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Objective.e goal of this study was to review the current literature on the biology of Ewing’s sarcoma, including current treatments
and the means by which an understanding of biological mechanisms could impact future treatments. Methods. A search of
PubMed ande Cochrane Collaboration was performed. Both preclinical and clinical evidence was considered, but speci�c case
reports were not. Primary research articles and reviews were analyzed with an emphasis on recent publications. Results. Ewing
sarcoma is associated with speci�c chromosomal translocations and the resulting transcripts/proteins. Knowledge of the biology
of Ewing sarcoma has been growing but has yet to signi�cantly impact or produce new treatments. Localized cases have seen
improvements in survival rates, but the same cannot be said of metastatic and recurrent cases. Standard surgical, radiation, and
chemotherapy treatments are reaching their efficacy limits. Conclusion. Improving prognosis likely lies in advancing biomarkers
and early diagnosis, determining a cell(s) of origin, and developing effective molecular therapeutics and antiangiogenic agents.
Preclinical evidence suggests the utility of molecular therapies for Ewing sarcoma. Early clinical results also reveal potential for
novel treatments but require further development and evaluation before widespread use can be advocated.

1. Introduction

Ewing’s sarcoma family tumors (ESFT) include Ewing’s sar-
coma (ES), peripheral primitive neuroectodermal tumors
(PNET), and Askin tumors. ese tumors are undifferenti-
ated small blue round cell tumors that mainly appear in bone
and less frequently in so tissues [1, 2]. While these tumors
are rare, accounting for less than 10% of all human malig-
nancies, they are of the most aggressive and oen occur in
the long bones and pelvis where they can quickly metastasize
to the bone marrow, lung, and other tissues [3, 4]. ES is the
second most common bone cancer, most oen occurring in
Caucasian children, adolescents, and young adults, and is
considered a high-grade malignancy [5–8]. Originally, it was
thought that ES was derived from primitive neuroectodermal
cells; however, there is much debate over the origin of ES. In
this regard, endothelial, mesodermal, epithelial, neural, and
mesenchymal cells have all been hypothesized as an origin,
but there is substantial research indicating that mesenchymal
stem cells (MSC) may be the original progenitor of Ewing
tumor proliferation [9], and Ewing tumors most oen harbor
nonrandom balanced chromosomal translocations of the
EWS gene on chromosome 22 and any one of several ETS

family genes. e most common case is the translocation
with the FLI1 gene on chromosome 11 [1, 10]. However, a
reciprocal inversion-insertion-translocation mechanism that
results in an EWS-ERG fusion gene has also been described
[11]. Since the t(11;22)(q24;12) translocation is most fre-
quent, its protein product has been suggested as a main
component of ES malignancies [12]. e chimeric proteins
in ES play a key role in pathogenesis [13]. EWS protein is
thought to be an RNA-binding protein, and FLI1 is thought
to be a DNA-binding transcription factor targeting a variety
of genes related to a range of functions including apoptosis
and differentiation [14]. Although there are only 1–3 cases of
ES/PNET per million people/year, recurrence of the cancer
has been shown to have a survival rate of as low as 10% and
is associated with an increased risk of chronic health condi-
tions. Treatment of ESFTs generally involves combinations
of chemotherapy, surgery, and radiation. But, considering
that approximately 30% of cases will suffer from relapse, it is
critical that cure rates are improved, and morbidity rates are
decreased. ere is much preclinical evidence that suggests
that a greater understanding of the biology and biochemistry
of ES/PNET, particularly the activity and expression of
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EWS-ETS, could advance efficacy of molecularly targeted
therapeutics and future treatment [15].

2. Methods

Extensive searches of both e Cochrane Collaboration
and PubMed were performed. Searches included “Ewing
sarcoma,” “Ewing’s sarcoma,” “Ewing’s sarcoma review,”
“Ewing’s sarcoma AND pnet,” “Ewing’s sarcoma family
tumors,” “Ewing’s sarcomaANDmeta-analysis,” “Ewing’s sar-
coma treatment,” “Ewing’s sarcoma AND surgery,” “Ewing’s
sarcoma therapy,” “Ewing’s sarcoma AND mesenchymal
stem cells,” “t(11;22)(q24;q12) chromosomal translocation,”
“EWS-ETS,” and “EWS-FLI1.” Speci�c case reports were not
reviewed. Primary research articles and reviews were ana-
lyzed with an emphasis on recent publications.

3. Chromosomal Translocations

ESFTs are characterized by translocation of the EWS gene
with a member of the ETS family genes. A study by Kovar
et al. [16] suggests that Ewing’s sarcoma is characterized by
EWS fusions with FLI1 in 90–95% of cases, ERG in 5–10%
of cases, and that FEV, ETV1, and ETV4 fusions occur
in less than 1% of cases. ere are several studies report-
ing that a reciprocal translocation of band q24 on chromo-
some 11 and band q12 on chromosome 22 leads to an in-
frame fusion producing an EWS-FLI1 fusion gene in 85%
of cases [3, 4, 10]. While the EWS-ERG fusion has also
been well documented, due to its complexity incidences of
this speci�c fusion are low [11]. EWS-ETS fusions can vary
in chromosomal breakpoints, and there are studies suggest-
ing that differences in breakpoints may be related to varying
severities of prognosis [17]. EWS and ETS family combina-
tions are speci�c to ES, but combinations of EWS with other
genes result in a number of other pathologies. It seems to be
the case that the partner gene, rather than the EWS gene, is
responsible for specifying the tumor type [1].e function of
the EWS protein is not well understood; however, aberrant
protein-protein interactions are primarily attributed to the
EWS gene, and it is presumed that it is the N-terminus of
the EWS that provides the capacity for induction of ES in
human cells [3]. Because the EWS-FLI1 fusion is the most
common, it may be the case that its transcript is the origin
of ES pathologies, and thus it is the fusion gene that has been
studiedmost thoroughly [12]. Fusion of the 5� segment of the
EWS gene with the 3� segment of the FLII1 gene produces
the EWS-FLI1 fusion protein that alters the expression of
numerous target genes described below.

4. Fusion Proteins and Targets

EWS-ETS chimeric proteins, namely, the EWS-FLI1 protein,
are a topic of extensive study because of their tumor speci�c
expression. It is well documented that the EWS-FLI1 protein
has an array of downstream targets that contribute to tumori-
genesis [18, 19]. For these reasons, EWS-FLI1 is considered a
potential therapeutic target.

EWS-FLI1 has been well documented as both a transcrip-
tional activator and repressor.e function of EWS as a tran-
scriptional activator and FLI1 as the DNA-binding domain
is likely responsible for the combined activation/repression
abilities of the chimeric protein. Of course, EWS-ETS pro-
teins still require the aid of additional proteins and general
transcriptional machinery to function [20]. EWS-FLI1 tends
to upregulate genes involved in proliferation, cell differ-
entiation, and cell survival such as IGF1, NKX2, TOPK,
SOX2, and EZH2. On the other hand, EWS-FLI1 tends to
suppress genes involved in apoptosis and cell cycle arrest
including IGFBP3, p57kip, p21, and TGFB2 [3, 21–35].
Microarray analyses have identi�ed over 1000 EWS-FLI1
regulated genes, of which 80% are downregulated targets
[18]. ere are also a number of secondary events, such
as mutations of p53, which have been correlated with pro-
gnosis [36]. EWS-FLI1 does not transform human cells in
vitro, suggesting that the cooperating mutations or related
parallel pathways are essential for pathogenesis [18]. Related
pathways include p53, INK4A, IGF-1/IGF-1R, bFGF, CD99,
and a list of other tyrosine kinase and Wnt pathways [1, 37].
MicroRNAs (miRNAs) are well described in adult cancers
and either block target miRNA expression or cause degra-
dation. miRNA-145 has been described as the most active
in ESFTs, but other works have shown that other miRNAs
could have comparable modulatory effects [37]. Further
study of the above pathways, along with RNA processing fac-
tors, may shed light onto the speci�cmolecular therapies that
could be effective in treating ES/ESFTs. Because of the com-
plexity of ES, and the fact that many different events and
players must take part for pathology to occur, the disease is
difficult to treat. A comprehensive atlas is needed to improve
prognostics, develop of molecular therapies, and eventually
treat outcomes.

5. Origins of Ewing’s Sarcoma Family
Tumors (ESFT)

ere is currently no consensus on the cell of origin in
Ewing’s sarcoma. Identi�cation of the cell of origin has pro-
ved problematic, as cellular environment can cause changes
in the expression and differentiation effects of EWS-FLI1.
Much of the early evidence has pointed towards primitive
neuroectodermal and neural crest cells as the cells of origin
[3, 38, 39]. Since both ES and PNET contain the same
chromosomal translocation, t(11;22)(q24;q12), this hypo-
thesis seemed reasonable. But EWS-FLI1 was shown to
induce neuroectodermal differentiation and upregulate genes
associated with neural differentiation, leading to the hypoth-
esis that the neuroectodermal features of ES may simply
be the result of EWS-FLI1 expression [3, 18, 40–43]. It
is also important to consider that the long bones of the
limbs originate from themesoderm, so in normal conditions,
primitive neuroectodermal cells may not even be present in
bone.

In light of the above assertions, MSCs have repeatedly
been hypothesized as the cellular progenitor of ES. MSCs
are bone marrow derived, making them a feasible candidate
for the ES cell of origin considering most cases of ES appear



ISRN Oncology 3

in bone. Murine studies have demonstrated that EWS-FLI1
can transform bone marrow derived MSCs to ES-like tumors
and induce MSC transformation in the absence of other
oncogenics, and that EWS-FLI1 and EWS-ERG blocked
proper differentiation in MSCs [44–46]. In human ES cell
lines, it has been shown that EWS-FLI1 silencing results in
convergence to a gene expression pro�le similar toMSCs.e
same group was able to demonstrate that ES cell lines could
also differentiate along osteogenic lineage when EWS-FLI1
was under long-term inhibition [9]. However, when human
MSCs were infected with a retrovirus containing EWS-FLI1,
tumors fail to develop in mouse hosts [47]. erefore, EWS-
FLI1 on its ownmay not cause cell transformation and tumor
growth. It may be the case that cell transformation and ES
tumor growth only occur in the presence of EWS-FLI1 when
speci�c mutations already exist in a given cell [3]. Because
neural-derivedMSCs are present in bonemarrow, and neural
crest cells contain mesenchymal lineage plasticity, Riggi et al.
suggested that the concept of neuroectodermal/neural crest
andMSCs as the cells of origin need not bemutually exclusive
[18, 48]. A recent study has demonstrated that EWS-FLI1
was well tolerated and led to alteration of expression in target
genes in both human embryonic stem cell derived neural
crest stem cells and neuromesenchymal stem cells [49].
Coming to a consensus on the cell of origin in ES is crucial in
developing earlier detection of sarcomagenesis. Knowledge
of early precursor cells is also vital to accurately describing
pathogenesis and �nding molecular therapies that provide
more target speci�c clinical treatments.

6. Clinical Approaches and
Targeted Therapeutics

Localized pain is the most common early symptom of ESFTs.
Since many ES patients are young and are oen physically
active, the pain is frequently mistaken for bone growth or
injury. is is clearly an issue as it can result in a delayed
or misdiagnosis [50, 51]. ES oen progresses rapidly and
results in visible or palpable swelling, but tumor bulk and
swelling can be difficult to detect in femoral, pelvic, chest
wall, or spinal tumors. Diagnostic imaging initially includes
a two plane radiograph, followed by magnetic resonance
imaging (MRI) to more accurately de�ne the local extent of a
given tumor as well as the relation to nearby blood vessels
and nerves. MRI and/or computed tomography (CT) are
currently the imaging standard, but there are recent studies
suggesting that PET, thallium-201 scintigraphy, and dynamic
MRI may provide more valuable information [52–55]. If a
biopsy is to be taken following imaging, it is recommended
that the surgeon perform it, so that the incision is in
an appropriate location with consideration to a de�nitive
surgery, especially when limb salvage will be attempted [56].
Advances in diagnosis will continue to play a key role in
improving cure/survival rates of ESFT.

6.1. Standard Treatment Options. Due to the high lethality
of ESFTs, much of the literature advocates an aggressive
multidisciplinary approach. is approach typically refers
to a combination of surgery, chemotherapy, and radiation.

All three forms of treatments have shown efficacy in some
cases [52]. Most current therapies call for multidrug chem-
otherapy, consisting of cycles of varied combinations of
vincristine, doxorubicin, cyclophosphamide, etoposide, ifos-
famide, actinomycin D, and topotecan, followed by local
therapies (radiation and/or surgery) [8, 53].

6.2. Local Control/Local Tumors. Radiotherapy was regarded
as the standard treatment for local/focalized tumor therapy
for decades [53]. However, the current evidence advocates
surgery when complete resection is possible [57, 58]. Resec-
tion, with preoperative and postoperative chemotherapy,
without postoperative radiation is the treatment of choice
when large margins around the tumor can be achieved.
Several groups have shown that this approach is preferable
when surgery is possible, and that limb salvage procedures
can be performed without a decrease in survival rates [57–
61]. Surgical resectionmargins are most oen de�ned as des-
cribed in the Ennecking surgical staging of osteosarcoma
[60]. At this point in time, there are no randomized control
trials comparing local control therapies (radiotherapy versus
surgery). For this reason the preferred local treatment for ES
is a topic of debate. Radiation therapy, as the only form of
therapy, is typically the treatment of choice for patients with
large tumors or with tumors in locations that make surgical
resection not possible. It is important to consider that studies
on radiotherapy might be comprised of an unfavorable
subject group [52, 53]. A study by Schuck et al. reviewing
1058 cases showed that patients who received resection of a
portion of the tumor, oen referred to as “debulking,” with
subsequent radiotherapy presented local control rates that
did not differ from those receiving radiotherapy alone [57].
Due to the above evidence, or lack thereof, it seems that
until further development, the choice of local control therapy
should bemade on a case-by-case basis [53].With the current
developments in treatment modalities, the survival rate of
patients with localized ES approaches 70% �ve years aer
diagnosis [62, 63].

6.3. Metastatic Tumors. e prognosis of patients with meta-
static tumors drops signi�cantly compared to localized tumor
cases [64]. In 25% of ES cases, there is evidence of metastatic
disease, which is regarded as the most adverse prognostic
factor [53, 62–65]. Patients with combined bone, bone
marrow, and lung metastases have been shown to have a 4-
year event free survival (EFS) rate of as low as 14% [64].
Treatment regimens include chemotherapy in combination
with radiation therapy. Intense therapies that include higher
doses of chemotherapy, sometimes along with total body
radiation and stem cell support, have not shown increased
EFS rates [66, 67]. Improving cure rates and increasing EFS
rates have proved to be a challenge in patients presenting
with metastatic disease, and potential molecular therapies
are likely the means through which the prognosis may be
improved.

6.4. Recurrent Tumors. 30–40% of patients suffer from
recurrent tumors either locally, distally, or some combination
of the two, and their prognosis remains poor [68]. Upon
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recurrence, chances of survival have been estimated at less
that 20–25% [69]. Treatment for recurrent cases also typically
involves some combination of chemotherapy, surgery, and
radiation therapy, with treatment types and doses based on
extent of local recurrence and presence of metastatic disease
upon recurrence. ere is no speci�c treatment regimen
established for recurrent cases, primarily because of the vari-
ance between cases. Treatment should be altered according
to the individual treatment provided to the patient before
recurrence. Again, molecular therapies seem to be the means
through which prognosis and ESF rates can be improved.
Because of the poor prognosis associatedwith recurrence and
because patients with metastatic presentation are more likely
to suffer from recurrence, these therapies should be focused
on halting metastases and recurrent tumor formation
[65].

6.5.Molecularerapeutic Targets. Some of themost promis-
ing therapeutics have been outlined by Kelleher andomas
which include EWS-FLI1 gene silencing, IGF-IR1 antag-
onists, mTOr inhibition, KIT oncoprotein targeting, CD-
99-directed monoclonal antibody treatment, allogenic NK
cell immunotherapy, tumor necrosis factor-related apop-
tosis, histone deacetylase inhibitors, NKX2 transcriptional
repression, along with a list of other kinases inhibitors [15].
Other potential strategies include the use of small interfering
RNAs (siRNA), YK-4-279 to block RNA helicase A bind-
ing, O-linked beta-N-acetylglucosamine, miRNA (speci�-
cally miRNA-145) targeting, and various antiangiogenic and
antivascular strategies [15, 37, 70].

erapeutics based on antisense cDNA and siRNA
have been shown to reduce EWS-FLI1 expression and
increase survival rates in mice with ESFTs present [71–73].
However, due to the fact that these types of therapeutics
are challenging to administer pharmacologically, they are
not necessarily applicable clinically, and several groups have
asserted that the next reasonable step is focusing on protein-
protein interactions rather than the ESFT genes themselves
[15, 37, 74]. In contrast, insulin-like growth factor receptor-1
(IGF-1R) antagonists include a list of antibodies and tyrosine
kinase inhibitors, which have shown responses in phase
I and phase II clinical trials. A phase I study performed
in 2010 treated a group of patients with the monoclonal
antibody targeting IGF-1R-�gitumumab. 16 of these patients
had Ewing’s sarcoma, one of which had a partial response,
another had complete response, and 6 patients with ES had
disease stabilization that lasted from 4 to 16 months [75]. In
another phase I/II trial of �gitumumab, 16 patients with ES
showed no dose limiting toxicity, and during the subsequent
phase II trial, 106 patients were available with 25 showing
stable disease and 15 showing partial response [15, 76]. e
R1507 monoclonal antibody has also been studied in phase
II clinical trials. In 125 patients with ES/PNET treated with
R1507, 18 patients had a complete or partial response [77].
In addition, a phase II study by the same group showed a
complete or partial response rate of 10% in a group of 133
patients [77]. It has also been suggested that combining
IGF-1R inhibitors with mTOR inhibitors may improve
efficacy [15, 37]. A 2011 study phase I trial revealed that this

combination could be well tolerated, and tumor reduction
was seen in 2 of 3 patients with ES and 4 of 10 patients with
adrenocortical carcinoma [78]. e review by Kelleher and
omas, published in 2012, compiled phases I and II data
and concluded that the response rate to IGF-R1 therapeutics
was about 10% [15]. However, there was a phase II study of
a novel mTOR inhibitor that reported a 30% clinical bene�t
rate in 50 patients with bone sarcoma [79].

e Children’s Oncology Group investigated a different
target site by examining KIT oncoprotein inhibition in a
phase II study by treating 70 patients with imatinib mesylate.
24 of these patients had ES/PNET, and only one partial
response was observed. No responses were observed in the
other cancer patients [80]. Few clinical studies have been
performed to speci�cally investigate antiangiogenic and anti-
vascular effects of molecular strategies in ES. Bevacizumab
is a US Food and Drug Administration approved antiangio-
genic agent that has been used in a clinical setting. A phase
I study including 5 ES patients resulted in stable disease for
one patient for 4 months, and two patients had stable disease
for 9 months while being treated with bevacizumab every
2 weeks [81]. Four ES patients treated with bevacizumab
and liposomal doxorubicin in another study resulted in two
patients with stable disease for 10 months [82]. e National
Cancer Institute and Children’s Oncology Group have been
conducting clinical trials of ES-targeted molecular therapies,
including IGF inhibitors, mTOR inhibitors, and NK cell and
other immunotherapies, but most have been phases I and II
trials. Clinical evaluation of ESFT molecular therapies is in
the early stages and will require more study and phase III
randomized trials with larger subject groups before further
development occurs.

7. Conclusions

ES is a rare pathology; however, it is a highly lethal disease
that has a poor prognosis when metastatic or following
recurrence. In contrast to localized cases of ES, advances in
standard treatment approaches have not been encouraging
with regard to improving the survival rates for metastatic and
recurrent cases, as 5-year survival rates have recently been
described as less than 25% [8, 62, 63]. It has been suggested
that chemotherapy and radiation treatments are reaching
their efficacy and toxicity limits [83]. In light of these �ndings,
it becomes increasingly essential to improve the efficacy
and utilization of targeted molecular therapies. Although it
will clearly be difficult, there is much opportunity available
to improve biomarkers used to identify targets as well as
therapies for biological/molecular treatment of such targets.
A critical gap in the research is �nding a consensus on the cell
of origin of ESFTs, which could help tomake earlier detection
of ES possible. e understanding of the chromosomal
expression of ESFTs and their transcripts has grown substan-
tially, but more knowledge is needed to advance therapeutics.
Targeting protein-protein interactions, especially of EWS-
FLI1, seems promising, and antiangiogenic therapies appear
to have potential for combating metastatic and recurrent
cases as well. Further study of the biology of the disease
and consequent development of targeted therapies will likely
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be the means to improve prognosis and survival rates of ES
patients.
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