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Abstract: Background: MUC2, a major component of the mucus layer in the intestine, is associated
with antimicrobial activity and gut immune system function. Currently, mucin is mainly known for
its critical function in defense against toxic molecules and pathogens. In this study, we investigated
the stimulatory effects of exogenous nicotinamide adenine dinucleotide (NAD+) on the expression
of MUC2 in LS 174T goblet cells. Methods: Genes related to MUC2 synthesis were measured by
quantitative real-time PCR (qPCR). To analyze the gene expression profiles of NAD+-treated LS
174T goblet cells, RNA sequencing was performed. MUC2 expression in the cells and secreted
MUC2 were measured by immunocytochemistry (ICC) and ELISA, respectively. Results: NAD+

significantly stimulated MUC2 expression at mRNA and protein levels and increased the secretion of
MUC2. Through RNA sequencing, we found that the expression of genes involved in arachidonic
acid metabolism increased in NAD+-treated cells compared with the negative control cells. NAD+

treatment increased phospholipase C (PLC)-δ and prostaglandin E synthase (PTGES) expression,
which was inhibited by the appropriate inhibitors. Among the protein kinase C (PKC) isozymes,
PKC-δwas involved in the increase in MUC2 expression. In addition, extracellular signal-regulated
kinase (ERK)1/2 and cyclic AMP (cAMP) response element-binding protein (CREB) transcript levels
were higher in NAD+-treated cells than in the negative control cells, and the enhanced levels of
phosphorylated CREB augmented MUC2 expression. Conclusions: Exogenous NAD+ increases
MUC2 expression by stimulating the PLC-δ/PTGES/PKC-δ/ERK/CREB signaling pathway.

Keywords: NAD+; MUC2; goblet cell; cyclic AMP response element-binding protein; arachidonic
acid; phospholipase C

1. Introduction

The mucus layer in the intestine is mainly composed of mucin glycoproteins that are secreted
from intestinal goblet cells. The mucus layer acts as an intestinal barrier and plays a critical role
in preventing toxic molecules and pathogens from penetrating into the intestinal mucosae, thus
preventing intestinal inflammation [1]. For this reason, the intestinal mucus layer is the first line of
immune defense protecting a host from pathogens. Destruction of the mucus layer causes severe
intractable inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis [2].
In addition to damage to the mucus layer, decreases in mucin secretion by intestinal goblet cells can
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contribute to chronic inflammation in the intestine [3]. Therefore, conservation of an intact mucus layer
that properly regulates immune responses is a main factor that is necessary for the maintenance of
intestinal homeostasis and the prevention of intestinal inflammatory diseases.

MUC2 gene expression is regulated by cyclic AMP (cAMP) response element-binding protein
(CREB) in retinoic acid-treated normal human tracheobronchial epithelial (NHTBE) cells [4]. CREB is
a transcription factor regulating the expression of genes involved in a variety of cellular processes,
such as cell growth and survival, differentiation, and mucin production [5]. Upon cAMP-induced
phosphorylation through intracellular signaling cascades, CREB is activated and stimulates gene
transcription by binding to the promoters of target genes. CREB phosphorylation through the
mitogen-activated protein kinase (MAPK) signaling pathway is associated with various human
diseases [5]. For example, angiotensin II induces cardiac fibrosis by enhancing periostin expression
via the p38 MAPK–CREB pathway [6]. The protein kinase C (PKC)/p38 MAPK/CREB pathway is
involved in membrane wound repair [7]. An E3 ubiquitin ligase (CUL4A) promotes the proliferation
of cancer cells through the phosphorylation-mediated activation of ERK1/2 followed by CREB [8].
Paeoniflorin, derived from the herbal plant Paeonia lactiflora, exerts neuroprotective effects via the
ERK–CREB signaling pathway in rats with hippocampal damage [9].

Nicotinamide adenine dinucleotide (NAD+) belongs to the family of natural purine compounds.
NAD+ is a coenzyme that transfers electrons in the electron transport chain (ETC) and plays an essential
role in cellular metabolism. NAD+ can be biosynthesized using amino acids such as aspartate and
tryptophan and can be recycled through salvage pathways [10]. This coenzyme plays major roles
in many redox reactions [11] and has also been revealed to participate in non-redox reactions in
some cases. NAD+, a substrate for poly(ADP-ribose) polymerases (PARPs), is catabolized to transfer
ADP-ribose moieties to other proteins in response to DNA damage or during transcriptional regulation
and energy metabolism [12]. NAD+ binds to sirtuins called histone deacetylases (HDACs), whose main
function is to reverse the acetyl modification of histones. A second messenger called cyclic ADP-ribose
(cADPR), a form of NAD+ converted by ADP-ribosyl cyclase [13], is a messenger in calcium signaling.
Recently, in addition to its various intracellular roles, extracellular NAD+ has been found to mediate
intracellular signaling pathways by acting as an agonist of purine receptors [14–16]. For example,
ADP-ribose produced from NAD+ is an agonist of the P2 purinergic receptor P2Y1 [17]. The family of
P2 purinergic receptors is mainly coupled with G proteins that activate phospholipase C (PLC) [18,19].

In our previous study, we found that oxyresveratrol, an antioxidant stilbenoid, stimulated MUC2
synthesis and increased NAD+ levels by activating enzymes involved in the salvage pathways of
NAD+ biosynthesis in LS 174T goblet cells, revealing that NAD+ plays a novel role in the formation
of an intact intestinal mucus layer by stimulating mucin production [20]. Based on these data, we
hypothesized that NAD+ might be involved in MUC2 synthesis in the intestine. Thus, in this study, to
elucidate the mechanism of MUC2 production by NAD+, we investigated the signaling pathway of
MUC2 production upon the administration of exogenous NAD+, and we found that NAD+ increased
MUC2 expression by stimulating the PLC-δ/PTGES/PKC-δ/ERK/CREB signaling pathway.

2. Materials and Methods

2.1. Materials

Roswell Park Memorial Institute (RPMI) 1640 medium, fetal bovine serum (FBS), and
penicillin/streptomycin for culture of LS 174T cells were obtained from HyClone (Logan, UT, USA).
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was obtained from Amresco
(Solon, OH, USA). All the chemical inhibitors used in this study were from Selleckchem (Houston, TX,
USA), except for MF63 (Cayman Chemical, Ann Arbor, MI, USA) and AS-65111 (Anaspec, Fremont, CA,
USA). NAD+, dimethyl sulfoxide (DMSO), and 4′,6-diamidino-2-phenylindole (DAPI) were obtained
from Sigma (St. Louis, MO, USA).
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2.2. Cell Culture

The LS 174T goblet cell line was obtained from the Korean Cell Line Bank (Seoul, Korea) and
cultured in a 90-mm culture dish with 10 mL RPMI 1640 medium supplemented with 10% FBS,
100 units/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C in an atmosphere of 5% CO2 and
95% air. The cells were seeded at the concentration of 2.5 × 105 cells/mL. The culture medium was
replaced with fresh medium every two days. Chemical or peptide inhibitors were administered alone
or in combination with 200 µM NAD+ for 48 h. The inhibitors U73122, MF63, AS-65111, U0126,
SB203580, SP600125, and KG-501 were used to block PLC-δ, prostaglandin E synthase (PTGES),
PKC-δ, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK), p38,
Jun-N-terminal kinase (JNK,) and CREB at final concentrations of 10 µM, 500 nM, 40 µM, 100 µM,
5 µM, 10 µM, and 10 µM, respectively, according to the manufacturers’ guidelines.

2.3. Assessment of Cytotoxicity of Exogenous NAD+ to LS 174T Cells

LS 174T cells were seeded in 96-well plates and treated with NAD+ at final concentrations of 50,
100, and 200 µM in RPMI medium for 48 h. After the medium was removed, the cells were incubated
in MTT diluted with the medium for 1 h at 37 ◦C. The produced formazan crystals were solubilized
with DMSO for 1 h at room temperature. The absorbance of each sample was measured at 540 nm
with a SpectraMax 340 microplate reader (Molecular Devices Corp., Sunnyvale, CA, USA). The relative
cell viability (%) was calculated with the following equation: cell viability (%) = [OD (experiment
group)/OD (control group)] × 100.

2.4. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

The total RNA from each sample was extracted with RiboEx (Geneall, Seoul, Korea) according to
the manufacturer’s instructions, quantified with a NanoDrop ND-1000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA), and converted to cDNA using a RevertAid First Strand cDNA
Synthesis kit (Thermo Fisher Scientific, Waltham, MA, USA). qPCR was performed with a Kapa SYBR
Fast qPCR Master Mix kit (Kapa Biosystems, Woburn, MA, USA) and a StepOnePlus Real-Time PCR
System (Applied Biosystems, Foster City, CA, USA). The PCR primer sequences are shown in Table 1.
Each qPCR sample was preheated at 95 ◦C for 10 min and then subjected to 40 cycles of 95 ◦C for 15 s,
60 ◦C for 15 s, and 72 ◦C for 30 s. β-Actin was used as an internal control gene. The data were analyzed
based on the 2-∆∆Ct method (the β-actin control was set to 1) [21].

Table 1. Primers used for qPCR analysis.

Gene Forward (5′ to 3′) Reverse (5′ to 3′)

β-actin GGA CTT CGA GCA AGA GAT GG AGC ACT GTG TTG GCG TAC AG
MUC2 ACC CGC ACT ATG TCA CCT TC GGA CAG GAC ACC TTG TCG TT
PLC-δ3 TCT CTT CCT CCC ACA ACA CC TCC AGG GAT AGG ATG ACA GG
PLC-γ2 CGT CTA CCC AAA GGG ACA AA GAC TGT CAG CGT CAT CAG GA
PLC-η2 GCC ACC CAC GAC ATA GAG AT ACG GTA GGA GGA GGG GTA GA
PKC-α AGC CCA AAG TGT GTG GCA AA AGG TGT TTG TTC TCG CTG GT
PKC-δ CCC TTC TGT GCC GTG AAG AT GCC CGC ATT AGC ACA ATC TG
PKC-ε GAA CCC GGC GAG GAA ATA CA AGG GCA GGA ATG AAG AAC CG
MEK GCT TGG GGC TAT TTG TGT GT TCT CAC AAG GCT CCC TCC TA
ERK1 TCA GAC TCC AAA GCC CTT GA CGT GCT GTC TCC TGG AAG AT
ERK2 TCC AAC AGG CCC ATC TTT CC CCA GAG CTT TGG AGT CAG CA

PTGES CAT GTG AGT CCC TGT GAT GG GAC TGC AGC AAA GAC ATC CA
PLA2 TGG CTC TGT GTG ATC AGG AG GAG CCA GAA AGA CCA GCA AC
CREB CTG CCT CTG GAG ACG TAC AA CAA GCA CTG CCA CTC TGT TT
JNK-1 GCT TGG AAC ACC ATG TCC TG GTA CGG GTG TTG GAG AGC TT

p38 GGG GCA GAT CTG AAC AAC AT CAG GAG CCC TGT ACC ACC TA

2.5. Immunocytochemistry (ICC)

The cells were fixed with 4% paraformaldehyde at 4 ◦C overnight. A permeabilization step with
0.1% Triton X-100 was performed for 10 min followed by blocking with 10% normal donkey serum
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(GTX73205, Genetex, Irvine, CA, USA). The cells were incubated with a primary antibody against
MUC2 (1:1000 dilution; GTX100664, Genetex) at 4 ◦C overnight. Goat anti-rabbit immunoglobulin
G (IgG) (H + L), DyLight 488 (1:1000 dilution; 35552, Thermo Scientific, Wilmington, DE, USA), was
used as the secondary antibody for green fluorescence, and DAPI (1:10,000 dilution) was used to
counterstain the nuclei for 5 min at room temperature. After washing samples with phosphate-buffered
saline (PBS) three times for 5 min each, the slides were mounted using VECTASHIELD® (Vector
Laboratories, Burlingame, CA, USA). Images were captured using a Nikon C1 plus confocal laser
scanning microscope (Nikon, Tokyo, Japan), and the intensity of green fluorescence indicating MUC2
protein was quantified by Olympus fluoview FV1000 ver.2.1b (Olympus, Tokyo, Japan) followed by
normalizing the detected area and expressed as (%) compared to the negative control (100%).

2.6. ELISA

To measure secreted MUC2, cultured LS 174 cells treated with NAD+ and/or MF63 for 48 h were
centrifuged at 1000× g at 4 ◦C for 20 min, and the supernatants were stored at −80 ◦C until use. The
concentration of secreted MUC2 protein in the supernatants was measured following the instructions
of a Human MUC2 ELISA Kit obtained from Elabscience (E-EL-H0632, Houston, TX, USA).

2.7. RNA Sequencing

The total RNA from the negative control and 200µM NAD+-treated cells was extracted with RiboEx
(GeneAll, Seoul, Korea) according to the manufacturer’s instructions, and RNA purity and integrity
were measured with a NanoDrop ND-1000 spectrophotometer and an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA), respectively. cDNA libraries were constructed using a QuantSeq
3′ mRNA-Seq Library Prep Kit (Lexogen, Greenland, NH, USA) according to the manufacturer’s
instructions, and 75 bp single-end sequencing was performed on an Illumina NextSeq 500 platform (San
Diego, CA, USA). The RNA-seq data have been deposited in NCBI’s Gene Expression Omnibus (GEO)
and are accessible through GEO Series accession numbers GSM4154599-GSM4154604 (accession code:
GSE140116). All data were obtained after quantile normalization between samples, and differentially
expressed genes (DEGs) were identified with Excel-based Differentially Expressed Gene Analysis
(ExDEGA) version 2.0.0 provided by eBiogen (Seoul, Korea). The functional annotation of 648 genes
filtered with a criterion of at least a 2.0-fold change with a p-value < 0.05 was performed using
the Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://david.ncifcrf.
gov/summary.jsp). We identified some pathways that were predicted to be involved; then, to more
specifically observe the network among the DEGs, the 648 genes were used as input for Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING) analysis (http://string-db.org).

2.8. Western Blot Analysis

LS 174T cells were seeded and treated with 200 µM NAD+ in 90 mm dishes for 48 h. After being
briefly washed with cold PBS, the cells were harvested in cold PBS by scraping on ice and centrifuged
at 3000× g for 3 min. Protein was extracted by lysing the cells with a Pro-Prep Kit (Intron Biotechnology,
Seongnam, Gyeonggi-do, Korea). The protein concentration was measured by Bradford assay, and
equal amounts of protein (20 µg) from the different samples were separated by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Subsequently, the separated proteins were
transferred to a polyvinylidene difluoride (PVDF) membrane (Millipore, Bedford, MA, USA) with
a Trans-Blot semi-dry transfer cell (Bio-Rad, Hercules, CA, USA). The membrane was blocked with
5% skim milk (Neogen, Lansing, MI, USA) for total CREB analysis or with 5% bovine serum albumin
(BSA, Sigma) for phosphorylated CREB analysis in Tris-buffered saline (TBS) containing 0.1% Tween 20
(TBS-T) and incubated with anti-CREB (1:1000 dilution; 48H2, Cell Signalling Technology, Danvers, MA,
USA) and anti-phosphor-CREB (1:1000 dilution; 87G3, Cell Signalling Technology) primary antibodies
at 4 ◦C overnight. The membrane was washed three times with TBS-T and reacted with the secondary
antibody at room temperature for 1 h. Horseradish peroxidase-conjugated goat anti-rabbit IgG (H + L)

http://david.ncifcrf.gov/summary.jsp
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(1:1000 dilution; NCI1460KR, Thermo Scientific) was used as the secondary antibody. The membrane
was washed three times with TBS-T, and the protein bands were detected and analyzed after incubating
the membrane with SuperSignal West Femto Maximum Sensitivity Substrate (34095, Thermo Scientific)
using a FluoroChem E imaging system (ProteinSimple, San Jose, CA, USA). The densities of the bands
were quantified using ImageJ version 1.52a (National Institutes of Health). The blots in the figures are
representative of three independent experiments.

2.9. Statistical Analysis

All statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS,
Chicago, IL, USA) version 24.0. The data are expressed as the mean ± standard deviation (SD) of three
independent experiments performed in triplicate. The significance of the differences between samples
was calculated by Student’s t-test or one-way analysis of variance (ANOVA) followed by Tukey’s HSD
test. A p-value of < 0.05 was considered significant.

3. Results

3.1. Cytotoxicity of Exogenous NAD+ to LS 174T Goblet Cells

To study the stimulatory effect of NAD+ on MUC2 expression in LS 174T cells, we measured the
cytotoxic effect of exogenous NAD+ on LS 174T cells. The relative viability of the cells treated with NAD+

(12.5-200 µM) was not significantly different from that of the negative control cells (Figure 1A). Therefore,
exogenous NAD+ was not cytotoxic to LS 174T cells within the concentration range used in this study.
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Figure 1. Cytotoxic effect of exogenous nicotinamide adenine dinucleotide (NAD+) on LS 174T
goblet cells and expression level of MUC2 by time. LS 174T cells were treated with NAD+

at concentrations ranging from 12.5 µM to 200 µM, and the cytotoxicity was measured by
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (A). Expression level of
MUC2 in 200 µM NAD+-treated cells was measured by qPCR (B). The data are expressed as the mean
± SD of three independent experiments performed in triplicate.

3.2. Time Course of MUC2 Induction by Exogenous NAD+

To determine the maximal time point of MUC2 induction, the expression level of MUC2 was
measured by culture time by qPCR. Cells treated with 200 µM NAD+ showed higher expression rates
compared with the negative control at each time point (Figure 1B). Especially, cells treated with 200
µM NAD+ showed the highest expression level at 48 h. Therefore, cells were cultured for 48 h in
subsequent experiments in this study.

3.3. Effect of Exogenous NAD+ on the Expression of MUC2 in LS 174T Cells

The stimulatory effect of exogenous NAD+ on MUC2 expression in LS 174T cells was
measured by quantitative real-time polymerase chain reaction (qPCR) (at the mRNA level) and
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by immunocytochemistry (ICC) (at the protein level). The expression levels of MUC2 exhibited changes
of 0.965-, 1.587-, and 2.305-fold in cells treated with 50 µM, 100 µM, and 200 µM NAD+, respectively,
compared with the negative control cells (Figure 2A). MUC2 levels were also higher in NAD+-treated
cells than in the negative control cells (Figure 2B). The quantified fluorescence intensity in NAD+-treated
cells increased in a dose-dependent manner; the relative fluorescence intensities in 50 µM, 100 µM,
and 200 µM NAD+-treated cells were 112.973 ± 16.903%, 143.600 ± 1.424%, and 190.683 ± 4.079%,
respectively, of the intensities in the negative control cells (100%) (Figure 2C). The results showed that
exogenous NAD+ increased MUC2 expression at the mRNA and protein levels.
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Figure 2. Stimulatory effect of exogenous NAD+ on MUC2 expression in LS 174T goblet cells. The cells were
treated with NAD+ at concentrations ranging from 50 to 200 µM and incubated for 48 h. (A) The mRNA
expression levels of MUC2 were measured by qPCR. (B) Intracellular MUC2 protein levels were measured
by immunocytochemistry (ICC) (magnification 600×), and (C) the intensity of fluorescence was quantified.
(a) Negative control, (b) 50 µM NAD+, (c) 100 µM NAD+, (d) 200 µM NAD+. The data are expressed as
the mean ± SD of three independent experiments performed in triplicate.

3.4. Gene Expression Analysis of NAD+-Treated LS 174T Cells

To estimate the pathway involved in the stimulation of MUC2 expression by exogenous NAD+ in
LS 174T cells, RNA sequencing of the negative control and 200 µM NAD+-treated cells was performed
in three independent experiments, and 25,737 genes were identified (Table S1). RNA sequencing
data were deposited and are available through the NCBI GEO database (accession code: GSE140116).
For functional annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis
was performed with the Database for Annotation, Visualization and Integrated Discovery (DAVID).
Arachidonic acid metabolism (−log(P-value) = 7.500), steroid hormone biosynthesis (−log(P-value) =

3.997), and glycine, serine, and threonine metabolism (−log(P-value) = 3.380) were the most significantly
enriched Gene Ontology (GO) terms of the differentially expressed genes (DEGs) in NAD+-treated
LS 174T cells compared with the negative control cells (Figure 3A). We further analyzed mRNA
expression fold changes in the cells treated with 200 µM NAD+ compared with the negative control
cells. Interestingly, the levels of several small nucleolar RNAs (snoRNAs) were highly increased in the
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cells treated with 200 µM NAD+ compared with the negative control cells. Among the DEGs, 648 genes
changed by ≥ 2-fold or ≤ 0.5-fold with statistical significance (p < 0.05) upon NAD+ treatment (Table
S2). The volcano plot shows the 451 upregulated genes (≥ 2-fold) (red) and the 197 downregulated
genes (≤ 0.5-fold) (green) in NAD+-treated cells compared with the negative control cells (Figure 3B),
and the heatmap further indicates the upregulated (red) and downregulated (blue) genes in the
NAD+-treated cells compared with the negative control cells and the genes involved in arachidonic
acid metabolism (Figure 3C). Among 13 genes involved in arachidonic acid metabolism, 12 genes
(except PTGS2 (COX-2)) were significantly upregulated by exogenous NAD+ (Table 2). The arachidonic
acid metabolism network was obtained through STRING analysis (Figure 3D).
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Figure 3. Analysis of the RNA sequencing results of cells treated with NAD+. RNA samples were
prepared in triplicate from the negative control cells and cells treated with 200 µM NAD+ for 48 h,
and RNA sequencing was performed using an Illumina NextSeq 500 platform. The differentially
expressed genes (DEGs) were analyzed with Excel-based Differentially Expressed Gene Analysis
(ExDEGA). (A) Functional annotation was performed with Database for Annotation, Visualization and
Integrated Discovery (DAVID). (B) Volcano plot displaying the 648 genes with significant ≥ 2-fold and
≤ 0.5-fold (p < 0.05) changes in expression in 200 µM NAD+-treated samples compared to the negative
control samples (red, significantly upregulated; green, significantly downregulated; gray, not changed
significantly or changed by less than 2-fold). The boxes represent the genes involved in arachidonic
acid metabolism shown in Table 2. (C) Heatmap based on the data of the 648 significant DEGs (Table
S2) and the genes involved in arachidonic acid metabolism (Table 2). (D) Interaction network of 13
arachidonic acid metabolism-associated genes (Table 2) identified by Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) analysis with a confidence cutoff of 0.40 using the STRING
database. In the resulting protein association network, proteins are presented as nodes connected by
lines whose thickness represents the confidence level.
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Table 2. Genes involved in arachidonic acid metabolism network by STRING analysis.

Gene Gene Name Expression Fold Change a P-Value

PLA2G10 Phospholipase A2 group X 4.323 0.004
GGT1 Gamma-glutamyltransferase 1 3.061 0.002
PLB1 Phospholipase B1 2.437 0.043

AKR1C3 Aldo-keto reductase family 1 member C2 2.158 0.001
PTGES Prostaglandin E synthase 2.662 0.009
CYP2E1 Cytochrome P450 family 2 subfamily E member 1 3.295 0.032
ALOX5 Arachidonate 5-lipoxygenase 2.012 0.006

ALOX15 Arachidonate 15-lipoxygenase 2.469 0.004
PLA2G4D Phospholipase A2 group IVD 3.406 0.007
PLA2G16 Phospholipase A2 group XVI 6.022 < 0.001
CYP4F3 Cytochrome P450 family 4 subfamily F member 3 2.139 0.014
CYP4F2 Cytochrome P450 family 4 subfamily F member 2 2.087 0.002

PTGS2 (COX-2) Prostaglandin-endoperoxide synthase 2
(cyclooxygenase-2) 0.433 0.005

a Expression fold change: fold change in the expression a gene differentially expressed in 200 µM NAD+-treated
cells versus the negative control cells.

3.5. The Expression of Phospholipase A2 (PLA2) is Increased in NAD+-Treated Cells

Cytosolic PLA2 (cPLA2) converts membrane phospholipids into arachidonic acid [22]. To confirm
the effect of NAD+ treatment on PLA2 expression, expression levels of PLA2 were measured by
qPCR. The expression levels of PLA2 were significantly increased in a dose-dependent manner in
NAD+-treated cells compared with the negative control cells (Figure 4). The expression levels of PLA2
in cells treated with 50 µM, 100 µM, and 200 µM NAD+ were 1.191-, 1.329-, and 1.677-fold higher,
respectively, than those in the negative control cells.Biomolecules 2020, 10, x 9 of 19 
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PLA2 expression levels were measured by qPCR. The data are expressed as the mean ± SD of three
independent experiments performed in triplicate.

3.6. Phospholipase C (PLC) is Involved in NAD+-Induced Increases in MUC2 Expression

Extracellular NAD+ induces signaling cascades by activating PLC via P2 receptors/Gq
proteins [18,19]. To examine whether exogenous NAD+ induces PLC activation, we measured
the expression levels of PLC-δ3, PLC-γ2, and PLC-η2 in NAD+-treated cells by qPCR. PLC-δ3, PLC-γ2,
and PLC-η2 were selected based on the RNA sequencing data (Table S1), and their expression levels
were ≥ 1.5-fold higher (p < 0.05) in NAD+-treated cells compared with the negative control cells.
Among PLC-δ3, PLC-γ2, and PLC-η2, PLC-δ3 exhibited significant increases in expression in the
NAD+-treated cells compared with the negative control cells (Figure 5A). The expression levels of
PLC-δ3 in cells treated with 50 µM, 100 µM, and 200 µM NAD+ were 0.936-, 2.197-, and 4.089-fold
higher, respectively, than those in the negative control cells. To confirm the effect of PLC on MUC2
expression mediated by NAD+, we administered U73122, a potent PLC inhibitor, along with NAD+

and measured the expression levels of MUC2. The expression levels of MUC2 exhibited changes of
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0.995-, 1.551-, and 0.874-fold in cells treated with 10 µM U73122 alone, 200 µM NAD+, and U73122
and 200 µM NAD+, respectively, compared with the negative control cells (Figure 5B). U73122 alone
did not affect MUC2 expression levels; however, the co-administration of U73122 with 200 µM NAD+

significantly suppressed MUC2 expression. In ICC analysis, co-administration of U73122 and 200 µM
NAD+ decreased MUC2 levels (Figure 5C). In cells treated only with the secondary antibody (and not
with the primary anti-MUC2 antibody), the fluorescence intensities did not increase, indicating that
the fluorescence intensity was not affected by the secondary antibodies. Compared with the levels in
the negative control cells (100%), the expression levels of MUC2 protein were 93.630 ± 2.287%, 167.568
± 8.929%, and 91.565 ± 5.936% in cells treated with U73122 alone, 200 µM NAD+, and U73122 and 200
µM NAD+, respectively (Figure 5D). The expression levels of MUC2 protein in the different samples
were consistent with the gene expression results. The results suggested that PLC-δ3 might be involved
in the stimulation of MUC2 expression by exogenous NAD+.
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Figure 5. PLC-δ3 involvement in the pathway of NAD+-mediated stimulation of MUC2 expression. (A)
The expression levels of PLC variants were detected by qPCR. U73122 was used to inhibit PLC-δ, and
MUC2 expression was observed at the gene level (B) and at the protein level using ICC (magnification
600×) (C). To clarify that the secondary antibodies were not affected the generation of a fluorescence
signal, the preparations of the negative control and 200 µM NAD+-treated cells were created by omitting
the primary antibody. (a) Negative control, (b) 200 µM NAD+, (c) 10 µM U73122, (d) 200 µM NAD+

and 10 µM U73122, (e) negative control without the primary antibody, (f) 200 µM NAD+ without the
primary antibody. The fluorescence intensity was quantified (D). The data are expressed as the mean ±
SD of three independent experiments performed in triplicate. The symbols + and − indicate chemical
treatment and non-treatment, respectively.
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3.7. Microsomal Prostaglandin E Synthase (PTGES) is Involved in the Stimulation of MUC2 Expression by
Exogenous NAD+

Mucus secretion is stimulated by gastrointestinal hormones such as prostaglandin E2 (PGE2) [23,24],
and PGE2 is produced from arachidonic acid by PTGES. The expression levels of PTGES in 100 and
200 µM NAD+-treated cells were significantly increased (50 µM NAD+, 0.881-fold; 100 µM NAD+,
1.690-fold; 200 µM NAD+, 3.054-fold, compared with the levels in the negative control cells) (Figure 6A).
To confirm these results, we used MF63, a potent selective inhibitor of human PTGES, to block the
activity of PTGES in this pathway. The expression levels of MUC2 were altered by 0.467-, 1.805-,
and 0.716-fold in cells treated with 500 nM MF63 alone, 200 µM NAD+, and 200 µM NAD+ and
MF63, respectively, compared with the negative control cells (Figure 6B). To investigate whether the
inhibition of PTGES by MF63 affected MUC2 expression, we measured the protein expression levels of
secreted MUC2 in the cell culture supernatant by ELISA rather than by ICC, because MF63 emits green
fluorescence in the absence of primary and secondary antibodies due to its structural character. The
expression levels of MUC2 were 12.027 ± 1.296 ng/mL in the negative control cells and 13.840 ± 0.404
ng/mL, 14.540 ± 0.256 ng/mL, 15.082 ± 0.159 ng/mL, 9.260 ± 0.100 ng/mL, and 10.298 ± 0.059 ng/mL in
the cells treated with 50 µM NAD+, 100 µM NAD+, 200 µM NAD+, MF63 alone, and 200 µM NAD+

and MF63, respectively (Figure 6C). PGE2 stimulates mucin secretion, and PTGES is a key enzyme for
PGE2 synthesis, which suggests that the inhibition of PTGES might decrease MUC2 production. In this
study, although the MUC2 gene expression was not significantly decreased, MF63 alone significantly
decreased the expression level of MUC2 protein in LS 174T, which may be due to the inhibition of
PTGES, which resulted in the decrease of MUC2 expression. The results showed a small but significant
increase of secreted MUC2 in a dose-dependent manner with NAD+ and suggested that PTGES might
contribute to the stimulation of MUC2 expression by exogenous NAD+.
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Figure 6. Participation of prostaglandin E synthase (PTGES) in the pathway of NAD+-mediated
stimulation of MUC2 expression. The expression levels of PTGES were evaluated with qPCR (A). MF63
was used to inhibit PTGES. MF63 was administered to LS 174T cells alone or in combination with 200
µM NAD+ for 48 h and the expression levels were measured by qPCR (B). The MUC2 protein levels in
each cell culture supernatant were assayed by ELISA (C). The data are expressed as the mean ± SD
of three independent experiments performed in triplicate. The symbols + and − indicate chemical
treatment and non-treatment, respectively.
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3.8. PKC-δ in the MUC2 Expression Pathway Receives a Signal upon NAD+ Administration

In general, PGE2 is known for binding to the PGE2 receptor, which induces the activation of
PKC [25]. To observe the effect of NAD+ on the mRNA expression of PKC in NAD+-treated cells, we
performed qPCR. Among the PKC isotypes, PKC-δ showed the greatest dose-dependent increases in
expression in our preliminary experiments (Figure 7A). The expression levels of PKC-δ in the cells
treated with 50 µM, 100 µM, and 200 µM NAD+ were 1.125-, 1.549-, and 2.578-fold higher, respectively,
than those in the negative control cells. For the specific inhibition of PKC-δ, the peptide AS-65111
was used. AS-65111 (40 µM) alone did not block MUC2 at either the gene level (Figure 7B) or the
protein level (Figure 7C,D); however, it successfully attenuated the increases in MUC2 expression in
200 µM NAD+-treated cells at the gene and protein levels. The expression levels of MUC2 were 1.095-,
1.573-, and 1.072-fold higher in the cells treated with AS-65111 alone, 200 µM NAD+, and 200 µM
NAD+ and AS-65111, respectively, than in the negative control cells (Figure 7B). The expression levels
of MUC2 were increased by treatment with 200 µM NAD+ but decreased by co-treatment with 200 µM
NAD+ and AS-65111 (Figure 7C,D). The expression levels of MUC2 were 106.637 ± 1.165%, 239.137 ±
7.217%, and 147.589 ± 0.460% of the negative control levels in the cells treated with AS-65111 alone, 200
µM NAD+, and 200 µM NAD+ and AS-65111, respectively. The results suggested that PKC-δmight
contribute to MUC2 expression through PLC stimulation by exogenous NAD+.

3.9. PKC-δ Transfers a Signal to ERK1/2 to Stimulate MUC2 Expression upon NAD+ Administration

To identify the signaling protein downstream from PKC-δ, the expression levels of genes encoding
typical MAPK proteins (p38, ERK, and JNK) were measured. Among MAPK proteins, although
expression levels were not large, ERK1/2 exhibited a significant increase in expression in the cells treated
with 100 µM and 200 µM NAD+, respectively, compared with the negative control cells (Figure 8A).
The results showed that expression levels of JNK and p38 did not increase significantly by exogenous
NAD+ supplementation. To confirm these results, the inhibitors U0126, SB203580, and SP600125
were used to block MEK/ERK, p38, and JNK, respectively. U0126 inhibited MUC2 expression in 200
µM NAD+-treated cells (Figure 8B). The relative mRNA expression levels were 1.127 ± 0.350, 1.831
± 0.113, and 0.815 ± 0.233 in the cells treated with U0126 alone, 200 µM NAD+, and 200 µM NAD+

and U0126, respectively, compared with the negative control cells (1.000). However, SB203580 and
SP600125 did not inhibit MUC2 expression in 200 µM NAD+-treated cells (Figure 8C,D). ICC showed
that MUC2 expression increased in the cells treated with 200 µM NAD+; however, it decreased upon
co-treatment with 200 µM NAD+ and U0126 (Figure 8E). The quantified relative protein expression
levels of ICC were 102.795 ± 7.339%, 174.972 ± 28.216%, and 134.465 ± 14.138% of the negative control
levels (100%) in the cells treated with U0126 alone, 200 µM NAD+, and 200 µM NAD+ and U0126,
respectively (Figure 8F). These results suggested that among MAPK proteins, ERK might be involved
in the pathway of MUC2 synthesis mediated by PKC-δ upon exogenous NAD+ administration.
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Figure 7. Effect of protein kinase C (PKC)-δ activation on MUC2 expression. (A) The expression levels
of PKC-α, PKC-δ, and PKC-εwere investigated with qPCR. AS-65111 was used to inhibit PKC-δ. MUC2
expression was measured at the gene level (B) and at the protein level using ICC (magnification 600×)
(C). To clarify that the secondary antibodies were not affected by the generation of the fluorescence
signal, the preparations of the negative control and 200 µM NAD+-treated cells were created by omitting
the primary antibody. (a) Negative control, (b) 200 µM NAD+, (c) 40 µM AS-65111, (d) 200 µM NAD+,
and 40 µM AS-65111, (e) negative control without the primary antibody, (f) 200 µM NAD+ without the
primary antibody. The fluorescence intensity was quantified (D). The data are expressed as the mean ±
SD of three independent experiments performed in triplicate. The symbols + and − indicate chemical
treatment and non-treatment, respectively.
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Figure 8. Extracellular signal-regulated kinase (ERK)1/2 is involved in MUC2 expression in
NAD+-treated cells. (A) qPCR was performed to measure the expression levels of MEK, ERK1,
ERK2, p38, and JNK1. U0126 blocked the stimulation of MUC2 expression caused by treatment with 200
µM NAD+ at the gene level (B), while SB203580 and SP600125 did not inhibit MUC2 expression caused
by treatment with 200 µM NAD+ (C,D). U0126 blocked the stimulation of MUC2 expression caused
by treatment with 200 µM NAD+ at the protein level, as assessed using ICC (magnification 600×) (E).
To clarify that the secondary antibodies were not affected the generation of fluorescence signal, the
preparations of the negative control and 200 µM NAD+-treated cells were created by omitting the
primary antibody. (a) Negative control, (b) 200 µM NAD+, (c) 100 µM U0126, (d) 200 µM NAD+,
and 100 µM U0126, (e) negative control without the primary antibody, (f) 200 µM NAD+ without the
primary antibody. The fluorescence intensity was quantified (F). The data are expressed as the mean ±
SD of three independent experiments performed in triplicate. The symbols + and − indicate chemical
treatment and non-treatment, respectively.
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3.10. CREB Receives a Signal from ERK and Becomes Phosphorylated

CREB is known as a transcription factor involved in prostaglandin-induced mucin synthesis [4,26].
To confirm the activation of the transcription factor CREB, the expression levels and phosphorylation
of CREB were assayed. Indeed, the expression levels of CREB were significantly increased by 1.157-,
1.492-, and 2.787-fold in the cells treated with 50 µM, 100 µM, and 200 µM NAD+, respectively, compared
with the negative control cells (Figure 9A). NAD+ also significantly increased the phosphorylation of
CREB in a dose-dependent manner (Figure 9B,C). The phosphor-CREB/CREB ratios were 1.054 ± 0.133,
1.248 ± 0.056, and 2.127 ± 0.348 in the cells treated with 50 µM, 100 µM, and 200 µM NAD+, respectively,
compared with the negative control cells (1.000). A CREB inhibitor, KG-501 (10 µM), was used to block
MUC2 expression at the gene (Figure 9D) and protein levels (Figure 9E,F); the relative mRNA expression
levels were 0.67050 ± 0.033, 1.876 ± 0.035, and 1.110 ± 0.040 in the cells treated with KG-501 alone, NAD+

200 µM, and NAD+ 200 µM and KG-501, respectively, compared with the negative control cells. The
quantified relative protein expression levels revealed by ICC were 107.927 ± 2.010%, 232.965 ± 24.341%,
and 147.086 ± 6.492% of the negative control levels (100.000 ± 4.726%) in the cells treated with KG-501
alone, 200 µM NAD+, and 200 µM NAD+ and KG-501, respectively. Co-treatment with 200 µM NAD+

and KG-501 significantly decreased MUC2 expression at the gene and protein levels compared with
200 µM NAD+-only treatment. The results suggested that CREB might be a transcription factor in the
pathway of MUC2 synthesis mediated by PKC upon exogenous NAD+ administration.
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Figure 9. Cyclic AMP (cAMP) response element-binding protein (CREB) acts as a transcription factor
to stimulate the expression of MUC2 upon exogenous NAD+ administration. The effect of NAD+ on
the expression of CREB was measured by qPCR (A). The protein levels of CREB and phosphorylated
CREB were assessed by Western blot analysis (B), and the p-CREB/CREB ratio was obtained (C). The
blots are representative of three independent experiments. KG-501 was used to inhibit CREB activity,
and MUC2 expression was measured at the gene level by qPCR (D) and the protein level by ICC
(magnification 600×) (E). To clarify that the secondary antibodies were not affected by the generation of
a fluorescence signal, the preparations of the negative control and 200 µM NAD+-treated cells were
created by omitting the primary antibody. (a) Negative control, (b) 200 µM NAD+, (c) 10 µM KG-501,
(d) 200 µM NAD+ and 10 µM KG-501, (e) negative control without the primary antibody, (f) 200 µM
NAD+ without the primary antibody. The fluorescence intensity was quantified (F). The data are
expressed as the mean ± standard SD of three independent experiments performed in triplicate. The
symbols + and − indicate chemical treatment and non-treatment, respectively.
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4. Discussion

NAD+ is commonly known for its role as a coenzyme for oxidoreductase in the context of
redox metabolism [27]. However, NAD+ is also associated with ADP-ribose transfer reactions; in
particular, in cell signaling, NAD+ is a precursor of cyclic ADP-ribose involved in the second messenger
system [28,29]. Although NAD+ has been studied in a variety of fields in biology, it has not been
reported to induce MUC2 expression. In this study, we found that exogenous NAD+ stimulates MUC2
expression in intestinal goblet cells, revealing a novel regulatory role of NAD+ in the synthesis of
MUC2 in the intestine.

Extracellular NAD+ is an agonist of P2Y purinergic receptors [14,30]; these G protein-coupled
receptors are linked to the activation of PLC followed by generation of the second messengers
inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) [31]. NAD+/P2Y receptors transfer signals
through PLC [19,32]. Purinergic receptors are required for extracellular NAD+ and evoke biological
responses, which suggests that extracellular NAD+ may be sensed by cell-surface receptors. However,
extracellular NAD+-binding receptors still remain unidentified. Through RNA sequencing, we found
that the G protein-coupled receptor 87 (GPR87) and GPR34 genes, which are involved in the G
protein-coupled purinergic receptor signaling pathway, were significantly upregulated by 9.807- and
3.360-fold, respectively, in NAD+-treated cells compared with control cells (Table S2). GPR87 and
GPR34 are P2Y-related receptor family members [33–35]. GPR87 is involved in various ligand-mediated
signaling pathways, such as the MAPK pathway and PLC/PKC pathways activated by GPR87 [36].
The overexpression of GPR34 in lymphoma results in the phosphorylation of ERK, PKC, and CREB
and increased cell proliferation [37].

Arachidonic acid is a polyunsaturated fatty acid present in the phospholipids of cellular membranes
that is released by phospholipases. Arachidonic acid acts as a lipid secondary messenger in cellular
signaling pathways involved in the regulation of PLC-γ and PLC-δ. Arachidonic acid strongly
stimulates PKC-ε and PKC-δ in adult cardiac myocytes [38]. In this study, RNA sequencing showed
that genes involved in arachidonic acid metabolism were upregulated in the cells treated with 200 µM
NAD+. Arachidonic acid may be released from membrane phospholipids by PLC-δ and subsequently
activate the signaling pathway that stimulates CREB, which might stimulate MUC2 expression.
Similarly, CREB mediates MUC5AC overexpression induced by prostaglandin F2α in airway epithelial
cells through the PKC/ERK/p90 ribosomal protein kinase/CREB signaling cascade [26]. Quercetin
increases MUC2 and MUC5AC gene expression and secretion via the PKCα/ERK1–2 pathway in LS
174T and Caco-2 cells [39]. Although we should measure the release of arachidonic acid upon NAD+

treatment in the further study, in this study, exogenous NAD+ showed the stimulating effect on MUC2
expression via involvement of PLC/PKC/MAPK pathway and CREB.

A secondary bile acid, deoxycholic acid, induces the transcription of MUC2 in colon cancer cell
line HM3, which is inhibited by the JNK-mediated pathway. Moreover, MUC2 promoter activity is
upregulated by inhibiting JNK with a JNK inhibitor, SP600125 [40]. In this study, SP600125 solely
upregulated the transcriptional level of MUC2, which is consistent with those results. The promoters of
MUC2, MUC5AC, and MUC5B contain putative CRE sites, and CREB knockdown decreases expression
levels of MUC2, MUC5AC, and MUC5B, suggesting that CREB might be a potent transcriptional
regulator of the mucin genes [4], which might be explained that a CREB inhibitor KG-501 alone
decreased the expression level of MUC2 compared with the negative control in this study.

In the functional annotation analysis, the arachidonic acid metabolism pathway was the most
significant pathway. Arachidonic acid is converted to prostaglandins by cyclooxygenases (COX-1
and COX-2), and PGE2 is then produced by PTGES. COX-1 is constitutively expressed and produces
prostaglandins that show homeostatic functions, such as gastric mucosal protection functions; in
contrast, COX-2 shows inducible expression and produces prostaglandins that induce inflammation [41].
Arachidonic acid enables the production of PGE2, which mediates mucus secretion that contributes to
ulcer healing in the gastrointestinal tract [42]. Through RNA sequencing, we found that among the
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genes involved in arachidonic acid metabolism, COX-2 was significantly downregulated, indicating
that inflammation was not induced by exogenous NAD+.

Exogenous NAD+ triggered the activation of PLC-δ3, and the inhibition of PLC-δ activity decreased
MUC2 expression. Activation of the phosphoinositide signaling cascade is involved in the activation of
phospholipases. In this pathway, IP3 and DAG are released from the cell membrane by PLC. Generally,
IP3 is known to diffuse and bind to calcium channels located in the endoplasmic reticulum (ER), while
DAG is processed to form eicosanoids such as arachidonic acid by PLA2. PLA2, which is involved in
arachidonic acid metabolism, was upregulated in NAD+-treated cells (Table 2). The expression level
of PTGES, which converts arachidonic acid into PGE2, also increased upon treatment with NAD+.
Increased levels of calcium ions and PGE2 may activate PKC-δ. Although the tyrosine phosphorylation
of PKC-δ by thrombin is Ca2+-dependent [43], it is widely known that the activation of PKC-δ is
Ca2+-independent, requiring only DAG [44–46]. In this study, NAD+ may have activated PKC-δ
through signals transferred from PGE2 derived from DAG.

RNA sequencing revealed that several snoRNAs, which are noncoding RNAs, were upregulated
by approximately 40- to 10-fold in the cells treated with 200 µM NAD+ compared with the negative
control cells. These molecules were involved in the processing and modification of ribosomal RNAs.
Further studies are needed to explain the large increases in the levels of these snoRNAs.

5. Conclusions

Exogenous NAD+ induces the activation of PLC-δ/PTGES/PKC-δ/ERK1/2 signaling to
phosphorylate the transcription factor CREB, which ultimately enhances MUC2 expression in intestinal
goblet cells. Therefore, NAD+ has the potential to improve intestinal mucosal barrier function by
stimulating the expression of MUC2. Thus, our findings reveal a novel effect of NAD+ associated with
non-redox reactions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/4/580/s1,
Table S1: The 25,737 genes identified by RNA sequencing data upon NAD+ treatment, Table S2: The 648 genes
changed by ≥ 2-fold or ≤ 0.5-fold with statistical significance (p < 0.05) upon NAD+ treatment. RNA sequencing
data can be obtained from the URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140116.
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