ Dissociator M tubes in 1mL

sterile PBS and viral titers determined by 50% tissue culture infectious dose in Madin-Darby

canine kidney (MDCK) cells.

Antibody assays

Serum samples were serially diluted 5-fold from 1/20 in blocking buffer (3% BSA in PBST)

and IgG endpoint titers were assayed by ELISA using previously-reported methodologies [32].

Endpoint titers were calculated using GraphPad Prism (GraphPad Software, San Diego, CA).

Antibodies to M2eIAV, M2eIBV, NA220, NA238, HA127, and HA1231 were detected using cyste-

ine-terminated synthetic peptides conjugated to BSA through maleimide crosslinking chemis-

try. Helix A titers, as well as cross-reactivity of HA127 and HA1231 antisera, were measured

using recombinant HA from A/California/07/2009 or B/Malaysia/2506/2004 (Protein
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Sciences). NA238 antisera was screened against an available recombinant NA (A/Thailand/1

(KAN-1)/2004) with a sequence nearly identical (PRPNDGT) to the NA238 epitope.

Plaque reduction neutralization titer (PRNT)

Serum samples from immunized mice were inactivated by incubation at 56 ˚C for 30 min.

Inactivated serum samples were serially diluted two-fold in DMEM medium without FBS in a

96-well beginning with a 1:2 dilution in a total volume of 100 μL. Following serum dilution,

100 μL of diluted B/Florida/4/2006 virus (50 pfu) was added to all serum samples with TPCK-

trypsin (1 μg/mL). Virus: serum mixtures were incubated at 37 ˚C for 60 min. Following incu-

bation, virus−serum mixtures were incubated with MDCK cell monolayers (200 μL/well) in

6-well plates at 33˚C for 60 min with rocking to distribute the medium every 15 min. Wells

were overlaid with 1% agarose-MEM and incubated for 3 days at 33˚C in a CO2 incubator.

Following this incubation, plaques were fixed with 4% paraformaldehyde (PFA) and stained

with crystal violet prior enumeration. Negative (media only) and naive murine serum samples

were also assessed. Neutralizing antibody titers are presented as the highest total serum dilu-

tion capable of reducing the number of plaques by 50% compared to a virus only control

(PRNT50).

NA-Star assay

Serum samples from NA1 and NA2 immunized and naive mice were assayed for NA enzymatic

inhibition using the NA-Star influenza neuraminidase inhibitor resistance detection kit

(Applied Biosystems). To measure sera-mediated inhibition, immunized and naive sera was

serially diluted two-fold in NA-Star assay buffer in white, flat-bottom, 96-well cell culture

plates. Virus (B/Florida/04/06 or B/Malaysia/2506/04) was diluted to the determined 3EC50

(half-maximum effective concentration) and 25 μL was added to each well. The plates were

incubated for 30 min at 37 ˚C. Data points were expressed as percent inhibition of maximal

NA enzymatic activity, which was determined by the activity of virus without the addition of

sera. ELISA signals were fit with an inhibition regression algorithm and IC50 values deter-

mined using GraphPad Prism.

Results

Maximizing immunogenicity to an M2e-targeting antigen

We have previously reported that peptides synthesized with one B cell epitope located at either

the N- or C-terminus induced equivalent antibody responses [35]. To test whether immunoge-

nicity could be improved by increasing B cell epitope multiplicity [32, 34, 46, 47], mice

received a prime boost immunization (S1 Fig) with peptides containing either a c-terminal

M2eIAV epitope or two M2eIAV epitopes located on the self-assembly domain (S1 Table). As

indicated in S2 Fig, antibody titers were >103-fold higher in animals receiving peptides con-

taining two M2eIAV epitopes. This result provides further evidence that increasing epitope

valency enhances B cell receptor engagement and resultant immune responses.

Monovalent and bivalent vaccines targeting known influenza epitopes

We next investigated whether the 2x-self-assembly domain template could generate protective

responses to other linear influenza epitopes, including M2eIAV and M2eIBV [20, 48–51] and a

sequence lining the NA active site, NA222 (S2 Table), that is nearly 100% conserved across all

influenza subtypes [52]. Also included in this study were two stem-targeting peptides (the pre-

viously reported Helix AH1 and a new pan-IBV antigen, Helix AIBV) [53–55]. The Helix A
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monomer designs contain one B cell epitope copy at the N-terminus. This design utilizes the

natural helicity of the peptide’s self-assembly domain to constrain and present the epitope

sequence as a helix [35]. Dynamic light scattering (DLS) verified each peptide formed nano-

particles (20–40 nm mean hydrodynamic diameters) in aqueous buffer (S3 Fig). We have

previously verified that peptides lacking the self-assembly domain fail to reach these size distri-

butions (data not shown). Antibody titers induced by each epitope were comparable (Fig 1A

and 1B), although Helix AIBV yielded more variable titers to recombinant HA than Helix AH1.

Mice were then challenged with H1N1/A/California/07/2009 (Fig 1C and 1D) or B/Florida/04/

2006 (Fig 1E and 1F). Respectively, M2e, Helix A and NA222 vaccines conferred approximately

75%, 70% and 50% survival regardless of the challenge strain, although weight loss trends

across experiments were indistinct. This consistency exemplifies the versatile “plug-and-play”

nature of the platform and substantiates its potential for building antiviral vaccines.

The partial protection conferred by these vaccines signaled that combining peptide antigens

may further improve efficacy. To test this concept, the two best antigens (M2e and Helix A)

were mixed to create pan-H1 and -IBV formulations. Peptide mixtures exhibited ~30 nm

diameters (S4 Fig) by DLS, suggesting co-formulation does not interfere with assembly or

cause aggregation. Bivalent formulations stimulated antibodies to each epitope (Fig 2A and

2B), boosted survival to 90% (Fig 2C and 2E) and statistically decreased weight loss (Fig 2D

and 2F) over control mice 1–2 days earlier than their composite monovalent vaccines. Dose-

ranging studies comparing 20 μg monovalent formulations to the bivalent made from 10 μg of

each peptide have confirmed that the improved protection conferred by bivalent formulations

is not due to peptide dose (data not shown). These data suggest that targeting two influenza

epitopes simultaneously has the potential to improve protection.

Identification and validation of conserved influenza B antibody epitopes

These encouraging results suggested that bivalent vaccine efficacy might be improved by

substituting more protective antigens in the formulation. To identify potential new epitopes,

homologous amino acid stretches within IBV HA and NA were located on published X-ray

diffraction structures [56, 57]. Suitable antibody targets were�6 amino acids in length, sur-

face-exposed, had a linear or looped conformation, and did not possess a glycosylation motif

(Asn-X-Ser/Thr/Cys). Three sites (HA127, HA1231, NA328) were identified that showed strong

sequence homology across >3000 IBV strains (S5 Fig). HA127 (Fig 3A and 3C) is situated

along a raised ridge on the HA stem and lies end-to-end with the Helix A epitope, which is

rotated toward a recessed hydrophobic pocket. HA127 abuts conserved glycosylated Asn resi-

dues (N25, N301, N330). HA1231 (Fig 3A and 3B) is a loop flush with the HA head. It is adja-

cent to several potential glycosylation sites that vary by strain (e.g. N59, N145, N163). Each

residue in these HA epitopes is >99% conserved across type B viruses. The NA328 epitope (Fig

3D and 3E) lies near but is more surface exposed than NA222. To gauge their antiviral activity,

peptides targeting these 3 putative epitopes were vetted in vivo. Two copies of each sequence

were grafted onto identical locations within the peptide monomer (S3 Table) and prior to

immunization, their ability to form nanoparticles was confirmed (S6 Fig), as was their

sequence conservation with the virus challenge strain (B/Florida). Importantly, these peptides

induced epitope-specific antibodies that bound recombinant protein (S7 Fig) and protected

against virus (Fig 3F and 3G). As indicated, HA127 conferred 100% survival, while HA1231 and

NA328 groups exhibited 80% and 65% survival, respectively. Average weight loss in the HA127

and HA1231 groups remained less than 10%, exhibiting statistically better protection than the

NA328 vaccine. These results demonstrate a general ability to identify and target novel antibody

epitopes using protein sequence and structural data.
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Fig 1. Peptides targeting conserved IAV and IBV epitopes stimulate robust antibody responses and confer protection

against lethal challenge. CD-1 mice (n = 8) were immunized in a prime-boost regimen with the indicated (A) IAV or (B) IBV

peptides plus GLA-SE (or GLA-SE only as a control) and d35 sera was assayed for titers by ELISA. A one-way analysis of variance

(ANOVA) followed by Tukey’s multiple comparisons test was used for statistical analysis (�P<0.05, n.s. not significant). On d42,

mice were challenged with (C,D) A/California/07/2009 or (E,F) B/Florida/04/2006 and then monitored for survival and weight

loss plotted as mean ± S.E.M. Monovalent challenge data was compiled from three experiments (n = 5-8/experiment). Survival

curves were compared by log-rank Mantel-Cox test. Data from each weight loss time point were compared by one-way ANOVA

followed by Dunnett’s multiple comparisons test. Color coded asterisks without brackets denote significance between control and

indicated test group. Brackets indicate comparison between test groups. For weight loss, significance over the control is shown

until maximum difference and comparison between test groups was maximum on the designated day (�P<0.05, ��P<0.01,
���P<0.001, ����P<0.0001).

https://doi.org/10.1371/journal.pone.0252170.g001
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To further characterize these epitopes, the mechanism of antibody protection was deter-

mined. Neutralizing capacity was measured by plaque reduction neutralization titers

(PRNT50). M2eIBV antisera served as a non-neutralizing negative control. HA1231 was the only

antigen that led to PRNT50 values above the limit of detection in all mice (S8A Fig). The NA

neutralizing ability of NA328 antisera was also assayed (S8B Fig). NA222 antisera served as a

Fig 2. M2e + Helix A coformulations stimulate epitope-specific antibody responses to both targets and improve antiviral

protection. CD-1 mice (n = 11) were immunized with (A) M2eIAV + Helix AH1 or (B) M2eIBV + Helix AIBV formulations

(10 μg/peptide) in GLA-SE and d35 sera was assayed for antibody titers by ELISA. Statistical differences were calculated with

an unpaired two-tailed t-test (�P<0.05). On d42, mice were challenged with (C,D) A/California/07/2009 or (E,F) B/Florida/

04/2006 and then monitored for survival and weight loss plotted as mean ± S.E.M. Survival curves were compared by log-rank

Mantel-Cox test. Data from each weight loss time point were compared by one-way ANOVA followed by unpaired two-tailed

t-test. Asterisks denote significance between control and indicated test group. For weight loss, significance over the control is

shown until maximum difference (��P<0.01, ���P<0.001, ����P<0.0001).

https://doi.org/10.1371/journal.pone.0252170.g002
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positive control since this epitope lies in the active site. Each target produced neutralizing anti-

bodies with similar potency against strains representing both Yamagata (B/Florida) and Victo-

ria (B/Malaysia) lineages. These data confirm that the epitope discovery method has antiviral

utility and help explain the protection conferred by these vaccines.

Fig 3. Identification of 3 pan-IBV antibody epitopes that mediate robust antiviral protection. X-ray diffraction images of an (A)

HA trimer and (D) NA tetramer. Magnified views of the (B) HA1231, (C) HA127, and (E) NA222/NA328 epitopes are shown, with amino

acid residues labeled. Protein subunits are colored grey and purple. Known and putative antibody epitopes are depicted in red and

yellow, respectively, and the NA active site is shown in pink. Glycosylated Asn residues are depicted with green highlighting. CD-1

mice were immunized with peptides containing the indicated epitopes plus GLA-SE (or GLA-SE only) and antibody responses were

confirmed using d35 sera. On day 42, mice were challenged with 5LD50 B/Florida/04/2006 and monitored for (F) survival and (G)

weight loss plotted as mean ± S.E.M. Challenge data is compiled from three experiments (n = 5-8/experiment). Survival curves were

compared by log-rank Mantel-Cox test. Data from each weight loss time point were compared by one-way ANOVA followed by

Dunnett’s multiple comparisons test. Color coded asterisks without brackets denote significance between control and indicated test

group; brackets indicate comparison between test groups. Significance between test and control weights are shown for each time point

until the group’s maximum statistical significance. Weight loss comparisons using brackets represent the most significant difference

between indicated test groups, which occurred on the designated day (�P<0.05, ��P<0.01, ���P<0.001, and ����P<0.0001).

https://doi.org/10.1371/journal.pone.0252170.g003
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Construction of maximally protective influenza B vaccines

Given its strong protection, we tested whether HA127 could be paired with the next-best IBV

antigens (HA1231, M2eIBV, Helix AIBV) to enhance protection relative to the M2eIBV + Helix

AIBV vaccine. Bivalent mixtures exhibited 20–40 nm nanoparticles and stimulated antibody

titers to each component (S9 Fig and Fig 4A). Following challenge, the HA127 + Helix AIBV

and HA127 + M2eIBV combinations conferred complete survival (Fig 4B). The HA127 + Helix

AIBV group showed the least weight loss (Fig 4C) relative to the adjuvant only control and sta-

tistical improvement over the other HA127 formulations; in this group, only one mouse lost

>5% body weight and all mice showed�100% original body weight by day 12. Pulmonary

viral loads (Fig 4D) further differentiated efficacy, using the HA127 and M2eIBV + Helix AIBV

formulations as positive control references. The HA127 + Helix AIBV combination led to a

>104-fold reduction compared to the adjuvant only group and was the only combination to

perform statistically better than HA127 and M2eIBV + Helix AIBV benchmarks. Although it is

not clear how broadly applicable this multivalent strategy is for building influenza vaccines,

this experiment provides further evidence that targeting two HA epitopes simultaneously can

significantly improve antiviral protection.

Fig 4. Bivalent HA127-based influenza B vaccines confer strong protection against influenza B challenge. CD-1 mice (n = 11) were immunized with

HA127 + M2eIAV, HA127 + Helix AIBV, and HA127 + HA1231 formulations (10 μg/peptide) in GLA-SE. (A), Day 35 antisera were assayed for titers to

each target separately by ELISA. One-way ANOVA followed by Tukey’s multiple comparisons test was used for statistical analysis (��P<0.01). On day

42, mice were challenged with 5LD50 B/Florida/04/2006 and were monitored for (B) survival, (C) weight loss plotted as mean ± S.E.M, and (D) viral

load. Survival curves were compared by log-rank Mantel-Cox test. Data from each weight loss time point were compared by one-way ANOVA followed

by Dunnett’s multiple comparisons test. Color coded asterisks without brackets denote significance between control and indicated test group. Brackets

indicate comparison between test groups. For weight loss, significance over the control is shown until maximum difference and comparison between

test groups was maximum on the designated day (�P<0.05, ���P<0.001, ����P<0.0001). For viral load, lungs were assayed four days after infection for

mean tissue culture infectious dose (TCID50), with the limit of detection depicted with dashed line. One-way ANOVA followed by Tukey’s multiple

comparisons test was used for statistical analysis (�P<0.05).

https://doi.org/10.1371/journal.pone.0252170.g004
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Discussion

More broadly protective influenza vaccines would greatly reduce the global health burden

caused by seasonal and pandemic outbreaks. Here, we describe a platform for building these

vaccines using a ~70 amino acid peptide containing a self-assembling domain, the targeted

conserved B cell epitope, and two universal CD4 T cell epitopes that bind a broad repertoire of

MHCII molecules [34, 35]. Advantages of this technology include the elimination of non-rele-

vant immunogenic sequences common to conjugate vaccines and VLPs that induce competing

antibody responses including carrier suppression [32, 34, 58, 59]. Its manufacture by solid

phase peptide synthesis prevents the need for chemical conjugation reactions that require

extensive downstream purification [47, 60, 61], and unlike many peptide-based vaccines, it

assembles into nanoparticles that facilitate humoral immunity [35, 62].

Here, we measured the protection induced by conserved epitopes on all three influenza

surface proteins. Vaccines targeting M2e induced high antibody titers and the two different

M2eIAV and M2eIBV sequences mediated equivalent survival (~75%) in their respective chal-

lenge experiments. This internal consistency implies that protection was dependent upon its

lower copy number relative to HA and NA (~1:60:5 M2:HA:NA) [63] and/or epitope accessi-

bility [64, 65], but independent of challenge strain or epitope sequence. With respect to the

two Helix A epitope sequences, Helix AH1 induced a high uniform antibody titer, whereas

Helix AIBV antibody levels were more variable which may be due to subtle differences in con-

formation of the IBV epitope or the glycosylation at the nearby Asn residue (N330; see Fig 3),

which is not present in H1 HAs [66]. Despite these difference in titers, both epitopes induced

the same level of protection that closely approximated the M2e epitopes. The NA222 epitope

also induced a robust antibody titer, but protection was more limited (~50%) than the M2e

and Helix A epitopes following IAV and IBV challenge. Again, this may be due to antibody

accessibility since NA222 is buried in the NA active site (Fig 3E). Finally, we tested whether pro-

tection rates could be improved with bivalent formulations using the M2e and Helix A epi-

topes, and in both IAV and IBV challenge experiments, overall survival improved to 90% and

body weights were better maintained than the monovalent vaccines. Thus, establishing the

ability to co-formulate and target 2 epitopes to improve overall survival.

Having validated the technology using known epitopes, we searched for new highly con-

served sequences that were readily exposed on the surface IBV hemagglutinin and neuramin-

idase, which has considerably less sequence variability than IAV [67]. Three sequences,

HA127, NA328, HA231, were selected that are >99% identical across 3,000 independently iso-

lated IBV strains and their induced survival following viral challenge was, respectively,

100%, 80%, and 66%. To the best of our knowledge, this is the first reported characterization

of these epitopes, although residues in NA328 may reside within the epitope of a recently

described anti-H5N1 monoclonal antibody [68]. Interestingly, while these three antisera rec-

ognized their peptide-conjugate ELISA reagents equivalently, the antibodies induced by the

linear epitope (HA27) demonstrated better native protein binding and antiviral protection

than the looped/curved epitopes (HA231 and NA328), thus suggesting a bias in the ability to

induce antibodies to linear versus constrained epitopes. In this same experiment HA231 and

NA328 induced similar recombinant protein antibody titers, although HA231 stimulated bet-

ter protection, which could be due to the relative abundance of these two proteins on the

virus. Preliminary mechanism of action studies indicated that antibodies directed against

HA231 neutralized virus infectivity, which may be related to its location near the receptor

binding site, and anti-NA222 and NA328 antibodies inhibited neuraminidase activity. Pre-

sumably, ADCC is also an important mechanism of protection given its role in mediating

anti-M2e and anti-HA stem antibody activity [48–50]. Futures studies will confirm this and
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test whether the novel HA stem binding antibodies directed against HA27 and Helix A can

also inhibit endosomal fusion [6, 7, 10, 26].

The HA stem is the primary target for building broadly protective influenza vaccines,

which is also supported by these studies. The HA127 + Helix AIBV IBV vaccine stimulated

100% survival, negligible weight loss and a 104-fold decline in viral titer relative to controls,

and outperformed HA127 formulations with either HA1231 or M2eIBV, two antigens that

showed better monovalent activity than Helix AIBV. Targeting these highly conserved IBV epi-

topes may be superior to existing antigen designs that include stem regions with lower homol-

ogy or are obscured by glycosylation, the HA head or viral envelope [18, 26, 45]. Future

experiments will test whether this improved antibody protection involves coordinated Fc

receptor engagement and/or neutralizing activity.

Our method for eliciting antibodies to highly conserved sequences represents a new para-

digm for building improved influenza vaccines. Given the putative role that these conserved

subdominant epitopes play in maintaining viral function, they should be much less susceptible

to mutation. To this point, mAbs specific to conserved epitopes in the HA2 stem [13, 69, 70],

NA [71, 72], and M2e [73, 74] are very effective in preventing viral escape. However, the devel-

opment of vaccines using this approach will require an escape mutant analysis and a need to

show protection against multiple strains of virus. This is especially true for epitopes that lie in

mutation-prone regions, such as HA1231. Establishing protection against strains bearing differ-

ent glycosylation patterns would also corroborate their utility. Additionally, antisera should be

screened against host cells or tissues to test for autoreactivity, as reported for a class of stem-

specific B cells [6, 26, 75]. The improved efficacy with bivalent formulations establishes the

framework for multi-epitope influenza vaccines, which is also supported by studies showing

improved vaccine efficacy following antibody induction to multiple proteins [6, 7, 28–31]. It is

also akin to combination monoclonal therapies, where targeting disparate sites on cytomegalo-

virus, rabies, HIV, Zika, and Chikungunya viruses enhanced antiviral activity and prevented

viral escape synergistically [76–79]. Confirmation of the safety and efficacy of this vaccine plat-

form for IBV will support its use for targeting highly conserved epitopes in IAV and other

viruses.

Supporting information

S1 Table. Peptide vaccine designs used in these studies.

(TIF)

S2 Table. Targeted IAV and IBV epitopes in M2e, NA, and HA proteins and their corre-

sponding peptide vaccine design.

(TIF)

S3 Table. Novel epitopes in IBV HA and NA (see Fig 3) and their corresponding peptide

vaccine design.

(TIF)

S1 Fig. Mouse experimentation timeline.

(TIF)

S2 Fig. Increasing epitope valency improves antibody responses. (A) Amino acid sequences

of M2e antigens. The M2eIAV epitope (italics) was synthesized onto the C-terminus of the pep-

tide monomer (1xC-terminus) or grafted onto two lysine sidechains within the self-assembly

domain using isopeptide bonds (2xself-assembly domain). CD4 T cell epitopes from Measles

and Hepatitis B are shown in bold. (B) Immunogenicity of peptides. CD-1 mice (n = 5)
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received a prime-boost immunization with GLA-SE (or GLA-SE only) and d35 titers were

assayed by ELISA. A one-way analysis of variance (ANOVA) followed by Tukey’s multiple

comparisons test was used for statistical analysis (���P<0.001).

(TIF)

S3 Fig. Peptides targeting conserved influenza A and B epitopes assemble into nanoparti-

cles. Dynamic light scattering was used to verify nanoparticle size of (A) M2eIAV, (B) NA222,

(C) Helix AH1, (D) M2eIBV, and (E) Helix AIBV.

(TIF)

S4 Fig. M2e + Helix A peptide mixtures form nanoparticles. Dynamic light scattering was

used to verify nanoparticle size of (A) M2eIAV + Helix AH1 and (B) M2eIBV + Helix AIBV for-

mulations.

(TIF)

S5 Fig. Evolutionary sequence profiles of new IBV antibody targets. The amino acid

sequence of each epitope is depicted, with the residue letter height proportional to its muta-

tional frequency in aligned HA or NA sequences. Amino acids are colored according to chemi-

cal properties: green (hydrophilic), black (hydrophobic), red (acidic), and blue (basic).

(TIF)

S6 Fig. Peptides targeting putative influenza B epitopes assemble into nanoparticles.

Dynamic light scattering was used to verify nanoparticle size of (A) HA127, (B) HA1231, and

(C) NA328.

(TIF)

S7 Fig. Peptides targeting putative IBV epitopes stimulate epitope-specific antibodies that

bind recombinant protein. CD-1 mice (n = 8) were immunized the indicated peptide plus

GLA-SE (or GLA-SE only). Antisera (d35) from each group was screened for titers to (A)

BSA-epitope conjugates or (B) recombinant HA/NA. One-way ANOVA followed by Tukey’s

multiple comparisons test was used for statistical analysis of titers (���P<0.001, ����P<0.0001,

n.s. not significant).

(TIF)

S8 Fig. Neutralization capacity varies by influenza B target. (A) Plaque reduction neutral-

ization titers. CD-1 mice (n = 5) were immunized (d0, d21) with the indicated peptide

plus GLA-SE (or GLA-SE only). Day 35 antisera was assayed for neutralizing activity in

a PRNT assay. One-way ANOVA followed by Dunnett’s multiple comparisons test was

used for statistical analysis between control and indicated test group (�P = 0.0156,
��P = 0.0044, n.s. not significant). Limit of detection depicted with dashed line. (B) NA neu-

tralizing ability. CD-1 mice (n = 3) were immunized as above. Day 35 antisera was assayed

for its ability to prevent cleavage of an NA substrate (see Materials and methods). One-way

ANOVA followed by Tukey’s multiple comparisons test was used for statistical analysis.

Color coded asterisks without brackets denote significance between control and indicated

test group; brackets indicate comparison between test groups (�P<0.05, ��P<0.01, n.s. not

significant).

(TIF)

S9 Fig. Bivalent HA127-based formulations exhibit normal nanoparticle sizes. Dynamic

light scattering was used to verify nanoparticle size of (A) HA127 + M2eIAV, (B) HA127 + Helix

AH1, and (C) HA127 + HA1231 formulations.

(TIF)
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