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Abstract

The cellular concentration of Bcl-xL is among the most important determinants of treatment response and overall prognosis
in a broad range of tumors as well as an important determinant of the cellular response to several forms of tissue injury. We
and others have previously shown that human Bcl-xL undergoes deamidation at two asparaginyl residues and that DNA-
damaging antineoplastic agents as well as other stimuli can increase the rate of deamidation. Deamidation results in the
replacement of asparginyl residues with aspartyl or isoaspartyl residues. Thus deamidation, like phosphorylation, introduces
a negative charge into proteins. Here we show that the level of human Bcl-xL is constantly modulated by deamidation
because deamidation, like phosphorylation in other proteins, activates a conditional PEST sequence to target Bcl-xL for
degradation. Additionally, we show that degradation of deamidated Bcl-xL is mediated at least in part by calpain. Notably,
we present sequence and biochemical data that suggest that deamidation has been conserved from the simplest extant
metazoans through the human form of Bcl-xL, underscoring its importance in Bcl-xL regulation. Our findings strongly
suggest that deamidation-regulated Bcl-xL degradation is an important component of the cellular rheostat that determines
susceptibility to DNA-damaging agents and other death stimuli.
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Introduction

The Bcl-2 proteins are grouped into those that promote cell

survival and those that promote programmed cell death [1]. It is

thought that the balance of activity of these two groups of proteins

serves as a rheostat that determines whether the cell lives or dies [2].

The activity of the prosurvival Bcl-2 proteins is normally dominant

in a cell. Most antineoplastic agents and other proapoptotic agents

induce changes in Bcl-2 proteins that tip the balance towards the

prodeath activity [3]. Importantly, this may involve a decrease in

the activity of prosurvival proteins, an increase in the activity of

prodeath proteins, or a combination of both.

There is substantial evidence that the level of the prosurvival

Bcl-2 family protein Bcl-xL is one of the most important cellular

determinants of patient outcome in a broad range of tumors. For

example, increased Bcl-xL expression portends a worse prognosis

in pancreatic cancer [4], thyroid cancer [5], follicular lymphoma

[6], ovarian cancer [7,8], hepatocellular carcinoma [9], and

prostate cancer [10] and it has been specifically shown that

increased levels of Bcl-xL correlate with treatment failure in

thyroid cancer [5], ovarian cancer [8], and oropharyngeal cancer

[11]. In support of a functional role for Bcl-xL in determining the

prognosis and treatment response of patients with these cancers

are the findings that (i) there is a ‘‘striking’’ correlation between

resistance to treatment with a panel of 122 chemotherapeutic

agents and Bcl-xL expression levels when assessed in 60 different

types of tumor cells [12]; (ii) overexpression of Bcl-xL confers a

multidrug resistance phenotype to tumor cells [13]; (iii) a small

molecule or antisense that selectively inhibits Bcl-xL increases

sensitivity to chemotherapy in vivo [14,15]; (iv) at least in some

cells, there is a bcl-x gene-dosage effect for resistance to DNA-

damaging agents [16]; and (v) increased Bcl-xL expression

increases susceptibility to carcinogen-induced tumor formation in

mice [17]. When considered together, these findings suggest that

tumor cell Bcl-xL levels have an important functional role in

determining patient outcome.

The expression level of Bcl-xL is also important in determining

the extent of damage in certain forms of tissue injury; in fact, Bcl-

xL levels may be upregulated to protect against certain forms of

injury. For example, liver cells with decreased Bcl-xL levels
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demonstrate increased susceptibility to injury [17,18]; conversely,

transgenic overexpression of Bcl-xL protects against liver injury

[19]. In this context, it is intriguing that hepatic Bcl-xL expression

is upregulated in response to liver injury [20,21]. Similarly, Bcl-xL

levels are upregulated in the esophageal mucosa in response to

chronic acid reflux [22]. It is likely that the increased Bcl-xL in

these and other instances protects against tissue injury.

The findings outlined above underscore the importance of

understanding the mechanisms by which Bcl-xL levels are

regulated. We and others have previously shown that two

asparagines in human Bcl-xL undergo deamidation to aspartyl or

isoaspartyl residues and that the rate of deamidation of these

asparagines increases in susceptible tumor cells that are treated

with DNA-damaging agents [16,23,24]. We now present evidence

that asparagine deamidation has been conserved in Bcl-xL-like

proteins from the simplest extant metazoans through the human

form of Bcl-xL. This extent of conservation suggests that

deamidation has a critical role as a regulatory posttranslational

modification of Bcl-xL. Indeed, we demonstrate here that the rate

of deamidation dynamically modulates the cellular level of Bcl-xL

because deamidation is a continuous but regulated process that,

like phosphorylation in other proteins, activates a conditional

PEST sequence to target Bcl-xL for degradation. Importantly, we

show that in susceptible tumor cells, DNA-damaging agents

decrease Bcl-xL levels, which increases cellular susceptibility to

death signaling, because these agents induce an increase in the rate

of deamidation of Bcl-xL and, consequently, an increase in the rate

of degradation of Bcl-xL. In contrast, however, we have previously

shown that at least in some nontransformed cells the increased rate

of Bcl-xL deamidation and consequent degradation that would

otherwise occur upon treatment with DNA-damaging antineo-

plastic agents is suppressed by p53-retinoblastoma protein (pRb)

signaling; hence, Bcl-xL levels remain static in these cells when

they are treated with DNA-damaging antineoplastic agents [16].

Therefore, Bcl-xL deamidation is a regulatable process and certain

stimuli can shift the balance of cellular prosurvival and prodeath

activity by altering the rate of Bcl-xL deamidation.

Results

Bcl-xL Deamidation Is Highly Conserved
Asparagine deamidation is a nonenzymatic posttranslational

modification. Although asparagine deamidation occurs spontane-

ously, its rate can be regulated by changes in the pH, ionic

composition, or temperature of the surrounding cellular microen-

vironment [25]. An asparagine is most susceptible to deamidation

when it is immediately followed by a glycine in a conformationally

flexible region of a protein because deamidation is initiated when

the peptide bond nitrogen of the N+1 amino acid attacks the

carbonyl carbon of the asparagine side chain—this is facilitated by

the reduced steric hindrance of glycine and flexibility of the

surrounding sequence [25].

Human Bcl-xL has a large conformationally flexible region

between the BH4 and BH3 domains that is referred to as its

flexible loop (Figure 1A) [26] and we have previously demon-

strated that two asparagines that are immediatedly followed by

glycines that lie within the flexible loop undergo deamidation [16].

We now report that Bcl-xL-like proteins from sponge through

human contain asparagine-glycine sequences within a region that

is predicted to be conformationally flexible between the BH4 and

BH3 domains (Figure 1B) [27,28]. The widespread presence of

these asparagine-glycine sequences in the flexible region is striking

as there is no other obvious sequence similarity within this region

across all species (Figure 1B), and it suggests that the presence of

an asparagine-glycine sequence per se is a conserved feature of the

flexible loop of Bcl-xL. Additionally, there are a number of species

that express Bcl-xL–like proteins that have a long flexible region

immediately upstream of the BH4 domain (Figure 2A), and we

found that each of these proteins contains an asparagine-glycine

sequence in this region (Figure 2B), suggesting that an asparagine-

glycine sequence within a flexible region is a conserved feature of

Bcl-xL.

To objectively assess whether asparagine-glycine sequences are

indeed a conserved feature of the Bcl-xL flexible loop, we

performed a de novo analysis of an independently assembled

group of Bcl-xL-like proteins, the Bcl-xL homology group of the

Bcl-2 family database[29], using the MEME conserved motif

discovery algorithm[30]. MEME is a widely used tool that

searches for sequences that are reiterant within an input group

of proteins and assigns each an E-value, a statistical estimate of the

probability that the sequence would occur with an equal or greater

frequency than it occurs in the input group of proteins if the amino

acids of the proteins were positionally randomized[31]. Sequences

with E-values of less than 16122 likely represent conserved, and

therefore functional, motifs[32].

In a dataset consisting of the sequences of the entire region

between the BH4 and BH3 domains from all of the members of

the Bcl-xL homology group in the Bcl-2 database (Figure S1) [29],

the asparagine-glycine dipeptide occurs in more sequences and

with a greater frequency than any other dipeptide and it is

assigned an E-value of 2.061023 by MEME. Furthermore, almost

half (91/187) of the asparagines in the dataset are a component of

an asparagine-glycine sequence. These findings strongly suggest

that there is selective pressure to maintain the asparagine-glycine

sequence in this region. This implies that deamidation is a

conserved feature of the Bcl-xL flexible loop because, to our

knowledge, the only function asparagine-glycine dipeptides could

have in this context is to serve as deamidation sites. We examined

this further by determining if deamidation occurs within three

flexible loops in which the asparagine-glycine sequences are

surrounded by widely disparate sequences: the flexible loops in the

human, Xenopus laevis, and zebrafish forms of Bcl-xL (Figure 3A).

We have previously demonstrated that two asparagines in the

flexible loop of human Bcl-xL undergo deamidation[16]. Deam-

idation is readily detected in human Bcl-xL because the

deamidated forms migrate more slowly than the native form

during SDS-PAGE[16]. The more slowly migrating forms do not

Author Summary

Cellular levels of the pro-survival protein Bcl-xL are an
important determinant of cellular susceptibility to many
death stimuli, including most cancer therapies. We
previously showed that human Bcl-xL undergoes deami-
dation – the conversion of two neutral asparaginyl side-
chains into negatively charged aspartyl side-chains – a
process that occurs spontaneously but is accelerated by
the treatment of tumor cells with DNA-damaging agents.
Here, we show that deamidation activates a hitherto
undetected signal sequence within Bcl-xL that targets it for
degradation by a pathway involving the proteolytic
enzyme calpain. This increased degradation of Bcl-xL, and
the consequent enhanced cellular susceptibility to pro-
grammed cell death, may contribute to the ability of DNA-
damaging agents to kill tumors. We also demonstrate that
deamidation of Bcl-xL has likely been conserved from the
simplest metazoans to humans, underscoring the impor-
tance of deamidation in the regulation of Bcl-xL.

Deamidation Regulates Bcl-xL Levels
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develop—that is, deamidation does not occur, if the susceptible

asparagines are mutated to alanines to block deamidation.

Conversely, Bcl-xL in which these asparagines are mutated to

aspartates to mimic deamidation migrates at the same rate as the

more slowly migrating, deamidated forms of wild-type Bcl-xL[16].

Additionally, deamidation, and therefore, the development of the

more slowly migrating forms, can be further induced by

incubating Bcl-xL at an alkaline pH in vitro[16].

We assessed the asparagine-glycine sequences in the flexible

loops of Bcl-xL from Xenopus laevis (Xenopus Bcl-xL) and zebrafish for

deamidation using the approach outlined above. Wild-type Xenopus

Bcl-xL, which contains a single asparagine-glycine sequence in its

flexible loop (Figure 3A), forms a doublet when it is expressed in

mammalian cells and evaluated by SDS-PAGE (Figure 3B), but

only the upper band forms during SDS-PAGE when the cell

extract containing the wild-type Xenopus Bcl-xL is first incubated at

an alkaline pH (Figure 3B); wild-type zebrafish Bcl-xL, which

contains three asparagine-glycine sequences in its flexible loop

(Figure 3A), forms multiple bands (Figure 3B), and there is a

relative decrease in the most rapidly migrating band with a

concomitant increase in the more slowly migrating bands when it

is incubated at an alkaline pH (Figure 3B). Mutation of the

asparagines of the asparagine-glycine sequences to alanines to

block deamidation in Xenopus Bcl-xL and zebrafish Bcl-xL

[Xenopus Bcl-xL(N37A) and zebrafish Bcl-xL(3N/3A), respectively]

blocks the formation of the more slowly migrating bands

(Figure 3B); mutation of the asparagines to aspartates to mimic

deamidation yields forms of Bcl-xL [Xenopus Bcl-xL(N37D) and

zebrafish Bcl-xL(3N/3D), respectively] that migrate with the upper

bands of their respective wild-type proteins (Figure 3B). Finally,

the mutant forms of Xenopus and zebrafish Bcl-xL are unaffected

when incubated in an alkaline buffer (Figure 3B) (we note that

there is a protein band that is most readily visualized in the lanes of

the two mutant forms of zebrafish Bcl-xL that migrates at an

intermediate rate and appears to be unaffected by incubation in an

alkaline buffer—the nature of this band is unknown). These

findings demonstrate that the human, Xenopus laevis, and zebrafish

forms of Bcl-xL all have the potential to undergo deamidation.

That deamidation could occur at asparagine-glycine sequences

in flexible loops with such disparate sequences as those in human,

Xenopus laevis, and zebrafish Bcl-xL-like proteins is consistent with

the finding that asparagines that are followed by glycines in flexible

regions of proteins are exquisitely labile to deamidation [25,33]

and the finding in model peptides that the deamidation rate is

Figure 1. Asparagine-glycine sequences are present in a flexible region between the BH4 and BH3 domains of Bcl-xL-like proteins
from a wide range of species. (A) Schematic demonstrating the relationship between the four Bcl-2 homology (BH) domains, the transmembrane
domain (TM), and the conformationally flexible region (curved line) that lies between the BH4 and BH3 domains of human Bcl-xL. (B) A comparison of
the sequences between the BH4 and BH3 domains of Bcl-xL-like proteins. The sequence surrounding the asparagine-glycine sequence (bolded) in
each of these proteins is predicted to be flexible when analyzed by PSIPRED/JPRED[27,28]. Genbank accession numbers for these proteins are listed in
Table S1.
doi:10.1371/journal.pbio.1001588.g001

Figure 2. Asparagine-glycine sequences are present in a flexible region that is upstream of the BH4 domain of the Bcl-xL-like
proteins in several species. (A) Schematic demonstrating the position of a unique region (curved line) upstream of the BH4 domain that is
predicted to be flexible when analyzed by PSIPRED/JPRED [27,28] that is present in the Bcl-xL–like proteins of several species. (B) Each of these
proteins contains an asparagine-glycine sequence (bolded) in the flexible region. Genbank accession numbers for these proteins are listed in Table
S1.
doi:10.1371/journal.pbio.1001588.g002

Deamidation Regulates Bcl-xL Levels
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determined primarily by the amino acid that immediately follows

the asparagine with the amino acids in surrounding positions

having little or no effect [33]. When considered in this context, our

findings suggest that deamidation could occur at the asparagine-

glycine sequences in the flexible loops of Bcl-xL-like proteins

irrespective of the immediate surrounding sequence. Therefore,

our findings suggest that deamidation is a feature of the flexible

loop of Bcl-xL-like proteins across a wide range of species.

We next wanted to determine if Bcl-xL deamidation occurs in

nonmammalian cells. When expressed in Drosophila Schneider 2

cells and analyzed by SDS-PAGE, we found that wild-type human

Bcl-xL forms a doublet (Figure 3C). The lower band of the doublet

migrated with a mutant form of human Bcl-xL in which the

deamidation is blocked by replacement of the asparagines with

alanines [Bcl-xL(N52A/N66A)] [16], while the upper band of the

doublet migrated with a mutant human Bcl-xL construct in which

the susceptible asparagines are replaced with aspartates to

generate a constitutively deamidated form of Bcl-xL [Bcl-

xL(N52D/N66D)] (Figure 3C) [16]. Additionally, when the

Drosophila Schneider 2 cell lysates were incubated at an alkaline

pH prior to SDS-PAGE, the wild-type Bcl-xL migrated in the

position of the upper band of the doublet, while the mutant forms

were unaffected (Figure 3C). These findings suggest that the lower

band of the doublet found in intact Drosophila Schneider 2 cells is

the native form of human Bcl-xL and the upper band of the

doublet is deamidated Bcl-xL. That Bcl-xL deamidation occurs in

both insect and human cells strongly suggests that deamidation of

Bcl-xL–like proteins can occur in a wide range of species.

Deamidation Targets Human Bcl-xL for Degradation
The rate of Bcl-xL deamidation is increased in response to

treatment with DNA-damaging agents, such as cisplatin, etopo-

side, and c-radiation, in several types of tumor cells [16]. We and

others have found that a form of Bcl-xL in which deamidation is

blocked affords tumor cells increased resistance to these agents

when compared to the effect of wild-type Bcl-xL [16,23,24].

Additionally, Zhao and coworkers found that the suppression of

Bcl-xL deamidation by an oncogenic tyrosine kinase contributes to

etoposide and c-radiation resistance in a mouse tumor model [23]

and in human myeloproliferative disorders [34], and there is

evidence that suppression of Bcl-xL deamidation is a component of

hepatocellular carcinogenesis [35]. These findings suggested that

deamidation decreases cellular Bcl-xL prosurvival activity.

We originally reported that deamidation decreases the prosur-

vival activity of Bcl-xL by disrupting its ability to sequester

prodeath Bcl-2 family members such as Bim in vivo [16]; however,

we subsequently found that our conclusion was based on

artifactual results (please see erratum, reference [36]). Surprisingly,

Figure 3. Deamidation is conserved in Bcl-xL-like proteins. (A) Sequences from the flexible loops of human (h), Xenopus laevis (x), and
zebrafish (z) Bcl-xL. Asparagine-glycine sequences are bolded. (B) Anti-HSV immunoblots of HSV-tagged wild-type Xenopus and zebrafish Bcl-xL and
mutant forms of Xenopus and zebrafish Bcl-xL in which the asparagines of the asparagine-glycine dipeptides in the flexible loop of each protein are
substituted with the indicated amino acids. We have previously demonstrated that the most rapidly migrating form of human Bcl-xL during SDS-
PAGE is the native form and the forms that migrate more slowly are deamidated at one or both sites[16]. Xenopus Bcl-xL was expressed in SAOS-2
cells and zebrafish Bcl-xL was expressed in C33a cells and lysates of the cells were incubated in a pH 7.8 buffer for the number of hours indicated.
Similar results were obtained when Xenopus Bcl-xL was expressed in C33a cells and zebrafish Bcl-xL was expressed in SAOS-2 cells. (C) Anti-HA
immunoblots of HA-tagged wild-type human Bcl-xL, human Bcl-xL(N52A/N66A), and human Bcl-xL(N52D/N66D). Human Bcl-xL was expressed in
Drosophila Schneider 2 cells and lysates of the cells were incubated in a pH 7.8 buffer for the number of hours indicated.
doi:10.1371/journal.pbio.1001588.g003

Deamidation Regulates Bcl-xL Levels
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though, another group has since published that deamidation does

indeed disrupt the ability of Bcl-xL to sequester Bim both in vivo

and when in solution in vitro [23,37]. Their in vitro findings were

particularly surprising because (i) the deamidation sites are

positioned near the center of the large unstructured region of

Bcl-xL; (ii) the unstructured region is not necessary for the

interaction with Bim or for the antiapoptotic activity of Bcl-xL

[38]; (iii) the unstructured region remains unstructured in the

deamidated form of Bcl-xL [39]; and (iv) the native and

deamidated forms of Bcl-xL ‘‘adopt an essentially identical

backbone structure’’ in solution [39]. Therefore, we reexamined

the effect of deamidation on the ability of Bcl-xL to bind Bim using

several different approaches and controls. We found that

deamidation has no effect on the ability of Bcl-xL to bind Bim

or Bax (Text S1 and Figure S2). This is consistent with the finding

that both the native and deamidated forms of Bcl-xL bind equally

to PGAM5, a protein that has been implicated in oxidative stress-

induced apoptosis [40]. Furthermore, Bcl-xL encodes several

additional presumed prosurvival activities, such as the ability to

bind to p53 [41–43] and the ability to regulate mitochondrial

membrane permeability by forming an ion channel [44–46]. It

seemed unlikely that deamidation within the unstructured loop

could directly inactivate all of these functions. Therefore, we

sought the mechanism by which deamidation decreases cellular

Bcl-xL prosurvival activity.

We noted that the levels of endogenous Bcl-xL decreased as

deamidation increased in several of our previous experiments (e.g.,

figure 2 and figure 6 in reference [16]) and a correlation between

deamidation and decreased Bcl-xL levels in maturing erythrocytes

was noted by Koury and coworkers [47]. Furthermore, in cells in

which apoptosis was induced by oxidative damage, a fragment of

Bcl-xL, but not full-length Bcl-xL, was found to be bound to an

enzyme that binds deamidated proteins [48], which suggests that

Bcl-xL is rapidly degraded upon deamidation. Therefore, we

considered the possibility that deamidation decreases the cellular

activities of Bcl-xL by targeting Bcl-xL for degradation. Indeed, we

found a clear correlation between the DNA damage-induced

increase in Bcl-xL deamidation and a decrease in Bcl-xL levels

(Figure 4A).

To begin to determine if it is specifically the deamidated forms

that are targeted for degradation, we first blocked synthesis of the

native form of Bcl-xL using cycloheximide. We found that the level

of the native Bcl-xL decreases first and then, once the native Bcl-xL

is depleted, the level of deamidated Bcl-xL decreases (Figure 4B).

The simplest explanation for this finding is that the native Bcl-xL is

constantly deamidated, even in cells that have not been treated

with DNA damaging agents, and the deamidated forms are

degraded.

To confirm that the deamidated forms are specifically targeted

for degradation, we compared the stability of wild-type Bcl-xL and

a form of Bcl-xL in which deamidation is blocked because the

susceptible asparagines are mutated to alanines, [Bcl-xL(N52A/

N66A)] [16]. We have previously shown that the signaling that

increases the rate of Bcl-xL deamidation in cells that are treated

with DNA damaging agents is suppressed in wild-type mouse

embryo fibroblasts (MEFs) and that the suppression is dependent

upon the activation of pRb by p53 signaling [16]. Therefore, to

determine if deamidation targets Bcl-xL for degradation we

reconstituted Bcl-xL expression in bcl-x2/2/p532/2 MEFs with

either wild-type Bcl-xL or Bcl-xL(N52A/N66A). Importantly, we

expressed each protein using retroviral infection at a multiplicity of

infection of ,1 without polybrene treatment or centrifugation so

that instead of overexpressing the Bcl-xL constructs at high levels,

we approximated the level of Bcl-xL found in wild-type MEFs as

closely as possible. After antibiotic selection for the infected cells,

we treated the pooled cells with etoposide or cisplatin to induce

increased deamidation of Bcl-xL. Whereas the level of wild-type

Bcl-xL decreased progressively after etoposide or cisplatin treat-

ment, the level of Bcl-xL(N52A/N66A), the form of Bcl-xL in

which deamidation is blocked, remained relatively constant

(Figure 4C). As would be expected, the cells expressing Bcl-

xL(N52A/N66A) were more resistant to the apoptotic effects of

etoposide and cisplatin than were the cells in which the wild-type

Bcl-xL was expressed (Figure 4D). These findings strongly suggest

that deamidation mediates the inactivation of Bcl-xL prosurvival

activity by mediating the degradation of Bcl-xL.

Proteins that are subject to regulatory degradation often

contain PEST sequences and the presence of PEST sequences is

specific to such proteins—that is, PEST sequences are rarely

found in long-lived cellular proteins[49]. PEST sequences are

hydrophilic stretches of at least 12 amino acids that are enriched

in prolines, glutamates, aspartates, serines, and threonines that

are flanked by but do not contain histidines, arginines, or lysines

[50]. The PESTfind algorithm identifies potential PEST

sequences and assigns them a score that predicts the likelihood

that they truly function as a degradation signal sequence [50]. A

score above zero denotes a potential PEST sequence[50]; the

higher the score, the more likely the sequence functions to target

the protein for degradation. Whereas the most well characterized

PEST sequence, the PEST sequence in IkBa, has a PESTfind

score of 5.90[49], human Bcl-xL contains a PEST sequence with

a score of 10.79, which suggested that we would find that the

human Bcl-xL PEST sequence truly functions as a proteolytic

signaling sequence. It is also notable that (i) the PEST sequence is

conserved among all mammalian forms of Bcl-xL (Figure 5); (ii)

even though the sequences themselves differ considerably from

the mammalian sequence, there are sequences that are identified

by the PESTfind algorithm as potential PEST sequences in a

similar position in the Bcl-xL-like proteins from a wide range of

nonmammalian species (Figure 5)—that is, suggesting that there

is conservation of a specific function at this position even though

the sequence is not conserved; and (iii) PEST sequences only

occur infrequently and indeed, there are no other sequences with

PESTfind scores greater than zero at any other position within

any of the Bcl-xL-like proteins listed in Figure 1B. These findings

argue strongly for the importance of a functional PEST sequence

at this position.

Importantly, a PEST sequence may either constitutively or

conditionally target a protein for proteolysis [49]. Therefore, it was

intriguing that the PEST sequences either encompass or are in

close proximity to the deamidation sites (Figure 5). This was

intriguing because phosphorylation within or in proximity to

certain conditional PEST sequences increases proteolytic signaling

[49] and the products of deamidation, aspartyl residues, can

functionally mimic phosphorylated amino acids [51]. Similarly,

because deamidation adds an aspartyl residue, it increases the

hydrophilicity and, hence, the PESTfind score of the PEST

sequence (e.g., the PESTfind score of human Bcl-xL increases from

10.79 to 13.40 upon deamidation), which suggested that deam-

idation increases the activity of the PEST sequence. Therefore, we

assessed the possibility that, like phosphorylation in other proteins,

deamidation activates the PEST sequence as a signal for the

proteolysis of Bcl-xL.

To test this, we generated a human Bcl-xL construct in which

the three prolines of the PEST sequence are mutated to alanines

[Bcl-xL(3P/3A)] to partially disrupt its activity. We found that the

level of deamidated Bcl-xL(3P/3A) relative to the native form is

increased when compared with wild-type Bcl-xL in untreated cells

Deamidation Regulates Bcl-xL Levels
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and cells treated with etoposide (Figure 6A) and that this is due to

increased stability of the deamidated forms (Figure 6B). Further-

more, the cells expressing Bcl-xL(3P/3A) were significantly more

resistant to etoposide- and cisplatin-induced apoptosis than those

expressing wild-type Bcl-xL (Figure 6C). The simplest explanation

for these findings is that the function of Bcl-xL deamidation is to

Figure 4. Deamidation targets Bcl-xL for degradation. (A) Immunoblot of endogenous Bcl-xL, Bcl-2, and tubulin from SAOS-2 cells that were
treated with 10 mM of etoposide for the indicated times. (B) Immunoblot of endogenous Bcl-xL and tubulin in SAOS-2 cells that were treated with
10 mg/ml of cycloheximide for the indicated times. (C) Immunoblot of Bcl-xL and tubulin in bcl-x2/2/p532/2 MEFs expressing wild-type Bcl-xL and a
form of Bcl-xL in which deamidation is disrupted by substitution of alanines for the two susceptible asparagines, Bcl-xL(N52A/N66A). The cells were
treated with 5 mM of etoposide for the indicated times or with the indicated concentration of cisplatin. (D) Survival assays of bcl-x2/2/p532/2 MEFs
expressing Bcl-xL(N52A/N66A) and wild-type Bcl-xL. MEFs were treated with etoposide and cisplatin and assessed for apoptosis after 72 h.
doi:10.1371/journal.pbio.1001588.g004
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increase the proteolytic targeting activity of the Bcl-xL PEST

sequence.

Importantly, in the experiment depicted in Figure 6A and in

several of the experiments discussed below, the Bcl-xL constructs

are overexpressed and they therefore prevent induction of the later

phases of apoptosis. However, even the overexpressed Bcl-xL

undergoes an increase in deamidation-regulated degradation upon

treatment with DNA-damaging agent agents. This indicates that

deamidation-regulated degradation of Bcl-xL is a function of

changes that occur in the cell during the premitochondrial phase

of apoptosis, the phase in which decreases in Bcl-xL would increase

susceptibility to prodeath signaling. This finding and the

conservation of the PEST sequence together provide strong

evidence of the functional significance of the deamidation-

regulated degradation of Bcl-xL as an integral component of the

rheostat that regulates cell death.

Bcl-xL is cleaved by calpain both in vitro and in vivo [52–54],

which is notable because PEST sequences can target proteins for

calpain-mediated degradation [55–57]. Therefore, to begin to

identify the protease(s) that mediate degradation of deamidated

Bcl-xL, we treated HTB-9 and C33a cells with calpain inhibitor I

and found that it causes primarily an increase of deamidated Bcl-

xL in both (Figure 7A). Additionally, the deamidated forms of Bcl-

xL are increased by calpain inhibitor I when Bcl-xL deamidation is

further induced by etoposide treatment (Figure 7B). Importantly,

the increase in the deamidated forms in the cells treated with

calpain inhibitor I is due to an increase in stability as assessed by a

pulse chase experiment (Figure 7C), demonstrating that calpain

inhibitor I increases Bcl-xL levels by blocking its degradation.

Importantly, calpain inhibitor I inhibits several different

proteases, not just calpain. In fact, calpain inibitor I also inhibits

the proteasome, albeit at a higher concentration than that which is

required to inhibit calpain, and PEST sequences can target

proteins for proteasomal degradation. We therefore assessed a

known proteasomal target, Mcl-1, on the same blot in which we

had examined the effect of calpain inhibitor I on Bcl-xL in HTB-9

cells. We also examined total cellular ubiquitinated proteins in the

same cell lysates. Whereas 5 mM calpain inhibitor I had caused a

near maximal increase in the level of the deamidated forms of Bcl-

xL (Figure 7A), Mcl-1 and total ubiquitinated proteins only

reached near maximal levels when the cells were treated with 15–

20 mM calpain inhibitor I (Figure 7D). We also found that the

specific proteasome inhibitor lactacystin had only a relatively

small, if any, effect on Bcl-xL compared with its its effect on MCL-

1 and total ubiquitinated proteins in HTB-9 cells (Figure 7E).

These findings suggest that the proteasomal activity does not have

a signficant role in the degradation of the deamidated form of Bcl-

xL.

Figure 5. The PEST sequence is conserved among a wide range of nonmammalian and all mammalian forms of Bcl-xL. PEST sequences
are underlined and asparagine-glycine sequences are bolded. PESTfind scores[78] were calculated for the deamidated form of each protein.
Representative mammalian PEST sequences are shown; all of the mammalian forms of Bcl-xL that are listed in Figure 1B contain PEST sequences that
are either identical to or near identical to these sequences.
doi:10.1371/journal.pbio.1001588.g005
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Bcl-xL has also been shown to be degraded by caspases [58].

However, we found that stable expression of a dominant negative

form of caspase 9 had no effect on Bcl-xL degradation in response

to etoposide treatment in SAOS-2 cells even though the dominant

negative caspase 9 blocked activation of caspase 3 (Figure 7F) and

apoptosis (unpublished data). Expression of the retinoblastoma

protein (pRb), which blocks Bcl-xL deamidation [16], was used as

a control (Figure 7F). That expression of the dominant negative

caspase 9 fails to block degradation of deamidated Bcl-xL is

consistent with the finding that overexpressed Bcl-xL is degraded

even though its overexpression should block caspase activation.

Together these findings demonstrate that caspase activity is not

necessary for DNA damage-induced Bcl-xL degradation, at least in

certain cell lines.

Figure 6. Deamidation activates a conditional PEST sequence to target Bcl-xL for degradation. (A) Immunoblot of Bcl-xL in bcl-x2/2/p532/

2 MEFs infected with vectors for wild-type Bcl-xL or a form of Bcl-xL in which the PEST sequence is disrupted by substitution of alanines for three of
the PEST sequence prolines, Bcl-xL(3P/A), that were treated with etoposide as indicated. Two different exposures of the immunoblot are shown to
facilitate the visualization of deamidated forms of Bcl-xL. (B) Anti-HA and tubulin immunoblot of 2 mg/ml of cycloheximide-treated SAOS-2 cells
expressing HA-tagged versions of wild-type Bcl-xL or Bcl-xL(3P/A) for the indicated times. (C) Survival assay of bcl-x2/2/p532/2 MEFs expressing Bcl-
xL(3P/3A) and wild-type Bcl-xL. MEFs were treated with etoposide or cisplatin as indicated and survival was assessed at 48 h.
doi:10.1371/journal.pbio.1001588.g006
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Figure 7. Deamidated Bcl-xL is degraded by calpain. (A) Immunoblots of endogenous Bcl-xL and tubulin in HTB-9 and C33a cells that were
treated with calpain inhibitor I for 24 h. (B) Immunoblot of endogenous Bcl-xL from HTB-9 cells that were treated with 10 mM of etoposide for the
indicated times and with 10 mM of calpain inhibitor I for the final 24 h of the etoposide treatment. (C) Pulse chase of overexpressed Bcl-xL in Bcl-xL–
inducible SAOS-2 cells that were treated with 10 mM of calpain inhibitor I as indicated. The contrast of this figure was increased to facilitate
visualization of the data. (D) The HTB-9 blot from Figure 7A was reprobed for Mcl-1 and the same lysates that were used for the HTB-9 blot in
Figure 7A were probed for total ubiquitinated proteins. (E) Immunoblot of endogenous Bcl-xL, Mcl-1, and total ubiquitinated proteins from HTB-9
cells that were treated with the lactacystin for 24 h. Mcl-1 and total ubiquitinated proteins were used as positive controls to evaluate proteasomal
activity. (F) Immunoblots of Bcl-xL and procaspase 3 from etoposide-treated SAOS-2 cells in which a dominant negative form of caspase 9 or pRb was
expressed. (G) Anti-Bcl-xL immunoblot of Capn42/2 MEFs that were rescued by expression of Capn4 and Capn42/2 MEFs that were treated with
cycloheximide for the indicated times. Tubulin was used as a loading control.
doi:10.1371/journal.pbio.1001588.g007
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Finally, to further examine the potential role of calpain in the

degradation of deamidated Bcl-xL, we examined Bcl-xL in

fibroblasts that lack calpain activity [59]. The Capn4 gene encodes

the small subunit of calpain, which is necessary for all calpain

activity. When Capn42/2 MEFs in which calpain activity was

rescued by expression of the Capn4 gene were treated with

cycloheximide, Bcl-xL decreased (Figure 7G), as it does in other

cells that have calpain activity when they are treated with

cycloheximide (e.g., Figures 4B and 6B). However, Bcl-xL

accumulated in its deamidated form in Capn42/2 MEFs when

they were treated with cycloheximide. These findings are

consistent with a role for calpain in the degradation of deamidated

Bcl-xL.

Regulation of Bcl-xL Deamidation by Changes in Cellular
pH

It is widely accepted that there is a rapid fall in cytosolic pH of

<0.3–0.4 units that occurs in apoptosis upon mitochondrial outer

membrane permeabilization [60,61]; however, several groups

have reported that cytosolic alkalinization to as high as pH 8.0

occurs early in certain forms of apoptosis, including DNA damage-

induced apoptosis [62–67]. This is notable because based on

structural considerations, Bcl-xL is predicted to be exquisitely

susceptible to nonenzymatic deamidation at pH 7.4 [16,68] and it

has been demonstrated that the rate of Bcl-xL deamidation in

reticulocyte lysates is increased significantly by increases in pH

within the range of pH 7.0 to pH 8.0 [47]. These findings strongly

suggested that DNA damage-induced Bcl-xL deamidation is

regulated by changes in pH in the cell. Indeed, while this work

was in progress, it was confirmed that the DNA damage-induced

increase in Bcl-xL deamidation in lymphocytes is induced by the

increase in cytosolic pH that occurs in response to DNA damage

[37] and we have confirmed that this is also true in the cells of

human solid tumors (Text S2 and Figure S3). Notably, the finding

that the rate of deamidation is increased by increased pH is further

evidence that the DNA damage-induced increase in deamidation

of Bcl-xL occurs in the premitochondrial phase of apoptosis,

because, as noted above, the onset of the postmitochondrial phase

is characterized by a rapid acidification of the cytosol [60,61],

which would be expected to decrease the rate of deamidation of

Bcl-xL.

We previously reported that expression of pRb in SAOS-2

osteosarcoma cells blocks both the DNA damage-induced increase

in Bcl-xL deamidation and apoptosis [16]. Indeed, we now report

that expression of pRb decreases pH in these cells at baseline and

after treatment with DNA-damaging agents (Figure 8A). This

strongly suggests that Rb blocks an increase in the rate of Bcl-xL

deamidation by maintaining the cytoplasm at a relatively low pH

after treatment with DNA-damaging agents. This is notable

because we found that inhibition of Bcl-xL expression renders

SAOS-2 cells that express pRb susceptible to DNA damage-

induced apoptosis [16]. Together these findings strongly suggest

that the increased rate of deamidation-regulated degradation of

Bcl-xL is an important function of the increase in pH that occurs in

response to treatment with DNA-damaging agents—that is,

alkalinization is necessary to induce an increased rate of

deamidation-regulated degradation of Bcl-xL, which in turn is

necessary for apoptosis to occur, but alkalinization is not necessary

if Bcl-xL is absent.

We have also reported that the DNA damage-induced increase

in Bcl-xL deamidation is suppressed in wild-type MEFs, but it

occurs in p532/2 MEFs. This is notable because while pRb is

activated by DNA damage in wild-type MEFs, it remains inactive

after DNA damage occurs in p532/2 MEFs [16]. Therefore, we

hypothesized that the activated pRb in the wild-type MEFs

suppresses Bcl-xL deamidation. Consistent with this and our

finding that pRb suppresses the alkalinization in SAOS-2 cells, we

found that while p532/2 MEFs are susceptible to the DNA

damage-induced alkalinization, wild-type MEFs are not

(Figure 8B). Finally, we found that even though bcl-x2/2 MEFs,

which have an intact p53-pRb signal transduction pathway, are

exquisitely susceptible to apoptosis [16], they do not exhibit a

DNA damage-induced increase in cytosolic pH prior to undergo-

ing apoptosis (Figure 8C). This last finding is further evidence that

the increased rate of deamidation-regulated degradation of Bcl-xL

is an important target of the increase in pH that occurs in response

to treatment with DNA-damaging agents in susceptible tumor

cells.

Discussion

Asparagine deamidation was long thought to be a purification

artifact; however, in 1968 Flatmark provided the first demonstra-

tion that a protein undergoes deamidation within the cell [69]. It is

now well accepted that many proteins undergo deamidation

within the cell, but deamidation is still viewed nearly universally as

a form of protein damage or aging that is detrimental to the

organism. This is because deamidation has been thought by most

to be an unregulated, spontaneous process that disrupts protein

function through the nonspecific disruption of protein structure.

Furthermore, whereas deamidation has been implicated in the

dysfunction underlying several pathologic processes, such as

Alzheimer’s disease [70] and cataract formation [71], there has

been only limited evidence that it could serve a beneficial role [72].

We have now demonstrated that Bcl-xL deamidation is a

process that activates a conditional PEST sequence. The degree of

organization underlying both the regulation and functional

consequence of Bcl-xL deamidation together with the fact that it

is conserved across a wide range of species clearly suggests that

deamidation can play a beneficial regulatory role. It is possible that

the deamidation that occurs in Alzheimer’s disease, cataract

formation, and other pathologic processes represents a dysregu-

lated state of a process that normally has an important cellular

function. This would be analogous to the contribution of the

dysregulation of the phosphorylation of certain proteins to

tumorigenesis [73]. Indeed, there is evidence that the dysregula-

tion of Bcl-xL deamidation contributes to the development of

hepatocellular carcinoma [35] and myeloproliferative disorders

[34]. Notably, in addition to pH, the rate of deamidation is

affected by the buffer ion, tonicity, and temperature [74]. A

change in any of these that results in a decrease in the rate of Bcl-

xL deamidation would have the potential to increase tumor cell

viability and inhibit the tumor cell response to treatment,

worsening patient outcome.

Additionally, we have shown that even modest changes in Bcl-

xL levels can alter the extent of tissue damage in response to

certain types of injury [17]. The finding that mutation of the PEST

sequence or treatment with calpain inhibitor I in otherwise

untreated cells results in a relative increase of the level of

deamidated Bcl-xL demonstrates that Bcl-xL levels are continu-

ously modulated by deamidation, even in normally growing cells.

Therefore, any change in factors that affects the rate of

deamidation could alter the extent of tissue damage in response

to certain types of injury.

Finally we note that asparagine deamidation is an extraordi-

narily simple posttranslational modification in that it only requires

a water molecule to proceed. Its simplicity suggests that it was an

early form of posttranslational modification. In this context, it is
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notable that asparagine is the evolutionary offspring of aspartate

and it is thought that asparagine ‘‘captured’’ what were originally

two aspartate codons to serve as its codons [75]. Thus we speculate

that asparagines replaced certain aspartates as proteins evolved so

that a residue with an inducible negative charge, asparagine, could

replace a residue with a fixed negative charge, aspartate. This

Figure 8. Deamidation-mediated degradation of Bcl-xL is an important function of the DNA damage-induced increase in cellular
pH. (A) Rb-inducible SAOS-2 cells were treated with the indicated DNA-damaging agents. Rb expression was induced by treatment with doxycycline
prior to DNA-damaging agent treatment. The percent of adherent cells with a pH above an arbitrarily chosen value of approximately pH 7.3 is
indicated. (B) Wild-type and p532/2 MEFs were treated with the indicated DNA-damaging agents and the intracellular pH was measured. (C) Wild-
type and bcl-x2/2 MEFs were treated with the indicated DNA-damaging agents and the intracellular pH was measured.
doi:10.1371/journal.pbio.1001588.g008
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substitution would have afforded a greater degree of control of

protein function. Indeed, it may have been the selective advantage

of the potential to switch from a neutral residue to a charged

residue that initially drove the stable incorporation of asparagine

into proteins.

Materials and Methods

MEME Analysis
The protein sequences listed in the Bcl-xL (BCL2L1) homology

group of the Bcl-2 database(Figure S1) [29] that contain both a BH4

and a BH3 domain were identified using the online Batch Search

tool of the Conserved Domain Database[76]. The intervening

sequences between the BH4 and BH3 domains in these proteins

were compiled to form the dataset that was submitted to the MEME

server for analysis. Importantly, there are species in the database

that express more than one protein in which the sequence between

the BH4 and BH3 domains are identical; such proteins are typically

the result of alternative splicing. In such instances, the sequence was

only included once in the analysis.

Cell Culture, Plasmids, and Retroviral Constructs
SAOS-2 cells (ATCC HTB-85), C33a cells (ATCC HTB-31),

and MEFs were maintained in DMEM with 10% FBS. HTB-9

cells (ATCC HTB-9) were maintained in RPMI-1640 with 10%

FBS. Drosophila Schneider 2 cells were maintained in Shields and

Sang M3 (Sigma) with 10% FBS. bcl-x2/2, p532/2, and bcl-x2/2/

p532/2 MEFs and Rb-inducible SAOS-2 cells were described

previously [16]. Capn42/2 MEFs were described previously [59].

Bcl-xL–inducible SAOS-2 cells were generated using the T-Rex

system (Invitrogen). Xenopus and zebrafish Bcl-xL cDNAs were

amplified by RT-PCR using primers 59-ATATATCCATGGCA-

GAGGGCAGCAGTAGAGATCTGGTGG-39 and 59-TATA-

TACAGCTGTCGGCGCCTCATGTAGCAGACC-39 with

Xenopus mRNA and 59-ATATATCCTGGCATCTTACTA-

TAACCGAGAACTGGTGG-39 and 59-TATATACAGCTG-

CAGGCGTTTCTGTGCAATGAGTCCCCC-39 with zebrafish

mRNA (the underlined sequences in the primers were used for

cloning purposes). The products were cloned between the Nco I site

and Pvu II site in the plasmid pTriEx-1.1 (Novagen). The

sequences of the inserts were confirmed as identical to the Xenopus

Bcl-xL sequence (Genbank accession no. NP001082147) and the

zebrafish Bcl-xL sequence (Genbank accession no. NP571882)

listed in the NCBI databases. All mutations were made using the

QuikChange Kit (Stratagene). Xenopus Bcl-xL codon 37 was

changed from AAT to GCT to generate Xenopus Bcl-xL(N37A)

and codon 37 was changed from AAT to GAT to generate Xenopus

Bcl-xL(N37D). Zebrafish Bcl-xL codon 42 was changed from AAT

to GCT, codon 54 from AAT to GCT, and codon 81 from AAT

to GCT to generate zebrafish Bcl-xL(3N/3A), and codon 42 was

changed from AAT to GAT, codon 54 from AAT to GAT, and

codon 81 from AAT to GAT to generate zebrafish Bcl-xL(3N/3D).

For expression of the wild-type and mutant forms of human Bcl-xL

in Drosophila Schnieder 2 cells pCMA-Bcl-xL, pCMA-Bcl-

xL(N52A/N66A), and pCMA-Bcl-xL(N52D/N66D) were con-

structed by ligation of PstI Bcl-xL encoding fragments from

pSFFV-Bcl-xL, pSFFV-Bcl-xL(N52A/N66A), and pSFFV-Bcl-

xL(N52D/N66D) [16] into the PstI site of pCMA [77]. Retroviral

vectors for expression of wild-type and mutant forms of human

Bcl-xL were generated as follows. The retroviral construct pBABE-

blast and pBABE-blast-HA were generated by ClaI/HindIII digest

of pBABE-puro and pBABE-puro-HA (removes the puromycin

resistance gene) and blunt-end ligation of the blasticidin resistance

gene with its promoter from pcDNA/TR (Invitrogen) into these

sites. pBABE-blast-Bcl-xL, pBABE-blast-Bcl-xL(N52A/N66A), and

pBABE-blast-HA-Bcl-xL were constructed by ligation of the

EcoRI Bcl-xL encoding fragments from pSFFV-Bcl-xL and

pSFFV-Bcl-xL(N52A/N66A) [16] into the EcoRI site of pBABE-

blast and pBABE-blast-HA. In pBABE-blast-Bcl-xL and pBABE-

blast-HA-Bcl-xL, Bcl-xL codon 38 was changed from CCA to

GCA, codon 48 from CCC to GCC, and codon 55 from CCA to

GCA to generate pBABE-blast-Bcl-xL(3P/3A) and pBABE-blast-

HA-Bcl-xL(3P/3A). pCDNA3-Flag-dominant negative caspase 9

was described previously [16].

Infection and Transfection
Retroviral particles were produced by transient transfection of

Phoenix E cells with either pBABE-blast-Bcl-xL or pBABE-blast-

Bcl-xL(N52A/N66A). The pBABE-blast-Bcl-xL and pBABE-blast-

Bcl-xL(N52A/N66A) supernatants were collected from the Phoe-

nix E cell cultures and diluted 1:5 in fresh media. The diluted

retrovirus was added to the medium of the MEFs without

polybrene or centrifugation. Twenty-four hours later, blasticidin

(1.0 mg/ml) was added to the media. After selection, 16105 cells

were plated on 60 mm dishes and treated 24 h later with 5 mM of

etoposide. Standard retroviral techniques were used for assessment

of the PEST sequence in MEFs. SAOS-2, HTB-9, and C33a cells

were transfected using the calcium phosphate method. Drosophila

Schneider 2 cells were transfected using nucleofector (Amaxa).

Survival was quantified by flow cytometry using the Live/Dead kit

(Molecular Probes) or by microplate reader at 450 nm using the

Cell Counting kit-8 (Dojindo Molecular Technologies).

Immunoblotting and Immunoprecipitation
The following antibodies were used: anti-Bcl-xL (610211)

and anti-Bcl-2 (610538) from Transduction Laboratories; anti-

Bcl-xL (2764) from Cell Signaling; anti-tubulin (sc-9104), anti-

actin (sc-1616), anti-Mcl-1 (sc-819), and anti-Ubiquitin (sc-

8017) from Santa Cruz Biotechnology; anti-HSV-Tag (69171)

from Novagen; and anti-HA (1867423) from Roche. Immu-

noblotting and immunoprecipitation were performed as

previously described [16]. For immunoprecipitation, lysis

buffer (50 mM HEPES (pH 7.0), 250 mM NaCl, 1 mM

EDTA, 0.2% NP-40, and Complete Protease Inhibitor (Roche)

was used.

Pulse Chase
Bcl-xL–inducible SAOS-2 cells were induced by doxycycline

treatment and pulsed with 35S-methionine for 4 h. Cells treated

with calpain inhibitor I as indicated and chased for the specified

times. The cell lysates were prepared and immunoprecipitated for

Bcl-xL as described previously [16] and then analyzed by SDS-

PAGE and autoradiography.

Intracellular pH Measurements
Cells were grown in a HEPES-buffered medium instead of the

standard HCO3
2/CO2 buffer system to avoid the rapid shifts in

pH that occur when cells in the HCO3
2/CO2 buffer system are

removed from the 5% CO2 atmosphere of an incubator. Sixty

hours after DNA-damaging agent treatment, cells were washed

with PBS. The studies were purposefully biased towards the

assessment of cells in the earlier stages of apoptosis by measuring

the pH of only those cells that remained adherent to the tissue

culture dish. These cells were loaded with 5 mM of SNARF-1 for

10 min and then washed with PBS just prior to assessment by flow

cytometry. The SNARF-1 was excited at 488 nm and emissions

were read at 585 nm (pH-dependent) and 640 nm (pH-indepen-
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dent). The pH-independent emission allows for the normalization

of SNARF-1 loading differences between cells. The ratio of the

emissions was calculated and the pH was read from a calibration

curve. An in situ calibration curve was generated as follows: Cells

are loaded with SNARF-1 as above. HEPES was used to make

buffers at 0.5 pH unit intervals ranging from pH 6.5–8.5. These

contained the ionophore nigericin 13 mM and K+ 140 mM to

render the cells permeable to the buffers. Cells were equilibrated in

the buffers for 20 min. The cells were then analyzed by flow

cytometry, and a calibration curve of the pH versus the ratio of the

pH-dependent and pH-independent emissions was plotted.

Supporting Information

Figure S1 Dataset used for MEME analysis. The sequences of

the region between the BH4 and BH3 domains of the members of

the Bcl-xL homology group in the Bcl-2 database[29] that were

used for the MEME analysis. Bcl-2 database IDs are listed.

(PDF)

Figure S2 Deamidation has no effect on the interaction of Bcl-xL

with Bim or Bax. (A) Immunoblot for endogenous Bcl-xL in whole

cell lysates and either IgG (control) or anti-Bim immunoprecipitates

from untreated and 10 mM of etoposide-treated C33a cells. We

have previously demonstrated that the most rapidly migrating form

of human Bcl-xL during SDS-PAGE is the native form and the

forms that migrate more slowly are deamidated at one or both sites

[16]. (B) Bim expression was induced by doxycycline treatment of a

Bim-inducible SAOS-2 cell line in which Bcl-xL is constitutively

overexpressed and an immunoblot was performed for the indicated

proteins in whole cell lysates and either IgG or anti-Bim

immunoprecipitates. Two different exposures of the immunoblot

for the co-immunopreciptated proteins are shown to facilitate the

visualization of all of the forms of Bcl-xL that are co-immunopre-

ciptated by different concentrations of Bim. That Bcl-xL levels

appear to increase after Bim expression is induced is most likely

because the cells that express the highest levels of Bcl-xL have a

survival advantage once Bim is expressed. (C) The experiment

outlined in (B) was repeated using cells that were treated with

10 mM of etoposide to induce further deamidation of Bcl-xL.

Etoposide treatment depresses the inducibility of Bim in these cells.

(D) Immunoblot analysis of Bcl-xL in whole cell lysates (left) and

either anti-Bim or anti-HA immunoprecipitates (right) from C33a

cells in which HA-tagged Bcl-xL and untagged Bcl-xL were

expressed as indicated. The cells were treated with 10 mM of

etoposide for 48 h. Both immunoprecipitations were performed

using the same cell lysate. (E) GFP-Bax was expressed in a SAOS2

cell line in which Bcl-xL is constitutively overexpressed and an

immunoblot was performed for the indicated proteins using whole

cell lysates and either IgG or anti-GFP immunoprecipitates. Two

different exposures of the immunoblot for the co-immunoprecip-

tated proteins are shown to facilitate the visualization of all of the

forms of Bcl-xL that are co-immunopreciptated by different

concentrations of the anti-GFP antibody.

(TIF)

Figure S3 Bcl-xL deamidation is regulated by cytosolic pH. (A)

Immunoblot of Bcl-xL in SAOS-2 cell lysates that were incubated

at pH 7.2, pH 7.4, or pH 7.6 for the indicated times. (B)

Immunoblot of Bcl-xL from intact C33a, HTB-9, and SAOS-2

cells that were incubated in tissue culture medium at pH 6.5 or

pH 7.3 and treated with 10 mM of monensin as indicated. (C)

Immunoblot of purified bacterially synthesized wild-type Bcl-xL

and Bcl-xL(N52A/N66A) that was incubated at pH 7.2, pH 7.4,

or pH 7.6 for the indicated times. (D) SAOS-2 cells were treated

with the indicated DNA-damaging agents. The percent of

adherent cells with a pH above an arbitrarily chosen value of

approximately pH 7.3 is indicated.

(TIF)

Table S1 Genbank accession numbers for Bcl-xL-like proteins.

Genbank accession numbers for the proteins in Figures 1B and 2B

are listed.

(DOCX)

Text S1 Deamidation has no effect on the interaction of Bcl-xL

with Bim or Bax.

(DOCX)

Text S2 DNA damage-induced Bcl-xL deamidation is regulated

by changes in pH in the cell.

(DOCX)
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