
EDITORIAL
Putting the Pieces Together: NOD-Like Receptor Protein 3
Inflammasome Priming and Activation in Barrett’s
Epithelial Cells
fter insults such as injury caused by gastrointestinal
Areflux, the stratified squamous epithelium of the
esophagus is replaced with glandular mucosa (Barrett’s
esophagus), which can be a mosaic of metaplastic columnar
intestinal-like or gastric-like epithelium.1 This Barrett’s
epithelium shows altered differentiation and is character-
ized morphologically by a sequence of dysplasia, from low-
grade to high-grade and intestinal metaplasia, which
ultimately may evolve to invasive cancer.

Endoscopic screening for Barrett’s esophagus is widely
practiced and patients often are selected for screening based
on the presence of multiple well-established risk factors for
Barrett’s esophagus including chronic gastroesophageal
reflux disease (GERD), older age (>50 y), male sex, white
race, increased body mass index, intra-abdominal fat distri-
bution, and hiatal hernia.2,3 Although the exact pathophysi-
ological mechanisms responsible for GERD remain unclear,
studies have shown that mucosal immune and inflammatory
responses, characterized by specific cytokine and chemokine
profiles, may underlie the diverse esophageal phenotypes of
GERD.4 In GERD and Barrett’s esophagus, an essential role
has been ascribed to T cells in the initiation of inflammation
in the esophagus, and a balance between T-cell responses
and phenotype may play an important role in disease pro-
gression. Obesity is a chronic low-grade inflammatory state,
fueled by adipose tissue–derived inflammatory mediators
such as interleukin (IL)6, tumor necrosis factor (TNF)-a, and
leptin, and highlights the link of inflammation and Barrett’s
esophagus.5 In a study by the Mayo Clinic in 2012, it was
reported that fat around the gastroesophageal junction and
visceral fat were associated not only with Barrett’s esoph-
agus, but also with increased esophageal inflammation and
high-grade dysplasia in subjects with Barrett’s esophagus,
independent of body mass index. Visceral fat therefore might
promote esophageal metaplasia and dysplasia.6 Proin-
flammatory cytokines (TNF-a, IL1b, IL6, and IL8) and che-
mokines (CXCL-1 and CXCL-2) have been shown to be
induced in esophageal cells by exposure to acidified media
(pH 4), especially in those cells lacking glutathione peroxi-
dase 7.7,8 Loss of glutathione peroxidase 7 expression is a
critical step in promoting the TNF-a–induced activation of
proinflammatory nuclear factor-kB signaling, a major player
in GERD-associated Barrett’s carcinogenesis.8 Furthermore,
up-regulation of DNp73 could be observed in esophageal
tissues collected from patients with GERD and Barrett’s
metaplasia. DNp73 was induced by the proinflammatory
cytokines, IL1b and TNF-a, and enhanced through exposure
to bile acids.9
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Toll-like receptor (TLR) 4 has been linked to
inflammation-associated carcinogenesis and has been found
to be increased significantly in Barrett’s esophagus. The TLR
ligand lipopolysaccharide (LPS) can activate nuclear factor-
kB signaling and IL8 as well as cyclooxygenase-2 expression
in Barrett’s esophagus cell lines and ex vivo cultures, but not
in normal squamous epithelium.10 Microbial molecular
products stimulate intestinal inflammation by activating
TLRs and inflammasomes as part of the innate immune
system. This system’s contribution to esophageal inflam-
mation is largely unknown. Gram-negative bacteria, which
dominate the esophageal microbiome in reflux esophagitis,
produce LPS. TLR4 signaling produces pro-IL1b, pro-IL18,
and NOD-like receptor protein 3 (NLRP3), which prime
the NLRP3 inflammasome.11,12

In this issue of Cellular and Molecular Gastroenterology
and Hepatology, Nadatani et al13 showed that although
normal squamous and Barrett’s cells expressed similar
levels of TLR4, LPS-induced TLR4 signaling, followed by
increased TNF-a and IL8 secretion, could be observed only
in Barrett’s cells. Barrett’s cells treated with LPS showed
increased expression of pro-IL18, pro-IL1b, and NLRP3, and
increased mitochondrial reactive oxygen species levels,
caspase-1 activity, IL1b and IL18 secretion, and lactate de-
hydrogenase (LDH) release.

Inflammasomes are named for their pattern-recognition
receptors (eg, NLRP1, NLRP3, NLRC4, AIM2), and the
caspase-1 in the inflammasome complex can interact with
these directly or indirectly.11 In most cell types, inflamma-
some function requires 2 signals. The first signal induces the
expression of pro-IL1b and pro-IL18, which primes the
inflammasome for activation by a second signal. By using
the specific TLR4 inhibitor TAK-242, the investigators
showed a lack of LPS-induced phospho-p65 expression as
well as a reduction in pro-IL18, pro-IL1b, and NLRP3
messenger RNA. Together this suggests that inflammasome
priming in Barrett’s cells is dependent on TLR4.

The second signal after priming is inflammasome com-
plex formation and cleavage of procaspase-1 to its active
form, which can be caused by a number of different stimuli
including extracellular adenosine triphosphate (ATP).
Treatment of Barrett’s cells with LPS alone or in combina-
tion with exogenous ATP activated the inflammasome as
measured by increased secretion of IL1b and IL18 and the
release of LDH (an indicator of pyroptosis, an inflammatory
form of induced cell death). This observation indicated that
the NLRP3 inflammasome is activated by LPS in Barrett’s
cells. NLRP3 small interfering RNA abolished LPS-induced
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increases in the secretion of IL1b and IL18 as well as the
release of LDH. Because the inflammasome activity is
regulated by caspase-1, the investigators showed that inhi-
bition of caspase-1 using a specific inhibitor (Ac-YVAD-CHO)
could prevent the secretion of IL1b and IL18 and the release
of LDH. Next, using MitoSox Red (Waltham, MA) to measure
superoxide produced in the mitochondria of Barrett’s cells,
the investigators analyzed the mitochondrial production of
reactive oxygen species as a known regulator of NLRP3
inflammasome activity. LPS treatment caused a significant
increase in MitoSox Red staining, which could be inhibited
by treatment with a mitochondrial antioxidant, ultimately
blocking the increased secretion of IL1b and IL18, as well as
the release of LDH.

The work presented by Nadatani et al13 applies the
findings of earlier studies on the inflammasome in other cell
types to compare and characterize the normal squamous
epithelium vs the epithelium in Barrett’s esophagus. Ver-
beek et al10 described TLR4 as expressed in esophageal
squamous cells and in Barrett’s epithelial cells and reported
that LPS caused a significant increase in the expression of
cyclooxygenase-2 in biopsy specimens of Barrett’s meta-
plasia that were cultured ex vivo. A study aiming to delin-
eate the stromal response in GERD recently showed that
treatment with acidified media and the TLR4 ligands LPS
and HMGB1 increased subepithelial myofibroblasts and IL6
and IL8 secretion in primary cultures of these human
stromal cells.14 However, little is known about the role of
inflammasomes in Barrett’s esophagus. In a number of other
cell types, NLRP3 inflammasome function requires 2 signals:
a priming event such as LPS binding to TLR4 (inducing the
expression of pro-IL1b and pro-IL18) and an activation
signal (eg, extracellular ATP) that results in the secretion of
the active forms of IL1b and IL18 and in the induction of
pyroptosis. It has been shown in mouse macrophages that
NLRP3 inflammasome function depends on LPS for priming
and extracellular ATP for activation.12,15 In contrast, in
mouse dendritic cells, mouse astrocytes, and human
monocytes, LPS alone (without exogenous ATP) can perform
both functions, priming and activation, of the NLRP3
inflammasome.12,16 The role of the NPLR3 inflammasome in
Barrett’s epithelial cells has been unclear, since it was
unknown whether 1 or 2 signals would be required for
function. Interestingly, Nadatani et al13 showed that LPS
alone (without exogenous ATP) can both prime and activate
the NLRP3 inflammasome events, which might enable the
predominantly gram-negative bacteria esophageal micro-
biome to contribute to inflammation-mediated esophageal
malignancies.

Few studies have focused on the role of the esophageal
microbiome in Barrett’s esophagus to date.17,18 By trig-
gering molecular events that both prime and activate the
NLRP3 inflammasome, LPS produced by the esophageal
microbiome might contribute to inflammation-mediated
carcinogenesis in Barrett’s esophagus, a biologically signif-
icant event. This study suggests the intriguing possibility
that manipulation of the esophageal microbiome could be a
novel strategy to prevent cancer in Barrett’s esophagus.
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