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Abstract

One of the central questions in cognitive neuroscience is the precise neural representation, or brain pattern, associated with
a semantic category. In this study, we explored the influence of audiovisual stimuli on the brain patterns of concepts or
semantic categories through a functional magnetic resonance imaging (fMRI) experiment. We used a pattern search method
to extract brain patterns corresponding to two semantic categories: ‘‘old people’’ and ‘‘young people.’’ These brain patterns
were elicited by semantically congruent audiovisual, semantically incongruent audiovisual, unimodal visual, and unimodal
auditory stimuli belonging to the two semantic categories. We calculated the reproducibility index, which measures the
similarity of the patterns within the same category. We also decoded the semantic categories from these brain patterns. The
decoding accuracy reflects the discriminability of the brain patterns between two categories. The results showed that both
the reproducibility index of brain patterns and the decoding accuracy were significantly higher for semantically congruent
audiovisual stimuli than for unimodal visual and unimodal auditory stimuli, while the semantically incongruent stimuli did
not elicit brain patterns with significantly higher reproducibility index or decoding accuracy. Thus, the semantically
congruent audiovisual stimuli enhanced the within-class reproducibility of brain patterns and the between-class
discriminability of brain patterns, and facilitate neural representations of semantic categories or concepts. Furthermore, we
analyzed the brain activity in superior temporal sulcus and middle temporal gyrus (STS/MTG). The strength of the fMRI
signal and the reproducibility index were enhanced by the semantically congruent audiovisual stimuli. Our results support
the use of the reproducibility index as a potential tool to supplement the fMRI signal amplitude for evaluating multimodal
integration.
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Introduction

The human brain integrates the visual image and spoken words

related to a concept during the learning process, and a neural

connection associating the visual image and the spoken word is built

[1]. When the person later receives an audiovisual stimulus composed

of a visual image and its related spoken word, the multimodal

semantic information is integrated to match the learned concept [2].

Human functional imaging studies have associated the posterior

superior temporal sulcus and the middle temporal gyrus (pSTS/

MTG) with the crossmodal integration of audio and visual features

of objects [3,4,5,6,7,8]. Crossmodal integration has also been

demonstrated in a distributed neural system encompassing primary

sensory and higher-order association areas, including the hippo-

campus, entorhinal, perirhinal, and parahippocampal cortices

[9,10,11]. Many functional imaging studies focus on brain areas

where the crossmodal integration occurs, factors (e.g. time, space,

content, and task-related) which affect the crossmodal integration,

and effects of the integration on behaviors such as perception and

response [5]. Recently, Werner and Noppeney studied multimodal

integration at different levels e.g. stimulus salience, integration of

higher-order features, and semantic retrieval for object categoriza-

tion and action selection [11].

One of the central goals in cognitive neuroscience is to find the

precise neural representation of a semantic category [12]. In fMRI

studies, one may use a vector composed of fMRI signal values on a

group of selected voxels, called a brain pattern, to define the neural

representation of a semantic category [13,14,15,16,17]. The brain

pattern associated with a semantic category may be elicited by a

visual stimulus (e.g. a picture), an auditory stimulus (e.g. spoken
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words) or an audiovisual stimulus (e.g. a congruent pair of picture

and spoken words). When audiovisual stimuli are semantically

congruent, the human brain integrates semantic information from

different modalities. Many studies have explored the neural

mechanisms of multisensory integration and demonstrated its

benefits on behavior, such as improvements in perception,

judgments, and responses. However, there has been less work

analyzing the brain patterns associated with crossmodal integration.

The duration and intensity of neural response, and the

coherence of a pattern of activity in response to a sensory stimulus

are typical attributes for a neural representation. Schurger et al.

introduced the reproducibility of a neural pattern across different

episodes as an attribute of a neural representation [15]. The

reproducibility was measured by an index, which was based on the

average angle between vectors of the brain patterns belonging to

the same class. It is speculated that the reproducibility of a brain

pattern corresponding to a concept should be as high as possible in

order to achieve an effective neural representation of the concept.

In this study, we analyzed the reproducibility of brain patterns

within the same semantic category (within-class reproducibility)

and the discriminability between two different semantic categories

(between-class discriminability), and explored the effect of seman-

tically congruent audiovisual stimuli on the neural representa-

tion of a semantic category through an fMRI experiment. A

semantically congruent audiovisual stimulus was composed of a

visual image and a spoken word related to the same concept.

Reproducibility was defined, as in [14], as the extent to which

the active status of a voxel remains the same across replicates

conducted under the same conditions. Discriminability was

measured by a prediction/decoding accuracy, which was obtained

by decoding the semantic categories from brain patterns. In our

fMRI experiment, the auditory stimuli were composed of two

spoken Chinese words, /lao3ren2/, meaning ‘‘old people,’’ and /

qing1nian2/, meaning ‘‘young people,’’ while the visual stimuli

were composed of two classes of face images depicting old people

and young people. These stimuli were presented to the subjects,

either unimodally or multimodally. The subjects were asked to pay

attention to the semantic category of the stimuli and make a silent

semantic judgment (‘‘old people’’ versus ‘‘young people’’).

A multi-variate pattern analysis (MVPA) method for finding a

sparse set of informative voxels was applied to the acquired fMRI

signals to select voxels for localizing brain patterns. A brain pattern

(feature vector) representing a semantic category was then

constructed for each trial by concatenating the fMRI signal values

in the chosen voxels. There were two classes of brain patterns

corresponding to the two semantic categories respectively. Similar

to [15], the brain patterns were treated as vectors and the average

angle between vectors within each category was used to measure

the reproducibility of the brain pattern. We trained a linear

support vector machine (SVM) using the feature vectors with

labels in a training data set and predicted the semantic category of

the feature vector of each trial in a test data set. The decoding

accuracy reflected the discriminability of brain patterns between

the two semantic categories.

Our results indicated that both the reproducibility index and the

decoding accuracy were significantly higher for the brain patterns

elicited from semantically congruent crossmodal stimuli than for

those from unimodal stimuli, while there was no significant

difference between reproducibility index values (decoding accuracy)

of brain patterns from incongruent crossmodal stimuli and

unimodal stimuli. This enhancement of within-class reproducibility

and between-class discriminability of brain patterns by congruent

crossmodal stimuli supports the view that crossmodal semantic

information integration facilitates conceptual representation in the

brain. We also considered the brain activity in STS/MTG, an

association area for crossmodal integration. We found that besides

signal strength, reproducibility was also significantly enhanced by

the semantically congruent audiovisual stimuli. This suggests that

the enhancement of reproducibility of brain activity in STS/MTG

might be another index, in addition to the strength of brain signals,

for evaluating multimodal integration.

Results

Distribution of informative voxels
In our data processing procedure, we searched those informa-

tive voxels that discriminated the two semantic categories ‘‘old

people’’ and ‘‘young people’’. For each subject, we applied a

pattern search algorithm based on sparse representation (see

Methods) to each training data set (60 trials) from a stimulus

condition (e.g. ‘‘congruent’’ condition) and selected the top 500

discriminative voxels. The number of voxels was defined in this

way: After these 500 voxels were removed, the decoding accuracy

rate based on the left voxels dropped close to the chance level

(50%). We observed that the voxels contained in each set of

informative voxels were distributed in a number of common brain

areas. This wide distribution of informative voxels illustrated that

many brain areas were involved in the semantic categorization

task of our experiment. Table. 1 and Fig. 1 show the distribution of

those informative voxels obtained in ‘‘congruent’’ selection on

brain atlas. In Table 1, the average number of voxels for a brain

area was obtained by averaging the numbers of voxels across four

folds of cross validation and nine subjects. From Table 1 and Fig. 1,

we can see that those informative voxels were from fusiform gyrus,

superior temporal gyrus (STG), middle temporal gyrus (MTG),

lingual gyrus, insula, precentral gyrus, cingulate gyrus, parahippo-

campal gyrus, and declive etc.

Reproducibility
After the fMRI signals were preprocessed and activated voxels

were selected, we selected informative voxels using Algorithm 1 and

tested their reproducibility in a 4-fold cross validation procedure.

In this procedure, we selected informative voxels using the training

folds and calculated the reproducibility index and average norm of

the test folds as in [15]. Additionally, we selected voxels using data

from each of the 4 stimuli conditions (congruent picture+speech,

incongruent picture+speech, picture only, and speech only) and

used the selected voxels to calculate reproducibility indices on data

from each of the 4 conditions, giving a total of 16 reproducibility

index values for each subject, after averaging across folds (see

Materials and Methods).

We obtained average reproducibility indices Ro(t) and Ry(t),
corresponding to the ‘‘old people’’ and ‘‘young people’’ categories,

where t = 1, 2, 3, 4, and 5, representing time points in a trial. We

averaged indices across subjects. The average results at t = 1 and 3

are shown in Figs. 2 and 3 respectively. At t = 1, the onset of the

first presentation of the stimulus of a trial, we expect that the brain

patterns P
(o)
i (1) and P

(y)
i (1) contain no semantic information. At

t = 3, which is 6 seconds after the first presentation of the stimulus

of a trial, we expect the brain patterns P
(o)
i (3) and P

(y)
i (3) to

contain semantic information.

For each condition used for informative voxel selection (e.g.

congruent selection), we performed a paired Wilcoxon signed rank

test on the data from the 9 subjects to compare the average

reproducibility indices Ro(3) between the 4 test stimulus

conditions (i.e. the stimulus condition of the data used for

calculating the reproducibility index). A similar comparison was

performed to the reproducibility indices Ry(3). We found that for

Reproducibility and Discriminability of Patterns
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every condition used for voxel selection, the average reproduc-

ibility indices Ro(3) and Ry(3) were significantly higher for the

congruent stimulus condition than for unimodal picture and

speech stimulus conditions at the a= 0.05 significance level. In

other words, reproducibility was enhanced by the presence of

semantically congruent audiovisual stimuli. This was not true for

the reproducibility indices Ro(3) and Ry(3) of the incongruent test

condition at the a= 0.05 significance level. We did not find a

significant difference between the average reproducibility indices

Ro(3) and Ry(3) between the picture condition and the speech

condition. Table 2 shows the p-values of the statistics tests. For the

average reproducibility indices Ro(1) and Ry(1) in the congruent

test condition, no enhancement effect was found at the a= 0.05

significance level. We also applied paired t-test to our reproduc-

ibility indices from the 9 subjects and obtained similar results to

the paired Wilcoxon signed rank test, so we omit those results here.

We also calculated the average norms Lo(t) and Ly(t) of brain

patterns across 9 subjects. The average norms Lo(t) and Ly(t) at

t = 3 (6 seconds after first stimuli onset) are shown in Figs. 4 and 5,

respectively. Considering poor signal-to-noise ratio in fMRI data,

we calculated the differences P
(o)
i (3){P

(o)
i (1) and P

(y)
i (3){P

(y)
i (1)

of brain patterns, and obtained their average norms shown in

Figs. 4 and 5. We also compared the average norms Lo(3) and

Ly(3), average norms of P
(o)
i (3){P

(o)
i (1) and P

(y)
i (3){P

(y)
i (1)

between the 4 stimulus conditions for significance. No significant

difference between any pair of stimulus conditions was found at

the a= 0.05 significance level (p-values of paired Wilcoxon signed

rank tests not presented here).

Reproducibility in STS/MTG
Human functional imaging studies have associated the pSTS/

MTG with crossmodal integration of audiovisual features of

objects. In this brain area, audiovisual integration effects have

been found, including convergence of brain activations triggered

by audiovisual stimuli, supra-additive response (enhancement) to

congruent audiovisual inputs, and sub-additive response (depres-

Figure 1. The 500 informative voxels selected in a fold of cross-validation in congruent condition for a subject.
doi:10.1371/journal.pone.0020801.g001
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sion) to incongruent audiovisual inputs. Furthermore, these effects

have been used as criteria for evaluating audiovisual integration

[3,4,5,6,7,8]. We explored the reproducibility of brain activities in

STS/MTG to see whether it is a potential index for evaluating

audiovisual integration.

For each subject, we determined two sets of voxels activated in

all stimulus conditions, one set from the left STS/MTG, the other

set from the right STS/MTG as following. First, 3000 active

voxels were obtained using correlation coefficient method under

each stimulus condition (all fMRI data of 80 trials in this stimulus

condition were used here). Thus, we obtained four sets of activated

voxels corresponding to the four stimulus conditions respectively.

We then found an intersection set of the four sets in order to obtain

the voxels activated in each of the four stimulus conditions.

Second, from the intersection set of activated voxels, we selected

those voxels with coordinates (x,y,z) located in the cubic area [-55-

a, -55+a] by [-40-a, -40+a] by [7-a, 7+a] (a = 15, Talairach

coordinates) as the set of left STS/MTG and those voxels with

coordinates located in the cubic area [55-a, 55+a] by [-40-a, -

40+a] by [7-a, 7+a] (a = 15, Talairach coordinates) as the set of

right STS/MTG. The two sets of STS/MTG voxels from Subjects

A and B are shown as examples in Fig. 6.

Using the voxel sets from left STS/MTG and right STS/MTG,

we calculated the reproducibility indices for each stimulus

condition and each subject separately for ‘‘old people’’ and

‘‘young people’’ in a manner similar to the reproducibility index

calculations for voxels from the entire brain. The average

reproducibility indices across all 9 subjects and 4 voxel selection

conditions are shown in the left subplot of Fig. 7. We found that

the average reproducibility index was significantly higher for the

congruent audiovisual stimulus condition than for each of the

other stimulus conditions at the a= 0.05 significance level. The

paired Wilcoxon signed rank test indicated at the significance level

of a= 0.05 significance level, a significant difference between

congruent and picture (p = 0.0117 for ‘‘old people’’, p = 0.0039 for

‘‘young people’’) and a significant difference between congruent

and speech (p = 0.0078 for ‘‘old people’’, p = 0.0117 for ‘‘young

people’’). These significant differences illustrated the enhancement

of reproducibility of brain activity in STS/MTG by congruent

crossmodal audiovisual stimuli. When comparing the reproduc-

ibility indices of incongruent versus picture and incongruent versus

speech, no significant difference was found at the a= 0.05

significance level.

Using the voxel sets from left STS/MTG and right STS/MTG,

we also calculated the average norm for each stimulus condition

and each subject separately for the two semantic categories in a

manner similar to the calculation of average norms for voxels from

the entire brain. The average norms across all 9 subjects and 4

voxel selection conditions are shown in the right subplot of Fig. 7.

We found that the average norm was significantly higher for the

congruent audiovisual stimulus condition than for each of the

other stimulus conditions. The paired Wilcoxon signed rank test

indicated at the a= 0.05 significance level, a significant difference

between congruent and picture (p = 0.0117 for ‘‘old people’’,

p = 0.0156 for ‘‘young people’’) and a significant difference

between congruent and speech (p = 0.0156 for ‘‘old people’’,

p = 0.0234 for ‘‘young people’’). When comparing the average

norms between incongruent versus picture and incongruent versus

speech, no significant difference was found at the significance level

of a= 0.05 significance level. These results suggested that cross-

modal audiovisual stimuli enhanced the strength of brain activity

in STS/MTG.

Decoding accuracy
Following to the former study [15], we decoded (classified) the

semantic category of the stimulus (‘‘old people’’ versus ‘‘young

people’’) based on the patterns of neural activity, and thus verified

Table 1. Brain area distribution of the voxels selected by
applying our pattern search algorithm to the data of
‘‘congruent’’ condition for 9 subjects.

Brain Region BA

Average Number
of voxels with
SEM

Talairach
Coordinates
(x , y, z)

Occipital Lobe

L/R Lingual G 17/18/19 L 35.769.8 -12 -85 -14

R 21.564.7 15 -77 -6

L/R MOG 18/19 L 6.160.9 -24 -82 -9

L/R Cuneus 17/18 L 5.461.9 -6 -94 3

R 4.061.5 4 -82 17

Temporal Lobe

L/R STG 13/22/41/42 L 25.266.1 -40 -33 9

R 29.569.0 59 -24 7

L/R MTG 21/22/37 L 26.466.6 -53 -18 -8

R 20.562.7 54 -21 -8

L/R Fusiform G 19/20/37 L 8.763.2 -45 -39 -11

R 5.462.1 46 -65 -13

L/R Insula 13/22/40 L 7.561.6 -43 -18 12

R 6.361.7 44 -7 5

L ITG 20/21/37 L 3.561.1 -58 -53 -7

Parietal Lobe

L/R Postcentral G 2/3/43 L 8.061.5 -37 -21 47

R 10.361.8 49 -15 44

Frontal Lobe

L/R Medial FG 6 L 3.760.6 -1 -13 58

R 3.060.5 7 -13 50

L/R Sub-Gyral L 4.461.4 -40 -33 -6

R 6.361.1 33 -45 6

Limbic Lobe

L/R Cingulate G 24/31 L 4.361.7 -6 -1 45

R 5.561.3 9 -4 45

L/R Parahippocampal G 35/36 L 4.261.6 -26 -30 -11

R 6.162.3 19 -30 -8

Cerebellum

L/R Declive L 35.265.7 -43 -62 -18

R 32.767.4 25 -68 -21

L/R Uvula L 13.163.6 -24 -74 -24

R 15.163.5 33 -62 -26

L/R Culmen L 9.463.0 -24 -56 -23

R 12.263.1 28 -59 -23

L/R Pyramis L 10.362.6 -16 -71 -29

R 10.063.5 7 -79 -24

L/R Tuber L 8.862.0 -27 -77 -27

R 10.663.1 38 -68 -24

Note: Only those brain areas with the average numbers of selected voxels more
than 3 are presented here. Abbreviations: BA: Broadmann brain areas; superior
(S), middle (M), inferior (I), frontal (F), temporal (T), occipital (O), gyrus (G).
doi:10.1371/journal.pone.0020801.t001

Reproducibility and Discriminability of Patterns

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e20801



the presence of semantic category-specific information in neural

representations (selected voxels). The decoding accuracy rates for

each subject were calculated through a 4 fold cross validation

similar to the calculation of reproducibility indices (see Materials

and Methods).

By averaging across the 9 subjects, we obtained a 4 (voxel

selection conditions) by 4 (training and testing conditions) matrix

of average decoding accuracy. The left 4 bars in each subplot of

Fig. 8 shows these average decoding accuracy rates (%) with their

corresponding standard error of the mean (SEM, error bars). The

average accuracy rates for the congruent training and testing

condition were 63.75%+2.19% SEM (congruent selection),

60.83%+1.80% (incongruent selection), 62.77%+2.00% (picture

selection), and 62.81%+2.02% (speech selection). These accuracy

values were significantly higher than the chance level 50%

(Wilcoxon signed rank test with a= 0.05, congruent selection:

p = 0.0039; incongruent selection: p = 0.0078; picture selection:

p = 0.0039; speech selection: p = 0.0039).

As shown in Fig. 8, for each voxel selection condition, the

average accuracy rate for the congruent training and testing

condition was the highest. For each voxel selection condition, we

have a 9 (subject) by 4 (training and testing condition) matrix of

average decoding accuracy. Applying a within-subject one-way

ANOVA on this data, with the training and testing condition as a

fixed factor, we found a main effect on the training and testing

condition (congruent selection: F(3) = 5.45, p = 0.0037; incongru-

ent selection: F(3) = 3.45, p = 0.0281; picture selection: F(3) = 7.04,

p = 0.0009; speech selection: F(3) = 3.69, p = 0.0217). For each

voxel selection condition, further multiple comparisons showed

that the decoding accuracy rate was significantly higher for the

congruent training and testing condition than for the other

conditions, and no significant difference was found between the

incongruent, picture, and speech conditions at the a= 0.05

significance level.

Furthermore, in order to explore whether the norm of feature

vector affected the between-class discriminability of brain patterns,

we normalized all feature vectors to length 1, then trained the

SVM classifier and performed prediction as above (see Materials

and Methods). The results are shown by the right 4 bars of each

subplot of Fig. 8. Similar to the case of unnormalized feature

vectors before normalization, the decoding accuracy rates were

significantly higher for the congruent training and testing

condition than for the other three conditions under all the 4

voxel selection conditions. There was no significant difference

found at the a= 0.05 significance level when we compared the

decoding accuracy rates based on unnormalized feature vectors

with those based on normalized feature vectors. For instance, the

decoding accuracy rates based on normalized feature vectors for

the congruent training and testing condition were:

63.61%+1.48% SEM (congruent selection), 58.65%+1.85%

(incongruent selection), 60.56%+1.64% (picture selection), and

63.61%+2.21% (speech selection). Thus the differentiability of

the two classes of feature vectors/brain patterns, which corre-

sponded to the two semantic categories respectively, did not

significantly depend on their norms. In our data analysis, we also

considered the differentiability of the two classes of feature

vectors/brain patterns in single brain areas. Several brain areas

(e.g. fusiform gyrus) showed the enhancement of discriminability of

two classes of brain patterns resulted by congruent audiovisual

stimuli (data not shown).

Figure 2. Average reproducibility indices Ro(t) (bars) for the brain patterns of semantic category ‘‘old people’’ across 9 subjects,
with standard error of the mean (SEM, error bars). The subplots correspond to the stimulus conditions of the (training) data used in
informative voxel selection. The bar colors correspond to the stimulus conditions of the (test) data used in reproducibility index calculation. In each
subplot, the two groups depict the average reproducibility indices Ro(t) at time points t = 1 (onset of first stimuli in trial) and 3 (6 seconds after first
stimuli onset), respectively.
doi:10.1371/journal.pone.0020801.g002
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Discussion

Generally, many brain areas are involved in the cognitive

processing of a semantic category, and one brain area can mediate

the cognitive processing of many semantic categories. One of the

central issues in cognitive neuroscience is to find the precise neural

representation, or brain pattern, of a semantic category [12].

Although many studies have demonstrated the benefits of

multisensory integration in behavior, including improvements in

perception, judgment, and response [5], the difference between

brain patterns elicited by unimodal stimuli versus crossmodal

stimuli from the same semantic category remains unclear. We

expected that crossmodal integration may facilitate neural

representations of semantic categories. Our results showed that

within-class reproducibility and between-class discriminability of

brain patterns were enhanced by semantically congruent audio-

visual stimuli, which agreed with our hypothesis.

1. Enhancements of the within-class reproducibility and
the between-class discriminability of brain patterns by
semantically congruent audiovisual stimuli

The pattern search algorithm for selecting informative voxels

used in this study was designed to maximize the ability of the

selected voxels to discriminate two semantic categories (‘‘young

people’’ vs. ‘‘old people’’). We found that these informative voxels

Figure 3. Average reproducibility indices Ry(t) (bars) for the brain patterns of semantic category ‘‘young people’’ across 9 subjects,
with SEM (error bars). The subplots correspond to the stimulus conditions of the (training) data used in informative voxel selection. The bar colors
correspond to the stimulus conditions of the (test) data used in reproducibility index calculation. In each subplot, the two groups depict the average
reproducibility indices Ry(t) at time points t = 1 (onset of first stimuli in trial) and 3 (6 seconds after first stimuli onset), respectively.
doi:10.1371/journal.pone.0020801.g003

Table 2. p-values obtained by applying paired Wilcoxon signed rank test to the average reproducibility indices Ro(3) and Ry(3).

cong. selection incong. selection picture selection speech selection

po(cong., picture) 0.0098 0.0098 0.0020 0.0059

po(cong., speech) 0.0059 0.0059 0.0137 0.0020

py(cong., picture) 0.0098 0.0039 0.0488 0.0137

py(cong., speech) 0.0273 0.0039 0.0098 0.0020

po(incong., picture) 0.4551 0.4551 0.5000 0.1250

po(incong., speech) 0.0059 0.0137 0.0573 0.0671

py(incong., picture) 0.2852 0.4551 0.4551 0.0741

py(incong., speech) 0.2129 0.1504 0.1504 0.0645

Note: For example, the rowpo(cong:,picture), contains the p-values from comparing the average reproducibility indices Ro(3) of 9 subjects between the congruent
condition and the picture condition, for each of the 4 conditions used in informative voxel selection (in each column).
doi:10.1371/journal.pone.0020801.t002
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Figure 4. Average norms Lo(t) (bars) for the brain patterns of semantic category ‘‘old people’’ across 9 subjects, with SEM (error
bars). The subplots correspond to the stimulus conditions of the (training) data used in informative voxel selection. The bar colors correspond to the
stimulus conditions of the (test) data used in reproducibility index calculation. In each subplot, the two groups depict the average norms Lo(t) at time
points t = 1 (onset of first stimuli in trial) and 3 (6 seconds after first stimuli onset), respectively.
doi:10.1371/journal.pone.0020801.g004

Figure 5. Average norms Ly(t) (bars) for the brain patterns of semantic category ‘‘young people’’ across 9 subjects, with SEM (error
bars). The subplots correspond to the stimulus conditions of the (training) data used in informative voxel selection. The bar colors correspond to the
stimulus conditions of the (test) data used in reproducibility index calculation. In each subplot, the two groups depict the average norms Ly(t) at time
points t = 1 (onset of first stimuli in trial) and 3 (6 seconds after first stimuli onset), respectively.
doi:10.1371/journal.pone.0020801.g005
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Figure 6. The voxels in STS/MTG activated by all four stimulus conditions. The central Talairach coordinates of the clusters are (55, -40, 7)
and (-55, -40, 7) for right STS/MTG (the first column) and left STS/MTG (the second column), respectively. The upper and lower rows are from Subjects
A and B, respectively. For Subject A, the numbers of voxels are 68 and 118 for right and left STS/MTG, respectively. For Subject B, the numbers of
voxels are 100 and 82 for right and left STS/MTG, respectively. The color indicates the density of selected voxels, with hotter colors indicating higher
density.
doi:10.1371/journal.pone.0020801.g006

Figure 7. Average reproducibility indices and norms from fMRI data in STS/MTG across 9 subjects. Left subplot: reproducibility indices
for ‘‘old people’’ (left group of 4 bars) and ‘‘young people’’ (right group of 4 bars) for four stimulus conditions (colors). Right subplot: average norm
for ‘‘old people’’ (left group of 4 bars) and ‘‘young people’’ (right group of 4 bars) for four stimulus conditions (colors).
doi:10.1371/journal.pone.0020801.g007
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were distributed in many brain areas including fusiform gyrus,

parahippocampal gyrus, superior temporal gyrus (STG), middle

temporal gyrus (MTG), lingual gyrus, insula, precentral gyrus,

cingulate gyrus, declive, and culmen (see Fig. 1 and Tab. 1). These

brain areas are involved in facial information processing, auditory

processing and visual–auditory integration etc, as shown by earlier

studies [3,18,19,20]. Note that several brain areas (e.g. declive and

uvula) in cerebellum were selected, as shown in Table 1.

Specifically, declive and culmen of the cerebellum were known

associated with frontal cognitive functions in psychological and

imaging studies. They are often co-activated with frontal cognitive

areas in sequencing learning, memory retrieval, and verbal

working memory [21]. However, several selected brain areas

(e.g. uvula) in cerebellum might not be involved in the

categorization tasks in our experiments. There may be two

reasons for this case: (1) there existed error of normalization

between Chinese brain and MNI standard brain, some voxels in

earlier visual areas might be misaligned into cerebellum; (2) the

voxels in these brain areas represented noise, and were selected by

MVPA algorithm [22].

By using data corresponding to the selected voxels, we

constructed brain patterns for each trial in our experiment. We

analyzed the characteristics of the neural representations of the

two semantic categories by examining these brain patterns. For

effective neural representation of a semantic category or a concept,

its brain pattern should exhibit low variability or high within-class

reproducibility across trials and high between-class discriminability

[14,15,23,24,25,26,27]. The results shown in Figs. 2, 3 and 8

indicated that both the within-class reproducibility and the

between-class discriminability of brain patterns were significantly

higher following congruent audiovisual stimuli compared with

unimodal visual or auditory stimuli. This was not true for brain

patterns following semantically incongruent audiovisual stimuli.

The reproducibility index in this study measured angles in the

high-dimensional vector space of voxel activation, rather than the

norm or signal level of voxel activation (see Equation (1) in

Materials and Methods). The results in Figs. 4 and 5 showed that

there was no significant difference in the average norms of brain

patterns from the 4 stimulus conditions. Thus no enhancement of

norms of brain patterns here led to the enhancement of the within-

class reproducibility for congruent condition. The relative fMRI

signal values of the voxels (measured by the vector angle) played a

role in the brain pattern associated with a semantic category or

concept, while the overall signal level of the whole pattern

(measured by the norm) did not. Our decoding results also showed

that the discriminability of brain patterns between two semantic

categories was not significantly related to the fMRI signal level.

Previous studies mostly focused on understanding the neural

mechanisms of multisensory integration [3,5,6,28,29]. For in-

stance, several studies explored factors such as time, space,

content, and task-related factors which influence multisensory

integration [3,4,6,7,8]. Existing evidence shows that pSTS/MTG

functions as a presemantic, heteromodal sensory area, while many

other brain areas, e.g., the perirhinal, parahippocampal, entorh-

inal cortices, and hippocampus play a critical role in binding the

meaningful aspects of audiovisual object features to form coherent,

multimodal object representations [9,10,28,29]. This study found

that semantically congruent audiovisual stimuli enhance the

Figure 8. Average decoding accuracy rates (%, bars) with standard errors of the mean (SEM, error bars) across 9 subjects for 4
training and testing stimulus conditions and 4 voxel selection stimulus conditions. The 4 subplots correspond to the stimulus conditions
of the data used for voxel selection, and the 4 colors correspond to the stimulus condtions of the training and testing data. In each of the 4 subplots,
the decoding results in the left 4 bars were obtained from unnormalized feature vectors, while the results in the right 4 bars were obtained from
normalized ones.
doi:10.1371/journal.pone.0020801.g008
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within-class reproducibility and the between-class discriminability

of brain patterns associated with semantic categories, and thus

facilitate the neural representations of semantic categories. This

within-class reproducibility was not related to the overall strength

of fMRI signals, but rather, the relative strength in different voxels.

2. Enhancement of the strength and reproducibility of
brain activities in STS/MTG

The brain area STS/MTG plays an important role in

audiovisual integration, as demonstrated by numerous neurophys-

iological and neuroimaging studies in human and nonhuman

primates [3,4,5,6,7,8]. In an object categorization experiment by

Werner and Noppeney [11], by manipulating the informativeness of

the auditory and visual stimuli, the principle of inverse effectiveness

was verified. A superadditive BOLD-response was elicited by

degraded stimuli while a subadditive or even suppressive BOLD-

response was elicited by intact stimuli. However, the pSTS/MTG

appears to be relatively insensitive to the meaning of multimodal

objects and functions as a presemantic, heteromodal sensory area

[10,28,29].

Our results showed that in STS/MTG, the BOLD response was

enhanced by semantically congruent audiovisual stimuli. This may

be a superadditive BOLD response and supports existing theory

about audiovisual integration [28,29]. Thus, we may expect that

the enhancement of reproducibility of brain patterns is due to

audiovisual integration. Our results further showed that the

reproducibility of brain activity in STS/MTG was enhanced by

semantically congruent audiovisual stimuli. The enhancement of

fMRI signal strength in STS/MTG has been used for evaluating

multimodal integration in past studies. The enhancement in

reproducibility of brain patterns in STS/MTG found in this study

may also be useful for evaluating multimodal integration.

Note that the reproducibility index used in this study was not

related to the norms of signal vectors (i.e., the strength of fMRI

signal, see Equation (1)). In ideal case, the comparison of

reproducibility indices between different stimulus conditions was

invariant to fMRI signal level. However, the increment of fMRI

signal strength might lead to a higher signal noise ratio (SNR) and

be useful for decoding as shown in a recent study. Smith et al.

demonstrated that the classification accuracy in orientation

decoding increases with the strength of BOLD response in earlier

visual areas [30]. More work is needed to clarify the relationship

between the enhancement of reproducibility of brain patterns in

STS/MTG and multimodal integration in the brain, by taking the

consideration of the strength of fMRI signal, especially at the

semantic level.

3. Conclusion
In this study, we demonstrated that semantically congruent

audiovisual stimuli may facilitate neural representations of

semantic categories through an fMRI experiment and data

analysis. We extracted brain patterns corresponding to two

semantic categories (‘‘old people’’ and ‘‘young people’’) using the

informative voxels selected by our pattern search method and

calculated the within-class reproducibility index and the between-

class discriminability index (decoding accuracy) of these brain

patterns. Our comparison results indicated that both the within-

class reproducibility and the between-class discriminability were

significantly enhanced by semantically congruent audiovisual

stimuli. We analyzed the brain activities in STS/MTG. In line

with existing results, the strength of fMRI signal was enhanced by

semantically congruent audiovisual stimuli. Based on this result,

we may expect that the enhancements of within-class reproduc-

ibility and between-class discriminability in (whole) brain patterns

may be due to audiovisual semantic integration. Further studies

are needed to demonstrate this. Congruent audiovisual stimuli also

enhanced the reproducibility of brain activity in STS/MTG.

Future work may be needed to further clarify whether the

reproducibility of brain activity in this brain area is an effective

measure for evaluating multimodal integration.

Materials and Methods

In this study, we analyzed the within-class reproducibility of

brain patterns corresponding to semantic categories based on the

data from an fMRI experiment. We present the experimental

procedure and data collection below.

1. Experimental procedure and data collection
Subjects. Nine native Chinese males, right-handed, parti-

cipated in the present study (mean age 31.5). All subjects had

normal or corrected-to-normal vision and gave written informed

consent. This study was approved by the Ethics Committee of

Guangdong General Hospital, China.

Stimuli. The visual stimuli were projected onto a screen on

the wall of the scanner room through an LCD projector and were

viewed through a mirror above the subject’s head in the scanner.

Gray scale face pictures (10.7u68.7u) of two semantic categories,

‘‘old people’’ and ‘‘young people’’, were used as the visual stimuli

(Fig. 9). We selected 80 face pictures of ethnic Chinese, with 40

pictures of old people and 40 pictures of young people. The gender

of the face pictures was balanced between two categories. The

luminance level was also matched across all pictures. The pictures

were selected so that their semantic categories could be easily

discriminated by the subjects (see 4 typical face pictures in Fig. 9).

Auditory stimuli were presented by a pneumatic headset

designed to minimize the interference from scanner noise. The

sound level of the headset was adjusted to a level at which the

subject could hear auditory stimuli clearly and comfortably. The

auditory stimuli were composed of two spoken Chinese words,

/lao3ren2/ (‘‘old people’’) and /qing1nian2/ (‘‘young people’’)

(see Fig. 9), pronounced by 4 native Chinese speakers, two males

and two females (mean age 30.5 years). Each speaker pronounced

both words for a total of eight speech stimuli, and each speech

stimulus lasted about 600 ms. The stimuli were digitally stored in

.wav format files on a computer.

Procedure. There were 4 stimulus conditions, semantically

congruent audiovisual stimuli for Condition 1 (congruent),

semantically incongruent or conflicted audiovisual stimuli for

Condition 2 (incongruent), unimodal visual stimuli of face pictures

for Condition 3 (picture), and unimodal auditory stimuli of spoken

Chinese words for Condition 4 (speech). In each trial of the

congruent condition, a visual stimulus and an auditory stimulus

were presented simultaneously and the stimuli were semantically

congruent, i.e. an old person’s face picture was paired with

/lao3ren2/ (‘‘old people’’) and a young person’s face picture were

paired with /qing1nian2/ (‘‘young people’’). In each trial of the

incongruent condition, the simultaneously presented visual and

auditory stimuli were semantically incongruent, i.e., a young

person’s face picture was paired with the spoken word /lao3ren2/

(‘‘old people’’) or an old person’s face picture was paired with the

spoken word /qing1nian2/ (‘‘young people’’).

There were 80 trials in each stimulus condition, for a total of 320

trials. The 4 conditions were randomly divided into two runs for

each subject, i.e. each run contained 160 trials from two stimulus

conditions. Each trial, which lasted for 10 s, started with 4

repetitions of the stimulus in the first 4 seconds. The onset of each

repetition was at 1 s, 2 s, 3 s, and 4 s respectively. The onset times
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of the visual and auditory stimuli in each repetition were the same

for congruent and incongruent conditions. A visual cue ‘‘+’’

appeared at 6 s. For the trials from the congruent, incongruent,

and picture conditions, the face picture was presented for 600 ms

for each repetition. For the trials from the congruent, incongruent,

and speech condition, the auditory stimulus also lasted for 600 ms

for each repetition. For bi-modal stimuli, a visual stimulus from the

80 face pictures and an auditory stimulus from the 8 speech samples

were paired randomly, randomizing the gender of the picture and of

the speaker, while ensuring the desired semantic congruity or

incongruity. Note that the 8 speech samples were used repeatedly in

the congruent, incongruent, and speech conditions.

Task for subjects. In each trial of the congruent,

incongruent, and picture conditions, the subjects were instructed

to pay attention to the age of the face pictures and make a silent

judgment on the semantic category (old people vs. young people)

each time a picture was displayed. In each trial of the speech

condition, the subjects were instructed to make a silent judgment

on the semantic category of each spoken words (old people vs.

young people). In every trial, the subject was instructed to press the

button ‘‘1’’ using his or her index finger to show attendance after

the visual cue ‘‘+’’ appeared.

Data acquisition. Scanning was performed on a GE Signal

Excite HD 3.0-Tesla MR scanner at Guangdong General Hospital,

China. For each subject, a high-resolution 3D anatomical T1-

weighted scan was acquired (FOV, 240 mm, matrix, 2566256, 128

slices, slice thickness 1.8 mm). Whole brain coverage gradient-echo

echo-planar (EPI) T2*-weighted imaging (25 slices (ascending non-

interleaved order), TR = 2000 ms, TE = 35 ms, flip angle: 70 deg,

FOV: 280 mm, matrix: 64664, slice thickness 5.5 mm (no gap)) was

used to acquire the BOLD signal.

2. Data processing
Data preprocessing. The following 7 preprocessing steps

were sequentially applied to the raw data: 1) motion correction, 2)

slice timing correction, 3) co-registration between functional data

and structural data, 4) normalization of the co-registered structural

data to a MNI standard brain, 5) data masking performed to

exclude those voxels out of the brain, 6) normalization of the

masked data of each run to zero mean and unit variance, 7)

detrending for the signal of each voxel for each run. Among the

above preprocessing steps, the first 4 were conducted using SPM

software [31].

Pattern search. For each subject, the pattern search

procedure had the following steps:

1) Constructions of simulated BOLD response function and labeled BOLD

response function: For each subject, a square wave function, the

stimulus function, was constructed so that its value was 1 at those

sample points with stimuli and 0 at those sample points without

stimuli. A simulated BOLD response function denoted as ys was then

generated by convolving the stimulus function with a standard

double-gamma hemodynamic response function (HRF) [31].

Note, the simulated BOLD response function contains no

semantic information but only activation information.

The labeled stimulus function, also a square wave, was constructed

so that it was 1 at those sample points with stimuli from the ‘‘old

people’’ category, -1 at those sample points with stimuli from the

‘‘young people’’ category, and 0 at those sample points without

stimuli. For those sample points with stimuli in the incongruent

condition, the value of the labeled stimulus function was set

according to the semantic category of the face pictures. The labeled

BOLD response function denoted as yl was generated by convolving

the labeled stimulus function with a standard double-gamma

HRF.

2) Data partition. The preprocessed fMRI data matrix with 1600

rows (sample points) was partitioned into 4 non-overlapping data

submatrices D1, D2, D3, and D4 according to rows, which

corresponded to the stimulus conditions congruent, incongruent,

picture, and speech, respectively. All these submatrices had 400

rows representing 400 sample points. Similarly, the simulated BOLD

response function ys were partitioned into 4 non-overlapping column

vectors ys
1, ys

2, ys
3, and ys

4, while the labeled BOLD response function yl

Figure 9. Example visual and auditory stimuli.
doi:10.1371/journal.pone.0020801.g009
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were partitioned into 4 non-overlapping column vectors yl
1, yl

2, yl
3,

and yl
4. The dimension of each of these column vectors was 400.

The following Steps 3 and 4 were applied to all the 4 submatrices

and 8 column vectors. For convenience we use D1, ys
1, and yl

1 as a

placeholder.

3) Selection of activated voxels based on correlation coefficient. We

performed a 4-fold cross validation on the voxel selection,

reproducibility index calculation, and decoding accuracy calcula-

tion process. In this cross validation, the data matrix D1 was

further equally partitioned into 4 non-overlapping parts according

to rows and the corresponding the simulated BOLD response vector ys
1

was also correspondingly partitioned into 4 non-overlapping parts.

In the kth fold of cross validation (k~1, � � � ,4), the kth part of

the fMRI data matrix D1 was used as a test data set and the other

three parts of D1 and their corresponding simulated BOLD

response vector were used as a training data set. Using this training

data set, we calculated the correlation coefficient of a voxel

between the fMRI time series of the voxel and the simulated

BOLD response function. The 1500 voxels with the largest

absolute correlation coefficients were selected.

4) Selecting informative voxels based on sparse representation. By focusing

on distributed activity patterns, MVPA approaches open the

possibility to separate and localize spatially distributed patterns,

which generally are too weak to be detected by univariate methods

such as general linear models (GLMs) [22,31,32,33,34,35]. In this

study, a sparse representation-based MVPA algorithm, an

extension of the voxel selection algorithm in [36], was developed

for selecting informative sets of voxels. We briefly describe this

sparse representation-based voxel selection method in the

following. Please refer to Algorithm 1 in Appendix S1 for details.

During informative voxel selection, we used fMRI data to linearly

model/represent the labeled BOLD response function, and the

coefficients or weights in the model were optimized to be as sparse

as possible. A coefficient or weight was assigned to each voxel to

reflect its contribution to the representation of the labeled BOLD

response function. Those voxels with highest absolute coefficient

values were selected. Since the labeled BOLD response function

had signs corresponding to stimuli categories, this sparse

representation was informative for discriminating the two semantic

categories. Our voxel selection algorithm iteratively builds a set of

sparse coefficients by repeatedly solving a linear programming

problem which minimized the L1 norm of the regression

coefficients of a random subset of voxels.

In the kth fold of cross validation (k~1, � � � ,4), we further

selected informative ones among those 1500 activated voxels

obtained previously.

First, the labeled BOLD response function yl
1with semantic

category information was partitioned into 4 non-overlapping parts.

In the kth fold of cross validation (k~1, � � � ,4), the vector

containing three parts of yl
1 (except the kth part) was used for voxel

selection in the following.

Using the 1500 voxels and the fMRI data submatrix containing

the three parts of D1 (except the kth part), we obtained a new

submatrix with dimension 300 by 1500. Using this submatrix and its

corresponding the labeled BOLD response vector, we selected a set

of 500 informative voxels from the 1500 activated voxels with

Algorithm 1. Through the 4 fold cross validation, 4 sets of

informative voxels were obtained based on D1 and its corresponding

labeled BOLD response function. In the sequel, we will call the 4

voxel selections based on D1 the congruent selections. Similarly, the

informative voxel selections based on D2,D3 and D4 we will call the

incongruent selections, picture selections, and speech selections, respectively.

Among the set of 500 informative voxels obtained in each

search, there might exist potential bias to a semantic category (‘‘old

people’’ or ‘‘young people’’). In other words, there might be more

voxels preferring to a semantic category e.g. ‘‘young people’’.

Although we could not determine the classes of voxels according to

the semantic categories in the above voxel selection, our two data

analysis results seems to exclude this bias: (i) Both the

reproducibility index for ‘‘old people’’ brain patterns and that

for ‘‘young people’’ brain patterns were enhanced by semantically

congruent audiovisual stimuli (see Results); (ii) In all the cases,

there existed a balance between the number of trials predicted as

semantic category ‘‘old people’’ and the number of trials predicted

as semantic category ‘‘young people’’ (48.1%+0.99% SEM, old

people vs. 51.9%+0.99% SEM, young people).

5) Pattern extraction. For the 4 informative voxel selections (e.g. 4

congruent selections) calculated from each condition in step 4, we

tested the reproducibility of the selected voxels in data from each

of the 4 conditions, for a total of 4 test sets per condition, and a

grand total of 16 test sets. Fig. 10 shows a graphical depiction of

the procedure. For example, for the voxel selection obtained in the

Figure 10. Flow chart for calculating reproducibility index, where R(t) refers to Ro(t) or Ry(t).
doi:10.1371/journal.pone.0020801.g010
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1st fold of cross validation in steps 3 and 4 for D1 (the congruent

condition), we examined the reproducibility of the selected voxels

in the 1st fold of data from each of the 4 conditions. We repeated

this for each of the 4 folds for a total of 16 test sets for the

congruent selections. Then we repeated the procedure for each

condition used in voxel selection. Note that there were totally 64

test sets for all voxel selections in 4 stimulus conditions.

We processed each of the 64 test sets as follows. For each voxel

selection (e.g. congruent selection), we obtained 4 sets of informative

voxels. Each set containing 500 informative voxels corresponded to

4 test data sets corresponding to 4 stimulus conditions respectively

(see Fig. 10). These test sets were non-overlapped with the training

data set used for voxel selection. For each of the 4 test data sets, we

concatenated the 500 fMRI signal values at time point t

(t~1,2, . . . ,5) of each trial in the 500 informative voxels and thus

constructed a 500 dimensional pattern vector. This pattern vector

was denoted as P
(o)
i (t) or P

(y)
i (t), where subscript i represents the ith

trial of each semantic category in this test data set, superscripts o and

y represent the semantic categories ‘‘old people’’ and ‘‘young

people’’.

Reproducibility indices. In [15], the angle between two

pattern vectors was used to measure their similarity. The bigger

the angle, the lower the similarity. In this paper, we also defined

the reproducibility index based on the angle between two pattern

vectors. For two classes of pattern vectors P
(o)
i (t) and P

(y)
i (t)

extracted from a test set as above, we calculated the reproducibility

indices Ro(t) and Ry(t) as in [15]:

Ro(t)~
1

No

XNo

i~1

P
(o)
i (t)

jjP(o)
i (t)jj

, Ry(t)~
1

Ny

XNy

i~1

P
(y)
i (t)

jjP(y)
i (t)jj

, t~1,2, . . . ,5, ð1Þ

where No and Ny were the numbers of trials of semantic categories

‘‘old people’’ and ‘‘young people’’, respectively, in this test data set.

The angle between two brain pattern vectors has been suggested to

reflect the difference in the contents of perception [15]. Ro(t) in (1)

describes the average angle between every pair of two pattern vectors

P
(o)
i (t) and P

(o)
j (t) across the trial indices i,j~1,2, . . . ,No,i=j, in a

test data set. The angle between two pattern vectors P
(o)
i (t) and P

(o)
j (t)

is arccos P
(o)
i (t).P

(o)
j (t)
.

(jjP(o)
i (t)jjjjP(o)

j (t)jj)
� �

, which is not related to

their norms. The larger the Ro(t), the smaller the average angle

amongst P
(o)
i (t) and the higher the similarity of the brain activation in

P
(o)
i (t) [15]. Similar conclusion is valid for Ry(t) and P

(y)
i (t). Thus as

in [15], we used Ro(t) and Ry(t) in (1) to measure the within-class

similarity of the activation pattern vectors P
(o)
i (t) and P

(y)
i (t),

respectively.
Calculation of average reproducibility indices. We

averaged the reproducibility indices across the 4 cross validation

folds from each condition. In total, this gave us 32 mean numbers:

4 (condition used to make voxel selection) x 4 (condition during

test) x 2 (semantic categories) (see Fig. 10).

For comparison, we also calculated the average norms of

pattern vectors for each test set in a similar way to [15],

Lo(t)~
XNo

i~1

jjP(o)
i (t)jj=No, Ly(t)~

XNy

i~1

jjP(y)
i (t)jj=Ny, t~1,2, . . . ,5, ð2Þ

where No and Ny were the numbers of trials of the two semantic

categories in the test set. This average norm measures the fMRI

signal level. The calculation of average Lo(t) and Ly(t) was similar

to that of average Ro(t) and Ry(t) (refer to Fig. 10).

Decoding of semantic categories for brain patterns. We

decoded the semantic category of the stimulus (‘‘old people’’ versus

‘‘young people’’) based on the patterns of neural activity. The

procedure for calculating decoding accuracy rates for each subject is

illustrated by Fig. 11, which is similar to the calculation of

reproducibility indices as shown in Fig. 10. In contrast to the

calculation of reproducibility indices, we used selected voxels to

extract feature vectors for classification. In specific, we used each set

of informative voxels obtained by Algorithm 1 to extract feature

vectors for training and test data sets (see Fig. 11). For each trial, the

feature vector P(3) was obtained by concatenating the signal values

at time t = 3 of the voxels in the informative voxel set. After all

feature vectors were constructed for both training and testing data,

we trained a linear support vector machine (SVM) classifier on the

Figure 11. Flow chart for calculating average decoding accuracy rates. In this figure, ‘‘pr. 1’’ refers to feature extraction, ‘‘pr. 2’’ refers to SVM
classifier training and prediction, and each pair of training and testing data sets after ‘‘pr. 1’’ are composed of feature vectors constructed from the
selected voxels.
doi:10.1371/journal.pone.0020801.g011
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training data. The prediction of semantic category (‘‘old people’’ or

‘‘young people’’) was performed by applying the SVM classifier to

the feature vectors of the testing data (the 20 trials, not used in voxel

selection and classifier training stages). A decoding accuracy rate

was thus obtained. For each of the 4 stimulus conditions used in

informative voxel selection, each of the stimulus conditions used in

training and testing, and each subject, we obtained 4 decoding

accuracy rates corresponding to the 4 folds of the cross validation.

We averaged accuracy rates across the 4 folds.

Supporting Information

Appendix S1 A sparse representation-based MVPA
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(DOC)
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